Skip to main content
Publication

Stabilizing Dendritic Electrodeposition by Limiting Spatial Dimensions in Nanostructured Electrolytes.

Authors

Sharon, Daniel; Bennington, Peter; Patel, Shrayesh; Nealey, Paul

Abstract

The tendency of metals to form uncontrolled dendritic morphologies during electrodeposition hinders the development of safe and reliable metal batteries. Multiphase nanostructured electrolytes can suppress dendritic growth if the mechanical modulus of the electrolyte is high relative to that of the metal or if the conducting channels are confined to nanoscale dimensions. Direct visualization and analysis of electrodeposition within polymeric nanostructures elucidates the structure-property relationships and mechanisms underlying the suppression of dendrite growth. Here, we fabricate precisely structured multiphase films composed of nanochannels of a polymeric electrolyte in a background of nonconductive polymer on top of coplanar electrodes. The devices enable imaging and analysis of electrodeposition behavior as a function of channel width by scanning electron microscopy. We find that electrodeposition is confined to individual conductive channels and that radial propagation of the dendritic morphology is suppressed in channels for which the width is smaller than the characteristic dendritic nucleation size.