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“ Extreme-scale Model Exploration With Swift (EMEWS) Workflow

EMEWS combines existing machine learning/model exploration
Swift/T Script libraries (i.e., DEAP — Distributed Evolutionary Algorithms in Python)
with the Swift/T parallel scripting language to run scientific
workflows in an HPC environment. This work was performed on
Midway at the RCC and Beagle at the Cl, an utilized up to 2000
processing cores simultaneously.

Personalized medicine requires the right interventions for
the right patient at the right time. This necessitates
parsing individual patient trajectories at a mechanistically
relevant temporal resolution, a task for which existing
biomedical data sets are inadequate. High-performance
computational modeling and simulation can help
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Tutorial: http://www.mcs.anl.gov/~emews/tutorial/
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