Skip to main content
Press Release | Argonne National Laboratory

Physicists show trilayer metal oxide’s true stripes

The true stripes of triple-layer metal oxides are charge stripes, physicists say.

In a study published today in the Proceedings of the National Academy of Sciences, a team of researchers from the U.S. Department of Energy’s (DOE’s) Argonne National Laboratory describe a process to create a triple-layer metal oxide in a never-before-made single-crystal form; and observed in it an interesting phenomenon called charge striping, which may shed light on the physics behind similar useful electronic properties of metal oxides, such as superconductivity.

In the 1990s, studying the behavior of electrons in layered nickel oxide compounds in order to learn more about their conductive properties, physicists observed stripes” of charge forming in the layers. Because this occurs near the stage where similar copper-based materials become superconducting — the strange and highly sought-after property where electricity can be carried with zero loss — it’s thought the two phenomena may be related.

Since then, scientists had seen charge stripes in several other materials, but only in single-layer sheets of nickel oxides.

That was until Argonne researcher Junjie Zhang grew crystals of a triple-layer lanthanum nickel oxide in Argonne’s high-pressure zone furnace, one of just a few of its type in the world, and took them to the Advanced Photon Source, a DOE Office of Science User Facility that generates extremely bright X-rays for scientific research.

The X-rays revealed a distinctive pattern that suggested charge stripes. What he found when he cooled this material down through its metal-insulator transition temperature, were these extremely weak extra spots that could only be seen at a synchrotron. And what he saw immediately was that they were spaced in thirds. That’s exactly what we knew happened in the single-sheet compounds when stripes form,” said John Mitchell, associate director of Argonne’s Materials Science Division and corresponding author on the paper. It was a bit of a eureka moment.”

More X-ray diffraction and modeling helped the team quantitatively, as well as qualitatively, point to charge striping as the cause.

They noticed something unexpected in the triple-layer structure. The positive charges in each stripe stack on top of one another in the trilayer. Since like charges normally repel one another, the stripes should have staggered from layer to layer; But they don’t,” Mitchell said.

Farther apart, however, the stripes in one trilayer block do start to appear staggered from neighboring blocks. We’re left with a situation that is exactly the opposite of what you’d predict based on charge alone,” he said. Members of the team have written a companion theory paper to explain the phenomenon based on coupling between the charge stripes and the nickel oxide lattice.

Finding these stripes is a relief, actually. It tells us there is a simple, unifying picture for this phenomenon – just count the charges and you know what to expect,” Mitchell said. A potentially bigger picture about these particular compounds is that they may offer a different route to explore the physics surrounding cuprates.” (Cuprates are the class of materials that contain the famous high-temperature” superconductors, which can be cooled with liquid nitrogen rather than the scarcer and more expensive liquid helium needed for conventional superconductors.)

X-rays at the Advanced Photon Source of the single-crystal La4Ni3O8 compound (top left) reveal a charge stripe superlattice with

The team is planning to further explore the materials and related bilayer materials, which could further help us explain the underlying physics of superconductivity and similar electronic properties.

The paper, Stacked Charge Stripes in the Quasi-Two-Dimensional Trilayer Nickelate La4Ni3O8,” is published in Proceedings of the National Academy of Sciences.

In addition to Zhang and Mitchell, the other authors on the paper were Daniel Phelan, Hong Zheng and Mike Norman, all with Argonne’s Materials Science Division, and X-ray physicist Yu-Sheng Chen of the University of Chicago’s ChemMatCARS beamline at the Advanced Photon Source.

The work was supported by the U.S. Department of Energy’s Office of Science.The X-ray research was performed at the Advanced Photon Source at beamline 15-ID-B, which is part of the University of Chicago’s ChemMatCARS beamline and is supported by the National Science Foundation.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.