Skip to main content

Xufeng Zhang

Assistant Scientist

Biography

Research focuses on experimental study of hybrid quantum systems involving magnon spintronics, integrated photonics, and nanomechanics, aiming at developing high-fidelity quantum transducers for distributed quantum networks. Such interdisciplinary research not only studies the quantum coherent phenomena of individual quantum information carriers but also seeks enhancement of their coherent interactions. Research interests also include developing integrated photonic sensors for biochemical sensing with high sensitivity and specificity, as well as wireless sensor networks in extreme conditions such as in subterranean environments. 

 

Selected Publications

  • J. Xu, C. Zhong, X. Han, D. Jin, L. Jiang, and X. Zhangꝉ, Floquet cavity electromagnonics”, Phys. Rev. Lett. in press (2020).
  • N. Zhu, X. Zhang, X. Han, C-L Zou, C. Zhong, C-H Wang, L. Jiang, and H. Tang, Waveguide cavity optomagnonics for broadband multimode microwave-to-optics conversion”, Optica 7, 1291 (2020).
  • X. Zhangꝉ, A. Galda, X. Han, D. Jin, and V. M. Vinokur, Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons,” Phys. Rev. Appl. 13, 044039 (2020). Editors’ suggestion. 
  • M. Otten, X. Zhou, X. Zhang, and D. Jin, ​“Quantum optics of single electrons in quantum liquid and solid helium-4”, Adv. Theory Simul. 3, 2000008 (2020).
  • X. Zhou, X. Han, D. Koelle, R. Kleiner, X. Zhangꝉ, and D. Jinꝉ, ​“On-chip sensing of hot spots in superconducting terahertz emitters”, Nano Lett. 20, 4197 (2020).
  • X. Zhangꝉ, K. Ding, X. Zhou, J. Xu, and D. Jin, Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons,” Phys. Rev. Lett. 123, 237202 (2019). Editors’ suggestion. Physics Viewpoint [link]
  • N. Zhu, H. Chang, A. Franson, T. Liu, X. Zhang, E. Johnston-Halperin, M. Wu, and H. Tang, Patterned growth of crystalline Y3Fe5O12 nanostructures with engineered magnetic shape anisotropy,” Appl. Phys. Lett. 110, 252401 (2017).
  • X. Zhang, N. Zhu, C. Zou, and H. Tang, Optomagnonic whispering gallery microresonators,” Phys. Rev. Lett. 117, 123605 (2016).
  • X. Zhang, C. Zou, L. Jiang, and H. Tang, Cavity magnomechanics,” Sci. Adv. 2, e1501286 (2016).
  • X. Zhang, C. Zou, L. Jiang, and H. Tang, Superstrong coupling of thin film magnetostatic waves with microwave cavity,” J. Appl. Phys. 119, 023905 (2016).
  • N. Zhu, X. Zhang, I. Froning, M. Flatté, E. Johnston-Halperin, and H. Tang, Low loss spin wave resonances in organic-based ferrimagnet vanadium tetracyanoethylene thin films,” Appl. Phys. Lett. 109, 082402 (2016).
  • X. Zhang, C. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. Tang, Magnon dark modes and gradient memory,” Nat. Commun. 6, 8914 (2015).
  • X. Zhang, C. Zou, L. Jiang, and H. Tang, Strongly coupled magnons and cavity microwave photons,” Phys. Rev. Lett. 113, 156401 (2014).
  • X. Zhang, T. Liu, M. Flatté, and H. Tang, Electric-field coupling to spin waves in a centrosymmetric ferrite,” Phys. Rev. Lett. 113, 037202 (2014). Editors’ suggestion. Physics Synopsis [link]
  • X. Han, C. Xiong, K. Y. Fong, X. Zhang, and H. Tang, Triply resonant cavity electro-optomechanics at X-band,” New J. Phys. 38, 2810 (2014).
  • H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. Tang, Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810 (2013).
  • X. Zhang, X. Sun, and H. Tang, A 1.16-µm-radius disk cavity in a sunflower-type circular photonic crystal with ultrahigh quality factor,” Opt. Lett. 37, 3195 (2012).
  • X. Sun, X. Zhang, M. Poot, C. Xiong, and H. Tang, A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity,” Appl. Phys. Lett. 101, 221116 (2012).
  • X. Sun, X. Zhang, and H. Tang, High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett. 100 , 173116 (2012).