Skip to main content
Seminar | Mathematics and Computer Science Division

Post-Optimization Automatic Differentiation by Synthesizing LLVM

LANS Seminar

Abstract: This talk presents Enzyme, a high-performance automatic differentiation (AD) compiler plugin for the LLVM compiler framework capable of synthesizing gradients of statically analyzable programs expressed in the LLVM intermediate representation (IR). Enzyme can synthesize gradients for programs written in any language whose compiler targets LLVM IR including C, C++, Fortran, Julia, Rust, Swift, MLIR, etc., thereby providing native AD capabilities in these languages. Unlike traditional source-to-source and operator-overloading tools, Enzyme performs AD on optimized IR.

On a machine-learning focused benchmark suite including Microsoft’s ADBench, AD on optimized IR achieves a geometric mean speedup of 4.5x over AD on IR before optimization allowing Enzyme to achieve state-of-the-art performance. Packaging Enzyme for PyTorch and TensorFlow provides convenient access to gradients of foreign code with state-of-the-art performance, enabling foreign code to be directly incorporated into existing machine learning workflows.