Skip to main content

Modeling Nanosecond-Pulsed Spark Discharge and Flame Kernel Evolution


Kim, Joohan; Gururajan, Vyaas; Scarcelli, Riccardo; Biswas, Sayan; Ekoto, Isaac


Dilute combustion, either using exhaust gas recirculation or with excess air, is considered a promising strategy to improve the thermal efficiency of internal combustion engines. However, the dilute air-fuel mixture, especially under intensified turbulence and high-pressure conditions, poses significant challenges for ignitability and combustion stability, which may limit the attainable efficiency benefits. In-depth knowledge of the flame kernel evolution to stabilize ignition and combustion in a challenging environment is crucial for effective engine development and optimization. To date, a comprehensive understanding of ignition processes that result in the development of fully predictive ignition models usable by the automotive industry does not yet exist. Spark-ignition consists of a wide range of physics that includes electrical discharge, plasma evolution, joule-heating of gas, and flame kernel initiation and growth into a self-sustainable flame. In this study, an advanced approach is proposed to model spark-ignition energy deposition and flame kernel growth. To decouple the flame kernel growth from the electrical discharge, a nanosecond-pulsed high-voltage discharge is used to trigger spark-ignition in an optically accessible small ignition test vessel with a quiescent mixture of air and methane. Initial conditions for the flame kernel, including its thermodynamic state and species composition, are derived from a plasma-chemical equilibrium calculation. The geometric shape and dimension of the kernel are characterized using a multi-dimensional thermal plasma solver. The proposed modeling approach is evaluated using a high-fidelity computational fluid dynamics procedure to compare the simulated flame kernel evolution against flame boundaries from companion Schlieren images.