Skip to main content

Lei Cheng



Lei Cheng is a chemist in Argonne’s Materials Science division and a technical lead for beyond lithium-ion and solid-state electrolyte research at the Argonne Collaborative Center for Energy Storage Science (ACCESS). She also serves as a focus area lead for the Liquid Solvation Science thrust of the Joint Center for Energy Storage Research (JCESR). JCESR is an Energy Innovation Hub under the U.S. Department of Energy that focuses on advancing battery science and technology.

Cheng’s research focuses on using multiscale computational methods to study material structures and properties for energy storage applications, and surface reaction mechanisms at solid-liquid electrolyte interfaces of batteries, in heterogeneous catalysis and in the atomic layer deposition processes. 


  • Ph.D. Computational Chemistry, Southern Illinois University at Carbondale, 2009
  • B.S. Applied Chemistry, Qingdao University, China, 2003

Select Awards

  • Argonne Physical Science and Engineering directorate NextGen Leaders Program, 2020
  • Midwest Energy News 40 Under 40” Award, 2018
  • Strategic Lab Leadership Program, University of Chicago, 2017

Select Publications

  • Yu, Z. ; Curtiss, L. A.; Winans, R. E.; Zhang, Y.; Li, T.; Cheng, L., Asymmetric Composition of Ionic Aggregates and the Origin of High Correlated Transference Number in Water-in-Salt Electrolytes, The Journal of Physical Chemistry Letters 2020, 11, 4, 1276–1281.
  • Hahn, N.T.; Driscoll, D.M.; Yu, Z.; Sterbinsky G. E; Cheng, L.; Balasubramanian, M.; Zavadil, K.R. Influence of Ether Solvent and Anion Coordination on Electrochemical Behavior in Calcium Battery Electrolytes, ACS Applied Energy Materials, 2020, 3, 9, 8437
  • Trahey, L; Brushett, F. R.; Balsara, N. P.; Ceder G.; Cheng, L.; Chiang, Y.; Hahn, N.T.; Ingram, B.J.; Minteer, S.D.; Moore, J.S.; Mueller, K.T.; Nazar, L.F.; Persson, K.A.; Siegel; Xu, K.; D.J.; Zavadil, K.R.; Srinivasan, V.; Crabtree, G.W. Energy Storage Emerging: A Perspective from the Joint Center for Energy Storage Research, Proceedings of the National Academy of Sciences, 2020, 117, 23, 12550
  • Feng, Z.; Sarnello, E.; Li, T.; Cheng, L., Communication—Microscopic View of the Ethylene Carbonate Based Lithium-Ion Battery Electrolyte by X-ray Scattering, Journal of The Electrochemical Society 2019, 166 (2), A47A49.
  • Cheng, L.; Redfern, P.; Lau, K. C.; Assary, R.S.; Narayanan, B.; Curtiss, L.A., Computational Studies of Solubilities of LiO2 and Li2O2 in Aprotic Solvents. Journal of The Electrochemical Society 2017, 164, E3696E3701.
  • See, K.A.; Wu, H.-L.; Lau, K.C.; Shin, M.; Cheng, L.; Balasubramanian, M.; Gallagher, K.G.; Curtiss, L.A.; Gewirth, A.A., Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery. ACS Applied Materials & Interfaces 2016, 8, 34360–34371.
  • Cheng, L.; Curtiss, L.A.; Zavadil, K.R.; Gewirth, A.A.; Shao, Y.; Gallagher, K.G., Sparingly Solvating Electrolytes for High Energy Density Lithium–Sulfur Batteries. ACS Energy Letters 2016, 1, 503–509.
  • Cheng, L.; Assary, R.S.; Qu, X.; Jain, A.; Ong, S.P.; Rajput, N.N.; Persson, K.; Curtiss, L.A., Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening. The Journal of Physical Chemistry Letters 2015, 6, 283–291.
  • Canepa, P.; Jayaraman, S.; Cheng, L.; Rajput, N.N.; Richards, W.D.; Gautam, G.S.; Curtiss, L.A.; Persson, K.A.; Ceder, G., Elucidating the Structure of the Magnesium Aluminum Chloride Complex Electrolyte for Magnesium-Ion Batteries. Energy & Environmental Science 2015, 8, 3718–3730.
  • Lu, J.; Cheng, L.; Lau, K.C.; Tyo, E.; Luo, X.; Wen, J.; Miller, D.; Assary, R.S.; Wang, H.-H.; Redfern, P., Effect of the Size-Selective Silver Clusters on Lithium Peroxide Morphology in Lithium–Oxygen Batteries. Nature Communications 2014, 5, ncomms5895.
  • Cheng, L.; Yin, C.; Mehmood, F.; Liu, B.; Greeley, J.; Lee, S.; Lee, B.; Seifert, S.N.; Winans, R.E.; Teschner, D., Reaction Mechanism for Direct Propylene Epoxidation by Alumina-Supported Silver Aggregates: The Role of the Particle/Support Interface. ACS Catalysis 2013, 4, 32–39.
  • Cheng, L.; Ferguson, G.A.; Zygmunt, S.A.; Curtiss, L.A., Structure–Activity Relationships for Propane Oxidative Dehydrogenation by Anatase-Supported Vanadium Oxide Monomers and Dimers. Journal of Catalysis 2013, 302, 31–36.