Skip to main content
Press Release | Argonne National Laboratory

New foundry to accelerate quantum information research at Argonne National Laboratory

A national factory for quantum devices and materials

The Argonne Quantum Foundry is meeting a critical need for quantum science by providing a robust supply chain of materials for quantum devices and systems.

Quantum information technologies have the potential to transform our everyday lives. Powerful quantum computers, ultraprecise quantum sensors and tamperproof quantum communication networks could revolutionize areas as varied as medicine, energy and finance.

The U.S Department of Energy’s (DOE) Argonne National Laboratory has built the Argonne Quantum Foundry as part of its mission to accelerate advances in quantum information science. The foundry is a national source of materials and data for quantum research that is unique in the Midwest.

On April 19, Argonne marked its official opening at a ribbon-cutting celebration during which attendees toured the 6,000-square-foot research facility.

Our foundry will spur advances to quantum information science and technology for the benefit of the nation,” said Argonne Director Paul Kearns. With this world-class facility, Argonne is empowering quantum research to maintain U.S. scientific leadership and economic competitiveness.”

Argonne Director Paul Kearns welcomes guests to the Argonne Quantum Foundry ribbon cutting. (Image by Argonne National Laboratory.)

The creation of the Argonne Quantum Foundry, a key part of the lab’s quantum program, was led by Q-NEXT, a DOE National Quantum Information Science Research Center hosted at Argonne and founded in 2020. The foundry’s establishment and operation are a major part of Q-NEXT and set it apart as a quantum research center. Part of the Q-NEXT mission has been to make quantum materials available to researchers, meeting a critical need in quantum information research.

The foundry will spur more advances for quantum information science and technology for the benefit of the nation.” — Paul Kearns, Argonne director 

There are few places in the country dedicated to creating high-quality, standardized materials for quantum technologies, and we are pleased that one of them is now here at Argonne,” said Q-NEXT Director David Awschalom, who is also an Argonne senior scientist, the Liew Family Professor of Molecular Engineering and vice dean for Research and Infrastructure at the University of Chicago Pritzker School of Molecular Engineering (PME), and the director of the Chicago Quantum Exchange. Now that the foundry is open, we look forward to making this resource available to the national quantum information science community.”

The foundry addresses the needs of the quantum information field on two fronts. One is to accelerate research.

Argonne scientist Joe Heremans gives a tour of the Argonne Quantum Foundry to guests at the ribbon cutting. (Image by Argonne National Laboratory.)

In quantum information science, researchers take advantage of nature’s quantum features, available only at atomic scales, and turn them to practical purpose. Quantum computers promise to solve today’s most intractable problems. Communication networks based on quantum technologies are expected to be unhackable.

At the foundation of these next-generation tools are sophisticated materials designed to store, process and distribute quantum information.

From a material’s creation to its incorporation into devices, the Argonne Quantum Foundry provides researchers with the tools to develop, test, fabricate and integrate novel forms of matter for quantum systems.

The second need is to strengthen the U.S. quantum ecosystem.

For innovation in quantum science, it is critical that we forge connections between industry, academia and government agencies,” Awschalom said. By sharing knowledge and making our capabilities available to the scientific community broadly, we’re promoting U.S. competitiveness in this rapidly growing area of research.”

As a resource for the U.S., the foundry addresses a national need by providing a robust, domestic supply chain of materials for both foundational science and industry research. Researchers within Q-NEXT, which include members of academia and industry, will be able to use the foundry. It will be available for other national research efforts as well.

Q-NEXT Director and Argonne senior scientist David Awschalom talks about the importance of the foundry for the quantum ecosystem at the ribbon cutting. (Image by Argonne National Laboratory.)

The Argonne Quantum Foundry focuses on a class of materials known as semiconducting devices. It features areas for developing, testing and fabricating semiconductor qubits, the fundamental components of quantum devices. It also features a prototype silicon-based quantum computer, which will run simulations to aid in materials development. All of the data collected at the foundry will be used to build a national database of materials and their properties, furthering progress in quantum technology development.

Q-NEXT also led the establishment a second, complementary foundry at DOE’s SLAC National Accelerator Laboratory. The opening of the SLAC quantum foundry is imminent. It will focus on developing superconducting materials for quantum applications.

The quantum foundries at Argonne and SLAC are critical additions to the national quantum infrastructure,” said Supratik Guha, who is the Q-NEXT chief technology officer, a senior advisor to Argonne’s Physical Sciences and Engineering directorate, and a professor at the UChicago PME. They are allowing us to push the frontier of the technology and strengthen the scientific ecosystem, which is crucial for a quantum future.”

This work was supported by the U.S. Department of Energy Office of Science National Quantum Information Science Research Centers as part of the Q-NEXT center.

About Q-NEXT

Q-NEXT is a U.S. Department of Energy National Quantum Information Science Research Center led by Argonne National Laboratory. Q-NEXT brings together world-class researchers from national laboratories, universities and U.S. technology companies with the goal of developing the science and technology to control and distribute quantum information. Q-NEXT collaborators and institutions will create two national foundries for quantum materials and devices, develop networks of sensors and secure communications systems, establish simulation and network test beds, and train the next-generation quantum-ready workforce to ensure continued U.S. scientific and economic leadership in this rapidly advancing field. For more information, visit https://​q​-next​.org/.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.