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EXECUTIVE SUMMARY 

Over the past decade, fundamental changes in artificial intelligence (AI)—from foundational to applied—have delivered 

dramatic insights across a wide breadth of U.S. Department of Energy (DOE) mission space. AI is helping to augment and 

improve scientific and engineering workflows (e.g., for control, design, and dramatic performance gains through surrogate 

models) in national security, the Office of Science, and DOE’s applied energy programs. The progress and potential for AI in 

DOE science was captured in the 2020 “AI for Science” report from the DOE laboratory community in collaboration with 

academia and industry. Specific scientific areas ready to further leverage the power of AI ranged from the scale and 

performance of computational models to data analysis to creating new classes of observations using computer vision. Since 

that report, the scale and scope of scientific AI have accelerated, revealing new, emergent properties that yield insights that go 

beyond enabling opportunities to being potentially transformative in the way that scientific problems are posed and solved. 

Thus, under the guidance of both the Office of Science (SC) and the National Nuclear Security Administration (NNSA), the 

DOE national laboratories organized a series of workshops in 2022 to gather input on new and rapidly emerging opportunities 

and challenges of scientific AI. This 2023 report is a synthesis of those workshops. The scientific community believes AI can 

have a foundational impact on a broad range of DOE missions, including science, energy, and national security. Further, DOE 

has unique capabilities that enable the community to drive progress in scientific use of AI, building on long-standing DOE 

strengths and investments in computation, data, and communications infrastructure, spanning the Energy Sciences Network 

(ESnet), the Exascale Computing Project (ECP), and integrative programs such as the NNSA Office of Defense Programs 

Advanced Simulation and Computing (ASC) and the SC Scientific Discovery through Advanced Computing (SciDAC) 

programs. 

Today, an increased urgency to undertake a major and transformational initiative in AI is increasing, fueled both by the 

acceleration of AI advancements and the robust international activity and investments to capture these advancements. 

Moreover, the introduction of powerful language models in public-facing Internet services such as those from OpenAI, 

Microsoft, Meta, and Google have revealed a pressing need for fundamental understanding of new, emergent capabilities of 

these models and the associated risks to society. This report details the criticality of harnessing AI to advance science and 

address national imperatives such as energy and security, laying out a research agenda that is equally relevant and 

desperately needed, while also addressing challenges such as those discussed in an April 2023 open letter from the 

Association for the Advancement of Artificial Intelligence (AAAI), including “the potential for AI systems to make errors, to 

provide biased recommendations, to threaten our privacy, to empower bad actors with new tools, and to have an impact on 

jobs” [1]. 

Fields such as natural language processing (NLP) and image recognition have shown game-changing promise, as have the 

design, engineering, deployment, and operation of complex systems—especially those lying at the heart of DOE’s core 

science, energy, and security mission areas. Progress in designing and deploying supercomputers in China, Japan, Europe, 

and other nations has resulted in a competitive AI position that cannot be ignored. As AI capabilities begin to transform nearly 

every aspect of science, energy, and security, establishing leadership in AI and in the underlying capabilities, including high-

performance computing (HPC), will be intimately tied to the nation’s future and its role in the global order. This race is arguably 

deeper and more consequential than any the nation has seen in the past 60 years. As noted in the Final Report of the National 

Security Commission on Artificial Intelligence:  

No comfortable historical reference captures the impact of artificial intelligence (AI) on national security. AI is not 

a single technology breakthrough, like a bat-wing stealth bomber. The race for AI supremacy is not like the space 

race to the moon. AI is not even comparable to a general-purpose technology like electricity. However, what 

Thomas Edison said of electricity encapsulates the AI future: “It is a field of fields … it holds the secrets which 

will reorganize the life of the world.” [2]. 

Similarly, global forces threaten the nation’s leadership in semiconductors, despite promising results from ECP, HPC, and data 

infrastructure. These areas are inextricably tied to leadership in AI, where the most revolutionary advances are empowered by 

computation and unprecedented volumes of data. The extreme scales offered by exascale systems represent the global 

stakes for AI competitiveness, but leadership will hinge on developing sustainable exascale and beyond-exascale (zettascale) 

computing environments along with the underlying theory, mathematics, and software systems necessary to exploit the power 

of those systems. As such, this report lays out six crucial foundational AI methodologies; elucidates their potential to transform 

DOE’s science, energy, and security mission areas; sets forth a broad architecture of crosscutting technology areas that must 
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be advanced to enable those transformations; and assesses the state of DOE’s workforce and the scale, computational 

capability, and data infrastructure with respect to the department’s ability to affect those advancements. 

Global leadership—empowered by comprehensively and aggressively embracing and advancing AI across DOE—will also 

require bold initiatives in at least three dimensions. The first is to address increasingly disruptive workforce challenges, notably 

the diversion of talent from fundamental and applied sciences at DOE laboratories and academia toward supporting 

commercial applications where only a subset of incentives and goals align with DOE missions. The second is to capitalize on 

lessons learned through designing and deploying exascale systems, from semiconductors and HPC system co-design efforts 

through computing and storage system integration to system and application software, along with the need in future systems 

for much closer, and nontraditional, partnerships with industry providers. The third is to fully embrace the nascent potential to 

harness emergent capabilities of deep learning—exemplified in the AI approaches outlined in the first section of this report—by 

investing in focused campaigns targeted at DOE mission challenges, all of which are nationally strategic. 

This report lays out a comprehensive vision for DOE to leverage and expand new capabilities in AI to accelerate the progress, 

and deepen the quality of mission areas spanning science, energy, and security. Equally important, the vision and blueprint 

align precisely with the pressing need for scientific grounding in areas such as bias, transparency and explainability, data 

security, validation and accuracy, and grappling with the impact of AI on jobs. Much of the most dramatic progress being made 

in AI comes from industry and defense in the U.S. and other nations, whose objectives and incentives only partially align with 

DOE’s mission. These advances also reflect the migration of AI and computer science talent to industry, creating a workforce 

disruption that DOE must address with a sense of urgency. Nevertheless, DOE’s investments in exascale systems, 

infrastructure, software, theory, and applications—combined with unique, multidisciplinary co-design approaches scaled to 

thousands of experts—uniquely position the DOE complex to extend its global leadership in science, energy, and security. 

Concurrently, these DOE assets and capabilities are uniquely suited to address new, AI-related challenges faced by society 

today—creating not only opportunity, but the responsibility, to lead the nation and to creatively engage U.S. industry to 

address those challenges. Focused, sustained campaigns toward the development and application of new AI methods are 

required, along with their integration into (and in some cases replacement of) the tools and infrastructure supporting DOE 

mission areas and leveraging of the world-leading human, computational, and data science infrastructure created through the 

ECP and foundational DOE programs and integrative infrastructure including ESnet, SciDAC, and others. 

AI for Science, Energy, and Security: Report Overview 

Well over a thousand researchers participated in seven workshops in 2019 and 2022. The workshops in 2019 and the 

resulting report, “AI For Science,” detailed the opportunities for applying new AI and machine learning (ML) techniques to the 

DOE enterprise, spanning 16 application areas, including science, energy, security, facilities, and other facets of the complex. 

Building on this application roadmap, the 2022 workshops were organized around significant advances in AI that represent 

emerging challenges and opportunities, focusing on (1) six broadly applicable AI building block approaches with potential to 

transform the department’s modeling, simulation, and experimental processes; (2) the domain-specific opportunities they 

represent for science, energy, and security grand challenges; (3) crosscutting technologies that must be adapted or created to 

enable those opportunities while also addressing significant new challenges associated with emergent properties in AI such as 

those that are demonstrated with large language models; and (4) the current state of readiness in workforce, data, 

infrastructure, and scale. 

Section 01 details six new AI-empowered computing paradigms—AI Approaches (see the Introduction’s sidebar). These form 

a set of building blocks that combine and scale fundamental AI functions, such as inference from large-scale and often 

unstructured and multi-modal data sources, NLP, and object recognition. These building blocks can be integrated to generate 

transformational capabilities, from surrogate and foundation models; to digital twins; to automated, real-time control and 

optimized instruments, experiments, or complex infrastructure, and ultimately autonomous experiments, laboratories, and 

instruments; to automated software engineering and programming. Executing on these AI-empowered computing paradigms is 

timely given recent discoveries of emergent capabilities that represent new classes of AI models, such as large language 

models (underlying products like ChatGPT,1 Bard, and Bing) and foundation models, and accelerated progress in capabilities 

such as physics-informed surrogate models. 

In Section 02, we show the impact of applying these new AI approaches to the unique challenges of DOE’s application and 

program areas in basic science, energy, and national security programs, as well as the emerging Energy Earthshots. 

Achieving these transformations will require fundamental changes in the nature of computational workloads, significantly 

 
1 The remarkable popularity and societal concern regarding OpenAI’s ChatGPT—growing to 100M users during the several months’ time that 

this report was compiled—illustrates the urgency and criticality of the research and development outlined in this report. 
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increasing the scale of computational and data resources needed as workloads shift to encompass model training as well as 

exploring a broader range of model scenarios. Transforming our effectiveness in addressing DOE science, energy, and 

security challenges requires rethinking foundational concepts, including traditional simulation, modeling, and data analysis 

approaches and meeting new and rapidly evolving demands placed upon underlying physical and software infrastructure. 

Section 03 describes five key crosscutting technology challenge areas that must be addressed to bridge the gap between 

model-driven methods and data-driven methods; develop the underlying mathematical and foundations of scientific machine 

learning; and create new integrative systems—themselves empowered by the new approaches outlined in Section 01. These 

demand advances in theory and foundational mathematics and computer science methods. The importance of these 

multidisciplinary challenges is illustrated by the paradigm-shifting opportunities outlined throughout Sections 01 and 02, but 

these core capabilities are also manifest, and their importance amplified, in precisely the concerns expressed today with 

respect to AI safety and ethics, including a proposed framework for an Ethics Framework to Guide AI RD&D [1].  

We conclude with Section 04 by assessing the current state and highlighting the challenges, opportunities, and strategies 

necessary to advance and leverage new AI capabilities, translating decades of investment and advancement of DOE’s world-

leadership in modeling, simulation, and infrastructure into world-leadership in AI-empowered science, energy, and security 

systems. This will require the DOE workforce, scale of operation, computational and data resources, and instrumentation to be 

similarly transformed to meet the challenges and achieve the vision captured in this report. 

ES.1 References 

[1] Association for the Advancement of AI, 2023. Working together on our future with AI, April 5. https://aaai.org/working-

together-on-our-future-with-ai/, accessed May 12, 2023.  

[2] National Security Commission on Artificial Intelligence, 2021. Final Report, October. https://www.nscai.gov/2021-final-

report, accessed December 16, 2022. 

[3] Grout, R., Rose, K., Taylor, V., and Essen, B., 2022. AI@DOE Interim Executive Report, United States. 

https://doi.org/10.2172/1872103, https://www.osti.gov/servlets/purl/1872103, accessed May 9, 2023. 
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INTRODUCTION: ADVANCED RESEARCH DIRECTIONS ON AI 
FOR SCIENCE, ENERGY, AND SECURITY

Within the backdrop of recent developments—for example, 

AI’s broad and fast-paced advances and potential impact on 

society, the rising tide of experimental and observational 

data, and availability of extreme-scale compute systems such 

as those deployed through the U.S. Department of Energy’s 

(DOE’s) exascale computing programs—DOE’s core 

missions in science, energy, and security stand at an 

inflection point. Decades of investments in world-class 

physical experimental, observational, and computational 

infrastructure; the underlying theory, modeling, and software 

necessary for the design, operation, and optimization thereof; 

and the diverse design, operational, and scientific expertise 

and experience necessary to use that infrastructure all 

provide the nation with world-leading capabilities. These 

foundational human and technology infrastructure assets 

uniquely position DOE to harness and drive new and 

emerging capabilities in artificial intelligence (AI), directly 

addressing research questions that we now see thrust into 

the public discourse regarding the benefits and dangers of 

powerful AI. 

Harnessing DOE Leadership in 
Computation and Data 

The most promising advances in AI result from scale, thus 

computational capacity and capabilities are central to driving 

the future of AI [1]. The nationwide Exascale Computing 

Project (ECP) team of over 1,000 scientists, engineers, and 

program support staff from DOE laboratories, academia, and 

industry has positioned DOE uniquely in this respect, having 

created a vision for exascale computing and then developing, 

organizing, and executing a DOE complex-wide campaign to 

not merely lead the world but to redefine the field. In 2022, 

the Exascale Computing Initiative (ECI) demonstrated this 

paradigm shift, deploying the world’s first exascale 

supercomputer—the highest ranked world-wide, with more 

capability and capacity than the next four ranked systems 

combined.2 In 2023, the second DOE exascale machine will 

provide twice this capacity. 

ECP leveraged decades of investment in software, facilities, 

and scientific workforce, including programs such as the 

National Nuclear Security Administration (NNSA) Defense 

Programs Advanced Simulation and Computing (ASC) and 

Office of Science (SC) Scientific Discovery through Advanced 

 
2 The November TOP500 rankings show the ECP system, Frontier, 

at 1102 Petaflop/s, leading Japan’s Fugaku (442), EU’s Lumi (309) 

and Leonardo (174), and DOE’s Summit (149), also an ECI 

system. 

Computing (SciDAC) and Energy Science Network (ESnet) 

programs. DOE’s science, energy, and national security 

mission areas have relied on this infrastructure supporting 

physics-based modeling and simulation as an underlying 

paradigm for discovery and design as well as for operations. 

This paradigm spans every facet of computation, from basic 

mathematical algorithms and libraries to system software; 

workflow and data management to applications; and 

encompassing processing, memory, storage, and 

communications hardware and system architectures. 

Nevertheless, the dividends of these intellectual and financial 

investments have also exacerbated growing challenges in 

model, code, and workflow complexity. Similarly, the enormity 

of the data produced by models, even on sub-exascale 

systems, has outstripped traditional data management, 

curation, and analysis capacity, which are similarly complex 

and reliant on human experts. Exploiting the potential of 

emerging, extreme-scale AI models such as surrogate or 

foundation models will place the entire data management 

infrastructure in the critical path for computation rather than 

the traditional role of repositories. Moreover, these 

challenges are central to a critical concern facing society 

today: understanding the data used to train large language 

 

 

 

AI APPROACHES 

New AI-Empowered Computing Paradigms, known 

in this report as AI Approaches 

The scale of data and computation for training AI 

models is opening the potential today for new 

paradigms in computation, including the following AI 

Approaches: 

01. AI and Surrogate Models for Scientific Computing 

02. AI Foundation Models for Scientific Knowledge 

Discovery, Integration, and Synthesis 

03. AI for Advanced Property Inference and Inverse 

Design 

04. AI-Based Design, Prediction, and Control of 

Complex Engineered Systems 

05. AI and Robotics for Autonomous Discovery 

06. AI for Programming and Software Engineering 
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models [2]. Here, AI also offers new approaches to managing 

scale and complexity for both the data and computational 

software infrastructure. The resulting transformation will yield 

complex models that retain resilience and robustness yet are 

more agile and flexible. This outcome will bring deeper 

integration of complex workflows combining experiment and 

computational models. 

DOE’s world leadership in exascale computing and the 

broader aspects of computation and related infrastructure 

directly translate to leadership in science, engineering, and 

security—all of which rely on computational modeling and 

simulation. But ECP also accelerated progress in pioneering 

applications, such as ExaLearn and CANDLE (both described 

in Chapter 17), that leverage unprecedented advances in AI 

and machine learning (ML), including those that are only 

unlocked through exascale computation and commensurate 

scales of data. There remains much untapped potential for 

these innovations to drive new science, energy, and security 

discoveries but also to accelerate the pace of discovery itself 

[3]. Moreover, implementing new AI models within traditional 

modeling and simulation approaches has resulted in both 

entirely new large-scale, data-driven workflows for exascale 

systems and extraordinary improvements in computation 

rates, ultimately multiplying the capacity of those systems. 

ECP also revealed challenges that are amplified by the scale 

of computation and data necessary to fully embrace new AI 

methods, which will require sustained growth in both the 

capabilities of individual exascale and post-exascale 

simulation technologies and the overall capacity of 

computational and data resources supporting DOE mission 

areas. Addressing the prodigious costs of design, 

deployment, and operation of exascale systems will itself 

require AI models. Simply put, these investments have the 

potential—through nontraditional DOE-industry 

partnerships—to impact AI and computation like the impact 

observed in using reusable rockets for satellite 

communications and ultimately space travel. Consequently, 

urgent and immediate action is critical to capturing and 

extending the alignment of insights, community, 

infrastructure, and momentum created with the ECP program. 

Leveraging Industry Advances to 
Extend U.S. Leadership 

The incredible pace of innovation in AI is fueled by enormous 

investments by industry and nation states, primarily focused 

on applications central to industry and national security. 

Underlying techniques and methods, as well as infrastructure 

design and investment strategies from industry and defense 

applications will provide indispensable inputs for DOE 

mission areas in science, energy, and security. The same 

was true for exascale computing—industry and the work of 

other U.S. agencies provided important technologies and 

strategies. But without DOE leadership and sustained 

investment, today’s most capable systems would be 

operating in China, Japan, and the European Union in 

support of their leadership in science, energy, and security. 

Despite the rapid progress being made in industry and 

defense in the U.S. and other nations, many of the objectives 

central to DOE’s mission are not being addressed by industry 

or defense activities. However, DOE’s investments in 

exascale systems, large-scale data infrastructure, software, 

theory, and applications—combined with unique co-design 

approaches now scaled to thousands of experts—uniquely 

position the DOE complex’s use of AI to extend its global 

leadership in science, energy, and security. New AI 

approaches, outlined in this report, can transform DOE’s 

mission areas, particularly through the enabling capabilities of 

DOE’s exascale and beyond computational infrastructure. But 

these new methods and resulting applications will not self-

assemble through incremental progress—they demand a 

complex-wide, integrated initiative with a scale and vision that 

will impact every aspect of not only computational 

applications but the design, optimization, and even the 

assembly and operation of scientific instruments, user 

facilities, and both experimental and operational 

infrastructure. 

Embracing Fundamental AI 
Approaches: Building Blocks 

Six major AI “approaches” have emerged and solidified even 

during the three years since the initial DOE AI workshops 

were conducted [4]. Thus, in 2022 the DOE laboratories 

organized a second set of AI workshops, which examined this 

set of conceptual building blocks—each grounded in 

fundamental AI capabilities such as inference, optimization, 

and deep learning (Section 01). In domain areas spanning 

the DOE complex (Section 02), opportunities are identified to 

apply these approaches, challenges that must be overcome 

to do so, and specific advances that will be required. In turn, 

these Advanced Research Directions (ARDs) reveal 

crosscutting technology requirements in DOE’s infrastructure 

and computational methods, such as scientific workflows and 

the data lifecycle (Section 03). Finally, in Section 04, we 

assess the readiness of the DOE complex—from hardware to 

the workforce—to implement the methodological, logistical, 

and cultural changes necessary to not only adopt new AI 

capabilities in support of the DOE mission but to provide the 

scientific leadership necessary to advance national 

competitiveness in science, energy, and security. 

The scientific community created a comprehensive report 

following the 2019 workshops, laying out opportunities and 

challenges across 16 domains and technology areas 

comprising the DOE complex, from material science to 

complex engineered systems to mathematics and computer 

science [4]. However, the approaches addressed in that 

report were either in early formative stages or, in some 
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cases, had not yet revealed the potential associated with 

scale. For instance, the confluence of advances in ML 

(particularly self-supervised, transfer, and deep learning) with 

extreme-scale data and enormous investments in 

computation time has only recently resulted in emergent 

capabilities in natural language processing (NLP) that reveal 

strategies for application in science and engineering. Such 

“foundation models” are “trained on broad data (generally 

using self-supervision at scale) that can be adapted 

(e.g., fine-tuned) to a wide range of downstream tasks” [5]. 

The state of AI methods in 2019 suggested that substantial 

gains would accrue through grassroots adoption and 

exploration across the many scientific, energy, security, 

engineering, and infrastructure facets of the DOE complex. 

Although this path to progress remains in place today, this 

kind of incremental investment and organic activity would 

also limit DOE—and by extension the nation’s science, 

energy, and security initiatives—to incremental advances at a 

time when other global leaders are investing in 

transformational AI agendas. Since 2019, early and entirely 

new capabilities associated with large-scale AI models 

represent an inflection point where there is opportunity for 

DOE to embrace pathfinding rather than adopting AI as 

followers. Simply put, global leadership cannot be achieved 

through incremental nor solely grassroots progress. 

Seizing Opportunities; Addressing 
New Challenges 

Success in this transformation will also exacerbate existing 

challenges. Harnessing the creativity and effectiveness of a 

truly diverse scientific workforce raises the bar on training 

multiple generations of researchers in AI methods. Many of 

today’s entry-level research functions may be eliminated to 

realize the top-to-bottom shift from traditional modeling and 

simulation to the AI approaches, including autonomous 

discovery and robotics (Chapter 05), along with associated 

reinventions in crosscutting areas such as those outlined in 

Section 03 of this report (data infrastructure, workflows, 

programming tools, etc.). Here, ethics must play an important 

proactive role in guiding workforce reinvention and be a 

central element in the formation and execution of the work 

outlined throughout this report—in contrast to a reactive or 

passive role. These challenges are discussed in Chapter 16. 

Concurrent with these workforce challenges and rigorous 

data curation and associated tasks necessary for training AI 

models, new facets for consideration have emerged, such as 

new vulnerabilities related to training data—for example, the 

intentional or unintentional insertion of data that would 

undermine the correctness of the trained model. The need for 

new mathematics, theory, and foundational methods and 

approaches to data and model evaluation is highlighted 

throughout this report and emphasized in Chapter 12.  

A Blueprint for Leadership 

A leadership strategy for developing, advancing, and 

harnessing the potential power of the six AI approaches will 

require nothing less than a coordinated and comprehensive, 

sustained series of scientific, engineering, and infrastructure 

campaigns. This report specifies a blueprint for those 

campaigns, anchored in grand challenges that are central to 

the DOE mission. Certainly, industry progress will continue to 

be useful and relevant to DOE mission areas, but industry 

incentives are tied to market forces and business growth, and 

their data are often quite different in nature and content 

relative to DOE science, energy, and security data. 

Nevertheless, DOE AI initiatives must proceed in coordination 

with macrotrends in AI, many of which are industry-led and 

supported by increasing private sector investments. This 

approach fundamentally differs from the modeling and 

simulation technologies, methods, and related infrastructure 

that DOE has invented, invested in, and led for the past 

50 years. 

Five such AI macrotrends are reflected throughout this report:  

1. A trend toward larger-scale models, with new and 

emergent capabilities whose training requires 

computational resources that eclipse even the largest 

modeling and simulation efforts in the ECP. 

2. This training itself relies on significant preparation and 

encoding of enormous multimodal data streams and 

sources.  

3. A shift from a 1:1 relationship between data and 

simulation models to a 1:n relationship where the 

resulting AI model can be adapted and applied to many 

(“n”) modeling tasks. 

4. These trends introduce the need for extensive and 

rigorous evaluation suites, well beyond those necessary 

for current modeling and simulation projects.  

5. The scale of software engineering and programming 

efforts to harness these trends is substantial and is 

balanced with the potential for generalizable foundation 

models that can support large communities—in contrast 

to the current modeling/simulation paradigm of many 

individual research teams creating bespoke models and 

evaluation suites. 

The remaking of DOE’s science, energy, and security 

landscape with respect to computation, data, and 

experiments will of course create improved versions of 

contemporary modeling and simulation systems; but more 

importantly, it will result in a new class of applications that 

integrate AI capabilities in multiple steps. This migration will 

begin with hybrid applications (AI and traditional) and 

similarly mixed workflow tools, yielding to end-to-end 

replacements over the next several years. Moreover, 

advanced modern simulation and visualization tools such as 
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“digital twins” established in engineering-based applications 

are rapidly moving into complex scientific-based domains [6].  

The focus on AI and the need for a comprehensive 

revitalization of DOE’s scientific enterprise reflects the 

growing evidence that AI is intimately tied to the nation’s 

future and its role in the global order. This reality is woven 

throughout reports from the White House [7] and National 

Academies [8], as well as industry [9] and nongovernmental 

sources. Each of these and other reports convey a similar 

message, that AI is one of only several competitive areas that 

“tell the story of a nation (and its allies) coming perilously and 

unwittingly close to ceding the strategic technology landscape 

and along with it the capacity to shape the future” [10]. 

Table Intro-1 Summary of the AI for Science, Energy, 
and Security – Expected Outcomes. 

01. AI AND SURROGATE 

MODELS FOR SCIENTIFIC 

COMPUTING 

02. AI FOUNDATION MODELS 

FOR SCIENTIFIC 

KNOWLEDGE DISCOVERY, 
INTEGRATION, AND 

SYNTHESIS 

• Fusion Energy • Stockpile Modernization 

• Predictive Multiphysics 
Simulations 

• Knowledge Distillation 
(unstructured to 
structured knowledge) 
and Hypothesis 
Formation 

• Cosmology 
• Digital Twins for 

Engineering Complex 
Scientific Domains 

03. AI FOR ADVANCED 

PROPERTY INFERENCE 

AND INVERSE DESIGN 

04. AI-BASED DESIGN, 
PREDICTION, AND 

CONTROL OF COMPLEX 

ENGINEERED SYSTEMS 

• Materials, Chemistry, and 
Biology Design (atomic / 
molecular scale) 

• Hi-rep Rate Laser 

• Engineered Structures / 
Systems (continuum 
scale) 

• Accelerators 

• Non-proliferation / 
Decision Superiority 
(process / protocols) 

• Reactors (Fusion and 
Fission) 

05. AI AND ROBOTICS FOR 

AUTONOMOUS DISCOVERY 

06. AI FOR PROGRAMMING 

AND SOFTWARE 

ENGINEERING 

• Nuclear Weapons Design 
Transformation 

• Adaption of Codes for 
New Computational 
Targets 

• Accelerated Discovery in 
Materials, Chemistry, and 
Biology 

• Discovering Quality 
Control Algorithms and 
Quality Control 
Optimization 

• Advanced Manufacturing • AI-Driven Co-design 

Expected Outcomes 

We highlight key expected science, energy, and security 

outcomes around the six AI approaches detailed in 

Section 01, which hold transformational potential both 

individually and in combination. More detailed descriptions of 

these and other expected outcomes are included throughout 

the report, particularly in Section 02: Domains. 

Harnessing the five macrotrends comprising the leadership 

blueprint above will require a set of focused campaigns at the 

scale of the ECP project—hundreds of participants from DOE 

laboratories, universities, and industry, working together to 

co-design major instruments (in this case, exascale 

computers) and the software and applications that unlock the 

power of that instrument. Each of the six new AI paradigms 

described in Section 01 require organizing DOE data to build 

and train large-scale AI models targeting specific domain 

areas and involving model design and evaluation. The scale 

required for these campaigns is illustrated by industry efforts 

such as OpenAI’s development of GPT-4 [11] [12], whose 

initial training required months of dedicated time on an 

exascale platform. By late 2023, DOE’s Frontier and Aurora 

systems alone will provide nearly five times the computational 

capacity of OpenAI’s system.  

Each campaign will demand an orchestrated team of 

hundreds of participants who will (a) assemble and prepare 

data from across the DOE complex, (b) strategically augment 

existing experimental data with data from current 

computational models, (c) design and train large-scale AI 

models—typically surrogates or foundation models—along 

with careful evaluation (e.g., validation, uncertainty 

quantification), and (d) develop and scale crosscutting 

capabilities (e.g., workflows, data and communications 

infrastructure) and methodologies (e.g., supporting 

explainability). 

Here we provide highlights of the expected outcomes of 

these campaigns. 

01. AI AND SURROGATE MODELS FOR SCIENTIFIC 

COMPUTING 

Surrogate models, trained by the results of computational 

models, demonstrate orders-of-magnitude speedups over the 

originals. Conceptually, surrogate models represent a 

potential to effectively achieve zettascale performance on 

exascale systems by virtue of their simpler yet faithful 

representation of the full, complex system. Such performance 

is essential for AI systems that can rapidly explore a decision 

space or that can suggest (or actuate) decisions related to 

complex instruments or infrastructure, as we further outline in 

Chapter 04. Following are four exemplars illustrating the 

impact of surrogate models on the DOE mission. 

Climate. Surrogates will enable a new type of AI-accelerated 

climate model, accelerating the model core and process 

physics to yield a speedup rate of at least three orders of 
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magnitude. The surrogate model is trained by using a variety 

of methods, including full baseline model cases on exascale 

systems and by training the individual model components. A 

key capability that such a model would enable is that massive 

ensembles could be run in the same amount of time as a 

single model, providing the basis for uncertainty quantification 

in the climate simulation output. This capability has the 

potential to revolutionize climate predictions, improve our 

understanding of climate variation, and accelerate predictions 

of climate impacts on humans and critical infrastructure. The 

urgency for understanding climate impacts, devising 

adaptations, and evaluating mitigation strategies places high 

priority on this work. 

Fusion Energy. Surrogates have enabled the introduction of 

an exciting kind of AI-accelerated fusion energy model, 

accelerating a validated global electromagnetic gyrokinetic 

code (GTC) to yield a speedup of over 5000x. This synthetic 

gyrokinetic surrogate model, SGTC, is trained using AI/ML 

methods, including full-baseline deep-learning approaches, 

with training carried out on current leadership-class systems, 

such as Summit at Oak Ridge National Laboratory and 

Polaris at Argonne National Laboratory. A key capability that 

this new model has demonstrated is carrying out massive 

numbers of experimentally validated cases run in the same 

amount of time as a single model, providing the basis for real-

time output. This approach has the potential to revolutionize 

real-time predictions in magnetic fusion energy, accelerating 

progress toward favorably modifying the plasma state to a 

more benign thermodynamic state. The urgency of devising 

such mitigation strategies for dangerous disruptive events in 

thermonuclear burning plasmas such as the International 

Thermonuclear Experimental Reactor (ITER) places high 

priority on intensive future validation studies of this kind [13]. 

Predictive Multiphysics Simulations. AI capabilities for 

bridging temporal and length scales in multiphysics 

simulations hold the promise of qualitative leaps in our ability 

to predict and design complex physical systems. These 

capabilities will employ a spectrum of AI methods that 

includes optimization of solvers and other fine-grained 

elements of simulations, efficient learned representation of 

cluttered data with sparse true information content, and 

accurate surrogates for coupled partial differential equations. 

Without this contribution, progress in our ability to simulate 

physical systems for science and national security will stall 

because advances in processor technologies can no longer 

keep pace with the computational cost of increasing 

simulation fidelity. For example, a factor-of-ten improvement 

in resolution in present three-dimensional (3D) simulations 

(which is still far below that needed for bridging to the 

mesoscale) would require a computer that is ten thousand 

times more powerful than exists today. Advances in 

simulation fidelity permitting an ability to predict from 

mesoscale phenomena to macroscopic performance will lead 

to a new generation of engineered physical systems for 

energy, science, and national security.  

Cosmology. The U.S. has invested heavily in cosmological 

surveys leading to discoveries that have unearthed some of 

the deepest mysteries in fundamental science. Because 

cosmology is an observational science, detailed simulations 

are used as forward models to understand and interpret 

large-scale datasets from sky surveys that cover wavebands 

from the radio to gamma rays. These simulations are some of 

the largest applications run on state-of-the-art high-

performance computing (HPC) systems. Under the ECP, the 

simulation capability for DOE-relevant cosmological missions 

has been significantly enhanced. Even so, using a single 

large-scale simulation to directly analyze data is cost 

prohibitive, as it may require thousands or even millions of 

individual runs. Precision surrogate models for summary 

statistics that correspond to cosmological observables were 

pioneered by DOE scientists who succeeded in reducing the 

time by many orders of magnitude (more than a billion), 

thereby allowing more powerful methods of data analysis to 

be used. As computational power grows, it will be possible to 

develop powerful, effective AI-based surrogate models 

(digital twins) for individual simulations in analogy to the case 

of climate science. 

02. AI FOUNDATION MODELS FOR SCIENTIFIC 

KNOWLEDGE DISCOVERY, INTEGRATION, AND 

SYNTHESIS 

The recognition that exascale computing capabilities would 

be critically important for training AI models was well 

understood in 2019, but results from recent industry 

investments in computational resources, along with access to 

vast multimodal data sources, point to even greater 

opportunities. These industry advances have demonstrated 

powerful and, in some cases, new emergent (unplanned and 

unexpected) capabilities, such as the ability of very large 

models to adapt to new tasks despite relatively sparse 

additional training data. Leveraging DOE’s investments in 

exascale systems, along with enormous and growing 

volumes of scientific data, foundation models have the 

potential to be trained for application on broad classes of 

problems relevant to equally large scientific communities. 

This opens the possibility for large-scale, community-built 

foundation models—including digital twins—that, in 

analogous fashion to scientific instruments, enable entire 

communities to perform computational experiments without 

the need to create bespoke infrastructure. Examples of the 

impact of developing foundation models for DOE science, 

energy, and security include the following areas: 

Stockpile Modernization. The NNSA’s nuclear deterrence 

mission requires rigorous analysis of the design, 

manufacturing, and surveillance of components and systems. 

When a component or system failure is identified, a 

significant findings report is created, and an extensive root 
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cause analysis is performed. This is an extremely time-

intensive process requiring person-months of effort searching 

through design, manufacturing, testing, and qualification 

documents and data. AI transformer and foundation model 

methods have shown tremendous advances in automatically 

identifying patterns in natural language, understanding 

relationships, and summarizing text. An urgent need exists 

amongst the NNSA and the DOE labs to extend these 

methods to specifically target the domains of math, science, 

and weapons system design. The current human-intensive 

processes in the NNSA life extension programs (LEPs) carry 

inherent risk of schedule slips. The ability to automatically 

digest technical documents, create summaries, and perform 

root-cause analysis could save the NNSA laboratory staff 

from spending enormous amounts of time on manually 

searching through documents for relevant information 

regarding significant findings. This same technology could be 

used in DOE Office of Science (SC) research facilities to 

perform literature searches, find similarities in reports, and 

summarize information. 

Knowledge Distillation (unstructured to structured 

knowledge) and Hypothesis Formation. Scientists and 

engineers at DOE laboratories seek to understand 

phenomena for which explanatory theories are lacking or 

inadequate (e.g., how clouds affect climate, or how vortices 

evolve in fusion plasmas), to solve engineering problems 

(e.g., an energy storage mechanism that can store 10x more 

energy for one-tenth of the price), or, frequently, to do both at 

once. Regardless of the specific problem being studied, a 

frequent challenge is the vast amount of existing knowledge 

that could potentially be relevant to its solution—a quantity 

that typically far exceeds the cognitive capacity of any one 

individual or even team. The recent and considerable 

successes achieved with large language models suggest that 

a transformative solution may be on the horizon. Most of the 

current “knowledge” is recorded, often implicitly, in 

unstructured forms, whether text (e.g., published scientific 

papers, technical reports, unpublished documents, lab 

notebooks, outputs from computations) or other digital 

formats (e.g., images, videos, simulation outputs). Such 

unstructured data contain vast amounts of information about 

what experiments and computations have been performed 

(whether successfully or unsuccessfully) and the results that 

were obtained, and also about the inferences made, 

hypotheses generated, and conclusions formed by human 

experts from different disciplines and backgrounds. A large 

language model trained on large corpora of this unstructured 

knowledge, particularly one that incorporates knowledge 

about the physical world, may well be able both to distill 

succinct structured representations of extant knowledge 

(e.g., by extracting every recorded property of a specific 

material or structure from millions of documents) and to 

generate hypotheses concerning previously unobserved 

relationships (e.g., by observing that a certain phenomenon 

has been observed only under specific unusual 

circumstances). Such a model would be an invaluable aid for 

DOE researchers working in a wide range of domains. 

Digital Twins for Engineering and Complex Scientific 

Domains. Digital twins established in engineering-based 

applications are rapidly moving into complex scientific-based 

domains [6]. DOE is undergoing a digital transformation 

initiative to support digital engineering within NNSA and SC. 

Transforming the nuclear deterrent (ND) lifecycle from a test-

based process to an integrated test–modeling and simulation 

(ModSim)-based process presents challenges due to the 

complex workflows. These workflows span desktop to HPC 

computational resources; design to environmental 

specification to rigorous qualification to surveillance activities; 

and multiple disciplines such as electrical, electromagnetics, 

mechanical, thermal, and various combinations of these. 

Ultimately, the goal of these workflows is to build the 

knowledgebase necessary to support a risk assessment. 

Much of this kind of risk-based assessment is asserted with 

expert judgment and experience. AI can be used to automate 

these workflows and formulate the risk assessment. Digital 

twins of components and systems will enable shortened 

design, testing, qualification, and surveillance life cycles. New 

AI methods are needed for: (1) model preparation and 

setup—such as computer-aided design (CAD) geometry 

cleanup and simplification for meshing, interpretation of 

design intent already within the CAD assembly design, 

material model choice and uncertainty-informed attribution, 

etc.; (2) model design and tuning: generating reduced-order 

models, solver choices, solver settings, etc.; (3) simulation: 

setting up and executing robust ensembles, quantities of 

interest extraction, optimization, etc.; (4) model credibility; 

(5) data: needed to form the technical basis; (6) risk 

assessment approach(es): to assert certification from the 

component level through to the system level; and 

(7) convolving subject matter expert judgment and formal 

uncertainty quantification methods. 

03. AI FOR ADVANCED PROPERTY INFERENCE 

AND INVERSE DESIGN 

A third AI method leverages the application of AI models to 

property inference and inverse design problems. The former 

involves the use of AI models to predict the physical 

properties of a system given its design, and the latter entails 

models that enable scientists to determine a system design 

that has specified desired properties. For example, in 

chemistry, a property inference model might be used to 

predict the melting point or toxicity of a molecule, given its 

chemical composition, while an inverse design tool would be 

used to identify molecules that are liquid at room 

temperature, have a high heat capacity, and are not toxic. 

Three outcomes illustrate the promise of property inference 

and inverse design. 

Materials, Chemistry, and Biology Design (atomic / 

molecular scale). Critical DOE science, energy, and security 
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missions depend on the discovery and development of new 

molecules for structural materials, biological therapeutics, 

energetic materials, and far more. Using a combination of 

HPC, AI, and experimental expertise, DOE will develop a 

molecular discovery engine that can build critical 

therapeutics—either small molecules or proteins—on bold 

timescales relevant to emergent biothreats, for example, 

several weeks from threat assessment to molecule design to 

deployment. The molecular discovery engine for bioresponse 

will be composed of high-performance, AI-steered processes 

that predict and optimize multiple properties of the molecule–

efficacy on target, safety in humans, pharmacokinetics, and 

manufacturability. The predictive models will provide 

validated measures of uncertainty and will integrate with 

automated chemical synthesis and experimental systems to 

steer the design optimization process and validate the 

resulting molecular designs. Early efforts to apply AI-driven 

models to components of the drug development pipeline have 

been quite successful. Growing access to the required data 

and models, coupled with improving AI-based and 

mechanistic computational models and automated precision 

measurement technologies have primed these applications 

for new capabilities. Inaction will leave the U.S. vulnerable to 

future pandemics and global pharmaceutical technoeconomic 

competition. These capabilities will accelerate and strengthen 

our response to biomedical threats to national security and to 

our economy. They will enable early threat assessment and 

guide the pre-positioning of data, models, and molecules to 

enable earlier starts for response. They will shorten 

development and validation timelines and potentially reduce 

cases, deaths, and economic impact. The capability is 

generally applicable to therapeutic development and will 

accelerate new medicines in areas such as cancer and 

neurological disease. However, such a molecular discovery 

engine has far more uses within DOE and the nation. With 

modification, the engine could be tuned to deliver new 

structural polymers, molecules for high explosives, custom 

metallic alloys for critical applications, and many more 

general material science applications. The impacts would be 

substantial, not only for science and security, but also for 

general U.S. economic and manufacturing competitiveness. 

Engineered Structures / Systems (continuum scale). The 

use of AI-enabled property inference and inverse design to 

create and optimize engineered systems and structures 

represents an opportunity for unprecedented integration 

across scales, from materials to components to entire 

complex engineered systems—and ranging from energy 

storage materials to entire distribution systems or from 

hardened electronics to weapons systems. Using AI for 

inverse engineering will result in “born qualified” 

manufacturable material components specifically tailored for 

precise design specifications. The impact of this integration 

will encompass time and other costs, as well as the safety, 

reliability, and sustainability of these materials, components, 

subsystems, and systems. For example, the complexity of the 

nation’s energy systems, combined with increased 

prevalence of extreme weather, confounds our ability to 

design and operate such systems reliably and cost 

effectively. Advances in AI will enable us to replace today’s 

large simulation models with inference from AI models and 

support real-time decision and control through inverse design 

and optimization processes, while also integrating inherently 

multimodal, heterogeneous, and rapidly growing data from 

the energy infrastructure into (global) energy infrastructure 

models with high fidelity to provide trustworthy predictions. 

Non-proliferation / Decision Superiority (process / 

protocols). AI-based advanced property inference methods 

will revolutionize capabilities for detecting, analyzing, and 

strategically acting on potential proliferation activities; AI-

enhanced text and graph analytics tools will significantly 

improve our ability to locate proliferation information and 

identify disinformation, as well as to identify loosely coupled 

organizations involved in nuclear proliferation, disinformation, 

and weapons development. Similarly, AI models trained on 

data from facilities monitoring and remote sensing will 

strengthen our ability to rapidly detect anomalies and patterns 

of life analysis across multiple sources of information, 

including rare event detection characterizing rogue actors 

(nation states or non-nation states). Simply put, new AI 

methods as outlined in this report will lead to game-changing 

acceleration of data-driven, repeatable, and reliable decision-

making with archived pedigree, and a reduction in the time 

and resources needed for situational analysis buttressed by 

greater confidence and analytical rigor. 

04. AI-BASED DESIGN, PREDICTION, AND 

CONTROL OF COMPLEX ENGINEERED SYSTEMS 

The use of AI for prediction and control of complex 

engineered systems—ranging from energy distribution grids 

to scientific instruments and user facilities to fusion energy 

systems—requires faster-than-real-time modeling. In some 

cases, timescales that demand highly local decisions given 

even the small latencies involved in sending data across a 

campus (or building) are also required. The concept of digital 

twins captures key capabilities necessary for the use of AI 

here—complex, multimodal representations of complex 

systems that operate faster-than-system-time 

(e.g., leveraging surrogates) to support decision-support 

models, and that continuously learn from operational and 

model data. Effective use of AI in the design and control of 

complex engineered systems will revolutionize science and 

engineering, including significantly improving the efficiency, 

reliability, and robustness of the energy infrastructure in the 

U.S.; enabling next-generation facilities and autonomous 

laboratories for scientific advancement; reshaping the 

manufacturing infrastructure to improve competitiveness; and 

developing advanced systems for national defense. The 

development and use of AI capabilities of this nature will have 

impacts as detailed below. 
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High-rep Rate Laser. DOE experimental facilities—from 

giant lasers to light sources to robotic chemistry systems—

will greatly increase both the volume and quality of mission-

critical data obtained in experiments by developing and using 

AI systems to simultaneously predict experiment performance 

and control the experimental facility. Data from laser 

experiments, images from accelerator light sources, and 

semi-autonomous manufacturing systems are all critical for 

the NNSA stockpile stewardship mission, but also for 

fundamental science that is core to the entire DOE mission. 

Across DOE, current experiment setup uses large-scale 

simulation to predict the experimental conditions and to 

optimally configure diagnostics to observe those conditions. 

The execution of these experiments and the following 

analysis is currently limited by using slow, conventional 

control systems and high-latency remote access to HPC. AI 

control models that combine simulation-based knowledge of 

experimental conditions with an ability to command AI-ready 

diagnostics will free scientists to explore system behavior far 

faster and more thoroughly than with rate-limiting traditional 

methods. These semi-autonomous, or “self-driving,” facilities 

would allow subject matter experts to explore new scientific 

territory with unprecedented speed. Self-driving operations 

based on AI control models would revolutionize experimental 

science across an expansive array of applications. The 

repetition rate and quality of design discovery on laser 

facilities, from the scale of the National Ignition Facility (NIF) 

to university lasers, would increase dramatically. Advanced 

accelerator systems, such as the currently upgrading SLAC 

National Accelerator Laboratory’s Linac Coherent Light 

Source (LCLS), will see dramatic throughput gains from new, 

rapid self-tuning and new hyper-capable laser probes for 

helping break new ground in High Energy Density (HED) 

experiments aimed at increasing our fundamental 

understanding of materials at extreme pressures and 

temperatures. Other beneficiaries include self-driving robotic 

chemistry systems for accelerated material science and drug 

discovery, advanced manufacturing platforms able to deliver 

real-time corrections for manufacturing errors, and 

comprehensive metrology systems that can analyze critical 

parts with increased fidelity and speed. AI-driven acceleration 

in these key experimental systems will shorten the time to 

solution for the stockpile mission, advance the pace of 

fundamental scientific discovery, and continue to position 

DOE as the premier attractor of talent in applied and 

fundamental science. New capabilities in AI are proliferating 

at the same time that computing is advancing to edge/control 

systems, providing a potent combination to automate 

experimental configurations on timescales of microseconds 

versus human timescales. The combination of deep expertise 

in HPC and large-scale experiments has positioned DOE to 

take an early lead in these transformations to highly 

automated experimental facilities. To wait would be to cede 

expertise here to Europe or China, with Europe already 

ahead in the use of small-scale, high-rep lasers and China 

coming on strong in both manufacturing and fundamental 

science. 

Accelerators. Particle accelerators and accelerator-based 

photon sources are key components of scientific discovery 

and are used in applications across industry, national 

security, and medicine. Both extending the capabilities and 

reducing the size and cost of accelerators are important to 

progress in many areas of science, including for better 

understanding the structure of the universe through high-

energy particle physics; creating brilliant photon sources for 

basic energy sciences, materials, and industry; and exploring 

new states of matter. This requires ever more complex and 

precise systems for which AI/ML methods are starting to be 

applied in design, deployment, and operation, and will 

become ever more critical as AI/ML methods—and 

accelerator performance demands—advance. An especially 

crucial expected impact of AI/ML algorithms is their use in the 

control and parameters tuning for accelerators in real time, 

during operation, to maximize performance. Major challenges 

ideally suited to new AI/ML approaches include the ability to 

precisely control the properties of accelerated beams, which 

are a function of many device components and environmental 

fluctuations. Switching between different experiments—

requiring large changes in beam properties—presents 

additional challenges and can require hours of hands-on 

tuning. Although first-principles modeling based on the 

multitude of component settings is computationally intractable 

in many cases, promising initial results [13] have been 

observed by developing customized AI/ML methods that 

automatically compensate for unknown time-varying changes 

to accelerator components (such as magnets, and to 

unknown changes in the accelerator’s input beam 

distribution). In a related aspect of using AI/ML for improving 

the efficient operation of accelerators, early results have 

exploited classification and anomaly detection algorithms, 

with the aim of preventing accelerator damage or beam loss 

in the case of abnormal operation. For example, ML 

techniques have recently been applied to the early detection 

and classification of quench precursors in superconducting 

magnets, where conditions can build up to a circumstance 

where the magnetic field is suddenly lost. And, they have 

reduced orbit deviations in a synchrotron light source by an 

order of magnitude [15]. Looking to the future, a combination 

of effective AI/ML models and fast feedback control look to 

hold the keys to new generations of accelerators, for 

example, current work has enabled a new generation of 

efficient laser drivers for accelerators by combining more than 

eighty fibers all controlled to a fraction of the wavelength of 

light [16]. Development and implementation of even more 

accurate models will routinely be important to a broad range 

of future accelerators, from extracting the maximum intensity, 

to developing new and more compact accelerators based on 

laser driven plasmas, to future particle colliders. 
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Reactors (Fusion and Fission). High Energy Density 

Physics (HEDP) and fusion physics rely on multiphysics 

codes that model radiation-magnetohydrodynamics 

(radMHD) and density functional theory (DFT) calculations. 

These are computationally expensive calculations that 

display low-dimensional emergent behavior. There are also 

expensive experiments with multiple diagnostic 

measurements that are designed to test and calibrate the 

physical models. This calibration underscores a critical need 

for methods that can construct efficient, high-fidelity 

surrogates of the physics; identify the low-dimensional sub-

manifold structure of the modeled physics and the data 

(reduced-order model or topology); and finally assimilate the 

data with the model to refine and extend the estimate of the 

sub-manifold structure. Simply put, the physics needs to 

incorporate its deep learning from the multiphysics codes and 

the experimental data. Solving this problem will have major 

impacts on the understanding, uncertainty quantification, and 

validation and verification of HEDP, inertial confinement 

fusion, magneto-inertial fusion, magnetic confined fusion, and 

the stockpile. This approach could also be applied to a broad 

range of other physical problems such as climate physics, 

geophysics, and astrophysics. For magneto-inertial fusion in 

particular, it would enable new designs and reduce the risk of 

designs not performing both at current scale and future 

scales. It would also enable a much-improved experimental 

design to understand the physics (hypothesis test) and to 

reduce the risk. Such an advance could lead to a commercial 

fusion energy breakthrough and a more reliable stockpile. 

05. AI AND ROBOTICS FOR AUTONOMOUS 

DISCOVERY 

The use of AI for automating discovery in laboratory and 

other processes, including advances in robotics, will leverage 

property inference and inverse design to improve each step 

of discovery processes, bringing AI models to bear on 

designs ranging from energy storage to explosives to disease 

treatments. Combining these with AI-enabled robotics, guided 

by self-learning digital twins, DOE has the opportunity to fully 

integrate AI computation, data, and instruments in 

laboratories and user facilities—including multi-instrument 

laboratory workflows. Additional impacts of autonomous 

discovery and robotics are described below. 

Nuclear Weapons Design Transformation. On average, a 

major NNSA Alteration or Life Extension Program (LEP) 

typically runs 3.5 years behind its initial baseline schedule. In 

no small part, the first developmental half of the product 

development lifecycle tends to be full of requirements, 

architecture, design, qualification, cost, schedule, and design 

for manufacturing/surveillance iterations—each iteration 

requiring a few months of re-baselining by the core weapons 

system realization teams. AI methods described in this report 

enable models to be trained using the entire historical and 

current nuclear weapons data corpus (e.g., detailed design, 

requirements, architecture, qualification, production, 

surveillance, and formal and informal programmatic and 

technical information both labeled and unlabeled). The 

resulting model will propose a detailed weapons system 

design given a new set of requirements / architecture / 

funding / schedule constraint (test) data. Subject matter 

experts will then integrate the proposed detailed concept and 

leverage the high-fidelity concept to rapidly re-baseline the 

weapons system’s detailed design. This design cycle 

acceleration could reduce staffing, time, cost, and scope, 

affording the nuclear security enterprise a high probability of 

successfully executing simultaneous modernization programs 

on time and on budget. 

Accelerated Discovery in Materials, Chemistry, and 

Biology. All possible natural and synthetic materials are 

formed from 3D atomic configurations of just a few dozen 

different chemical elements. Ab initio computational methods 

can accurately predict diverse properties at the nanoscale but 

not on the vastly larger meso- to macro-scales on which 

critical performance and processing behaviors emerge 

(e.g., photovoltaics, metal alloy glasses, multiferroics, 

memristors). An AI/ML workflow that can leverage exabytes 

of ab initio data at the nanoscale would address this 

challenge, producing quantitatively predictive simulations of 

material synthesis processes and resultant performance 

properties. An AI-enabled workflow leveraging, for instance, 

new learning techniques would be sufficiently fast and 

accurate on exascale platforms to allow exploration and 

exploitation of vast combinatorial spaces of chemical 

composition and processing conditions on a timescale of 

days to weeks rather than over many months. This 

acceleration would provide real-time guidance for 

experimental design campaigns, where many of the nation’s 

most urgent security challenges are attributable to limitations 

in current materials. Such areas include, for instance, carbon-

free nuclear fusion energy production using new materials 

that can withstand hot plasma conditions; solar power 

production through advances in materials for photon capture 

and energy storage; nuclear deterrence, military, and space 

exploration advances enabled with reliable high-performance 

materials for extreme environments; and similar advances in 

computation, transport, and medicine. 

Advanced Manufacturing. Direct-digital additive 

manufacturing (AM) platforms, while attractive from a design 

flexibility standpoint, are still plagued by the inability to 

achieve process and parts qualification for high-consequence 

applications. This is particularly true for metal powder-

feedstock-based AM modalities, such as laser-powder bed 

fusion and directed energy approaches. Variabilities in 

powder feedstocks, the stochastic nature of laser-melt-pool-

plasma interactions, heterogeneous polycrystal grain 

structures from solidification, and systematic and random 

defects in the form of porosity and distortion underpin the 

difficulties of achieving material and process qualification. 

Automating the process inputs to parts/performance 
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integration requires data-driven computational intelligence 

that addresses all these stochastic variabilities. AI methods 

including inverse design will support the creation of workflows 

that can traverse the digital thread from model-based design 

through build and final part inspection. Deep learning 

capabilities will further reduce risk associated with process-

variation through models that are trained on at-line and on-

line sensor data and process and performance models. This 

advance will provide routine qualification successes and 

more effective application of techniques, such as powder 

metal AM to enable disruptive part designs, unique materials, 

and form factors for high-consequence national security 

systems in DOE SC and NNSA that cannot be produced with 

conventional approaches. Moreover, the use of these and 

other AI enablers could reduce the typical 10-year timelines 

associated with the insertion of new (and certified) metal AM 

parts into NNSA systems, in turn improving modularity and 

agility. Ultimately, the AM enabled by these, and other AI 

methods is the only way to achieve a cycle-reduction that 

impacts future programs and new systems. Success will also 

allow optimized in-situ monitoring and post-build inspection to 

minimize cost while maintaining product confidence. 

06. AI FOR PROGRAMMING AND SOFTWARE 

ENGINEERING 

Throughout the DOE complex and underpinning every 

scientific and operational process are increasingly complex 

software systems. The growth in scale and complexity of 

these systems, combined with their roles in critical systems 

such as instrument or energy infrastructure control, has been 

a recognized challenge for several decades. This situation 

has been particularly emphasized, given that the networked 

nature of these critical systems also exposes them to 

cybersecurity risks. Tremendous progress has been made in 

the use of AI to assist programmers and even to develop 

programs. Impacts expected through the use of AI for 

programming and software engineering include those listed 

below. 

Adaptation of Codes for New Computational Targets. AI 

for Programming and Software Engineering promises to 

change how we adapt codes for new computational targets 

enabling the nation to answer some of our most pressing 

science, energy, and security questions in weeks rather than 

years. Using large-scale master models that are trained on 

both the corpus of general-purpose programming and 

optimization techniques alongside the wealth of DOE science 

and engineering algorithms, we will develop automated aids 

allowing computational scientists to rapidly implement and 

evaluate these methods for a scientific problem. These 

master models will also be trained with high-performance 

implementations of algorithms on a variety of hardware 

technologies and will conduct performance and robustness 

evaluation using an active learning approach. AI has 

demonstrated massive speedups in code development. What 

currently takes large teams of developers and scientists 

years to complete might be accomplished in months or less in 

the future. This will address what has become a concerning 

dilemma—the pace of hardware specialization has become 

faster than the ability of human programmers to adapt to the 

advances offered by industry. Innovation in everything from 

materials science to designing complex engineered systems 

will be improved by our ability to map applications to quickly 

changing hardware. 

Discovering Quality Control Algorithms and Quality 

Control Optimization. Existing digital controls and systems 

for high-consequence applications, some dating back 

generations, are vulnerable to natural faults and adversarial 

attack. This applies to a wide variety of software systems that 

ensure the safety of the nuclear enterprise (nuclear weapons 

and its infrastructure) and energy systems (nuclear reactors, 

dams, oil refineries/pipelines, and electrical generation / 

transmission). Discovering faults and vulnerabilities in control 

and system software governing these applications before 

they are exercised is critical. Performing the usual by-hand 

assessments is not tractable because the type, quantity, and 

diversity of these installations are vast. What is needed is a 

systematic and automatic methodology for discovering faults 

and vulnerabilities in black box digital systems. The ability to 

quickly diagnose issues with high-consequence controls in 

the nation’s nuclear deterrent and energy infrastructure is 

important today and will likely increase in the future. An 

automated way to reconstruct (learn) a digital system and 

then use it in a formal analysis to check safety, security, and 

reliability properties would go a long way to securing the 

nation’s assets. A robust AI model learning and proof-finding 

assistant could dramatically change the scope and 

applicability of formal verification for national defense 

systems, which is currently limited by the time required for 

human-driven proof search. By effectively automating the 

process of complex formal verification, this research would 

enable DOE and NNSA to verify more requirements for digital 

national defense systems and the energy infrastructure, and 

more complex properties, potentially including cybersecurity 

properties. This advance would reduce overall design time 

while increasing assurance that the resulting systems are 

safe and reliable. The past few years have seen a number of 

academic and industry efforts working on how to apply recent 

advances in deep learning to formal methods-based 

verification in general and proof search in particular 

[17][18][19][20]. These efforts have demonstrated the 

feasibility of the approach, but it remains to be shown that it 

can translate to success in practice for real-world problems 

such as those faced by NNSA. 

AI-driven Co-design. The exponentially growing demand for 

computing and the end of Moore’s Law in microelectronics 

have resulted in an urgent call for microelectronics-compute 

co-design, in which each level of the “stack” co-evolves, 

sometimes radically. The co-design knowledge space, 

however, is enormous, spanning materials to algorithms over 
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vastly different conceptual scales. Future HPC systems will 

benefit from leveraging a far more heterogeneous assortment 

of microelectronics technologies than today’s systems have, 

but achieving this increased diversity, which may include 

conventional complementary metal-oxide semiconductor 

(CMOS) accelerators, analog computing, quantum 

computing, and neuromorphic computing, presents several 

implementation challenges. DOE requires an ability to design 

such heterogeneous computing systems effectively with U.S. 

industry partners and needs the ability to jointly configure 

systems based on application requirements while tailoring the 

applications to these systems. For a given computational 

application (or assortment of applications), this 

heterogeneous design should be able to effectively identify a 

desirable customized combination of these computing 

technologies that implements desired functions while 

maximizing the advantages of each technology for maximal 

time, space, and energy efficiencies. Further, this approach 

should be able to forecast how these emerging technologies 

will evolve to make solutions flexible going forward. An AI 

system to solve this task would have to explore a very large 

combinatorial space of interactions between potential 

components, with the main data for this effort being 

simulation and benchmark data from different existing and 

proposed microelectronics platforms. The AI methods 

required for this problem could leverage recent advances in 

reinforcement learning (which has been used for optimizing 

circuit design, but not yet full computing systems), adaptive 

AI frameworks, model-based learning, and stochastic AI 

methods that make complex strategic decisions from a large 

search space. Solving this problem will provide a significant 

step forward in maintaining U.S. leadership in 

microelectronics technologies and will help reduce the energy 

requirements of computing systems. The growing challenges 

of improving conventional computing technology present a 

risk to U.S. leadership in microelectronics, which poses 

significant economic and national security challenges. By 

maximally leveraging these emerging computing 

technologies, the U.S. and DOE have an opportunity to 

extend their leadership in HPC technologies overall and 

achieve more impactful capabilities in computing for science, 

energy, and national security while meeting energy efficiency 

and cost requirements. 
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SECTION 01: AI APPROACHES 

 
This section details six new AI-empowered computing paradigms, or AI Approaches. 
These approaches form a set of building blocks combining and scaling fundamental 
AI functions, such as inference from large-scale and often unstructured and multi-
modal data sources, natural language processing, and object recognition. These 
building blocks create transformational capabilities, from surrogate and foundation 
models to digital twins to automate real-time control of instruments, experiments, or 
complex infrastructure; inverse design systems and ultimately autonomous 
experiments, laboratories, and instruments; and automated software engineering and 
programming. Making this report particularly timely are relatively recent discoveries of 
emergent capabilities that represent new classes of AI models, including foundation 
models and physics-informed ML surrogate models. 
 
 
Chapter 01: AI AND SURROGATE MODELS FOR SCIENTIFIC COMPUTING 

Chapter 02: AI FOUNDATION MODELS FOR SCIENTIFIC KNOWLEDGE 
DISCOVERY, INTEGRATION, AND SYNTHESIS 

Chapter 03: AI FOR ADVANCED PROPERTY INFERENCE AND INVERSE DESIGN 

Chapter 04: AI-BASED DESIGN, PREDICTION, AND CONTROL OF COMPLEX 
ENGINEERED SYSTEMS 

Chapter 05: AI AND ROBOTICS FOR AUTONOMOUS DISCOVERY 

Chapter 06: AI FOR PROGRAMMING AND SOFTWARE ENGINEERING 
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01. AI AND SURROGATE MODELS FOR SCIENTIFIC COMPUTING 

The U.S. Department of Energy (DOE) has been a world 

leader in scientific computing for decades. DOE’s use of 

scientific computing has helped the nation meet many 

mission challenges, advancing the state of the art in science, 

engineering, energy, and national and global security. 

Growing computing power has enabled increased complexity 

and fidelity in simulations and their expansion into new 

scientific frontiers. However, the computational cost to 

capture these details has grown to consume the largest 

supercomputing resources. While these full-scale simulations 

lead to important discoveries and enhanced understanding, 

only a limited number are possible given that they require the 

use of entire machines. This high computing cost significantly 

limits the questions we can ask and the science we can do.  

Advances in science and engineering require extensive use 

of “many-query applications” (e.g., parameter sweeps, 

inverse problems for parameter estimation, and model-based 

design optimization). These applications require multiple 

computationally expensive model invocations, often called 

sequentially rather than concurrently. This demands many 

simulations of a model in rapid succession. Simply put, while 

“hero” simulations are good demonstrations of results of 

many-simulation efforts, but they are often insufficient to drive 

large-scale scientific advancement, complex systems control, 

and autonomous science. 

Artificial intelligence (AI) and machine learning (ML) have 

demonstrated the ability to create accurate, fast-running 

surrogate models for computationally expensive simulations. 

Using a limited number of evaluations of the simulation, 

AI/ML methods learn to accurately predict the output for new 

scenarios with quantification of the prediction uncertainty, 

allowing researchers to get an accurate approximation of the 

full simulation in a fraction of the time. Early work by many 

groups has demonstrated the enormous potential of using 

these methods to accelerate scientific computing 

applications. Groups have demonstrated speedups from 

100 times to over one billion times in diverse applications, 

such as Density Functional Theory (DFT) simulations of 

electronic structure, molecular dynamics of protein 

complexes, cosmology, earthquakes, and computational fluid 

dynamics. AI-based surrogate models have unlocked new 

frontiers in prediction and are trained with complex, diverse 

data structures such as images, text, and networks. This has 

catalyzed new opportunities for scientific impact for DOE 

computing capabilities. 

The increase in speed, which will result in evaluations in 

fractions of a second instead of in days, is critical to 

leveraging DOE’s world-class computing capabilities to meet 

grand challenges. The utility of surrogate models is best 

highlighted by the answer to the question: “What could 

happen with world-class simulations if they could be 

evaluated in fractions of a second instead of days or weeks?” 

This chapter outlines how surrogate models will be a key 

component in the integration of AI into DOE scientific and 

engineering workflows. These workflows may range from 

(a) learning control laws and providing data augmentation for 

AI-enhanced real-time controllers of engineered systems to 

(b) embedding surrogates in real-time monitoring, 

forecasting, and data assimilation of digital twins of complex 

systems to (c) integrating a hierarchy of surrogates as 

“closures” or “constitutive models” in multi-scale, full-system 

simulations to represent unresolved physical processes. 

Such AI/ML applications will ensure that the highest-quality 

information generated by high-fidelity scientific simulations 

can be shared transparently across scales in practical 

engineering simulations. Advancing our ability to connect 

surrogates of complex data from simulations to similar data 

structures generated by experimental diagnostics will be 

critical for allowing surrogate-simulator-AI systems to be 

integrated into experimental workflows to meet autonomous 

science goals. 

This chapter addresses opportunities across the DOE 

mission space for acceleration; the needs for future computer 

architectures to support AI-accelerated, high-performance 

computing (HPC); and needed advances in applied 

mathematics, algorithms, AI, and software frameworks.  

 

PROJECT SPOTLIGHT 

Project Name: Black-box optimization for scientific 

machine learning models 

PI: Guannan Zhang 

Organizations Involved: Oak Ridge National Laboratory 

Goal: Develop black-box optimization methods for 

inverse problems that involves non-automatically 

differentiable simulators. 

Significant Accomplishment: Application of our 

surrogate-based black-box optimization method to 

calibrate a constitutive material model (mercury) for a 

neutron target.  

In the News: Radaideh, M., Tran, H., Lin, L., Jiang, H., 

Winder, D., Gorti, S., Zhang, G., Mach, J., and 

Cousineau, S., 2022. Model calibration of the liquid 

mercury spallation target using evolutionary neural 

networks and sparse polynomial expansions, Nuclear 

Instruments and Methods in Physics Research B, 

525(15), pp. 41–54. 
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1.1 State of the Art 

Surrogate models are data-driven, AI/ML-based 

approximations of physical, chemical, or biological processes, 

trained on measured data and/or data generated by 

executing high-fidelity (and computationally expensive) 

simulation models. Although AI-based surrogates can be 

used for many purposes (e.g., to discover unknown 

constitutive laws), the most straightforward use of AI-based 

surrogates for HPC is to serve as fast-running, accurate 

proxies of computationally expensive, high-fidelity models. 

These proxies can then be used in many-query applications 

(e.g., design optimization, uncertainty quantification, real-time 

control, and digital twins), without compromising on the 

fidelity of the calculations. Using AI-based surrogates 

enhances the reliability and realism of decision-making 

applications. Many have been successfully applied to various 

physical simulations. For example, Figure 1-1 shows 

examples of an open-source code for AI-based surrogates 

[1], applied to many different physics codes to accurately 

accelerate physical simulations.  

The different types of AI-based surrogates can be 

categorized by their incorporation of physics constraints and 

their interpretability (i.e., by their sophistication and physical 

realism). Surrogate models with no physics-based 

constraints, typically known as black box models, do not 

explicitly incorporate the underlying governing equations but 

instead relate input and output (I/O) data directly using 

statistical or machine-learned relationships. Some examples 

are Gaussian process or neural network models. On the 

other hand, physics-informed surrogates take advantage of 

both known governing equations and data. Between the black 

box and physics-informed surrogates, interpretable 

surrogates have been developed, in which I/O data are 

related by well-understood forms, such as differential 

equations, or explainable AI algorithms, such as linear 

models.  

Black Box Models. Examples of the black box approach 

include the Gaussian process [2, 3, 4, 5, 6], radial basis 

functions [7, 8], Kriging [9, 10], and neural networks [11, 12, 

13]. The black box approach is attractive because it requires 

no prior knowledge in the AI/ML model regarding how HPC-

based physical simulations are implemented. Black box 

models are quick and easy to train and can be applied to any 

field, providing that sufficient data are available. Examples 

are numerous, including porous media simulations [13, 14, 

15], nuclear DFT [4, 5], cosmology [16], turbulence modeling 

in compressible flow [17], and climate science [18]. Despite 

the popularity of black box approaches, model accuracy 

depends heavily on the quality and amount of data used for 

training the model (henceforth, “training data”). Note that the 

generation of training data can itself be very computationally 

expensive, requiring sweeps through the parameter space of 

the high-fidelity model, although many sparse sampling 

schemes (e.g., Clenshaw-Curtis grids [19]) and approaches 

to active learning have been invented to reduce the 

computational burden. Sole dependence on training data, 

with no inclusion of scientific “smarts” in the black box model, 

is the crux of such models’ limitations. For example, if a 

prediction is required outside of the region covered by the 

training data, (i.e., extrapolation), model accuracy tends to be 

poor. In addition, physics constraints (e.g., symmetry, 

positivity, or conservation) are not typically satisfied by black 

box approaches. Also, although they generally perform well, 

when these models fail, it is hard to analyze when and why 

because of their black box nature.  

Interpretable Surrogate Models. To overcome these issues, 

interpretable surrogates have emerged, in which I/O data are 

related by known forms—typically differential equations—

which are easier to analyze than neural networks. For 

example, eigenvalue analysis of the underlying system tells 

us whether the dynamics will be stable or not. The governing 

differential equations can be discovered by means of several 

mechanisms (e.g., using sparse or dense regression [20, 21, 

22, 23], symbolic regression [24, 25], or Koopman operators 

[26, 27], and neural networks [28]). These approaches have 

shown promising results. For instance, they have accurately 

identified some known partial differential equations, such as 

Lorenz equations, using noisy data (i.e., simulation data 

corrupted by synthetically generated noise). 

Physics-Informed Surrogate Models. Recently, advances 

in physics-constrained, data-driven modeling have emerged. 

Physics-informed neural networks [29], for example, embed 

the underlying differential equations within the training of a 

neural network by adding the residual term in the objective 

function. This innovative method of solving inverse problems 

does not rely on forward simulations. However, training the 

neural network is computationally expensive, is not very 

scalable across processors, and requires significant human 

intervention. The method’s accuracy is also not as robust 

as that of classical numerical methods. Developing a 

deeper understanding of the convergence behavior of 

physics-informed neural networks is a critical and active 

     

Figure 1-1. AI-based surrogates can accelerate computational fluid dynamics, plasma physics, particle transport, and multiphysics simulations 
with a high accuracy. 
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research area [30, 31, 32]. Another approach to physics-

constrained, data-driven modeling is to directly learn infinite 

dimensional operators with neural networks, such as 

DeepONet [33] and the Fourier neural operator [34]. 

However, for problems with complex spatial domains and 

those of a multi-scale or multiphysics nature, classical 

numerical discretization methods provide more robust and 

accurate solutions.  

Closures (or constitutive models) are a special type of 

physics-informed surrogate model that are used to simulate 

the effect of fine-scale physical processes in system-level 

models. Because large-scale, system-level simulations (e.g., 

complex engineered systems and Earth-system simulations) 

cannot afford the high computational cost of modeling fine-

scale physics, closures are used to approximate them. 

Several theories regarding the structure of closures have 

been proposed, but they include unspecified constants, which 

are traditionally calibrated to simple experiments but tend to 

be inaccurate in realistic situations. Recently, these closures 

have been learned from high-fidelity simulations (as well as 

experimental data), with the constants replaced by functions 

(usually neural networks) of the state of system-level 

simulations. The innovation lies in devising transformations of 

the state so that the inputs into the neural network preserve 

invariance properties [35, 36, 37, 38]. It is also possible to 

reconstruct the fine-scale processes (and not just their effect) 

from the system-level information using spatial patterns 

learned from training data [39].  

Reduced-Order Models. The next natural category of 

physics-constrained, data-driven methods consists of 

projection-based reduced-order models (ROMs), in which the 

known physics constraints are explicitly used to relate data by 

projecting high-fidelity governing equations to a low-

dimensional manifold. These approaches take advantage of 

not only the available first principles, but also the classical 

numerical discretization of the governing equations. Because 

of the explicit use of first principles, each step of a ROM 

systematically builds on the previous steps, exposing all 

relationships. Therefore, as a final product, ROMs can deliver 

tunable accuracy with adjustable speed-up, providing great 

flexibility and robustness. However, the development time for 

a projection-based ROM is longer than that for a black box 

approach because such models require significant human 

ingenuity to architect prior to training, and the training is 

computationally expensive.  

Projection-based ROMs have been used for Euler equations 

[40, 41, 42, 43], Navier–Stokes equations [44, 45, 46], large-

scale Boltzmann problems [47], lattice-type structure 

response problems [48, 49], digital twins of a fixed-wing 

unmanned aerial vehicle [50], and design optimization 

problems [51, 52, 53, 54, 48, 49]. However, these traditional 

linear subspace-projection-based ROMs are often inaccurate 

in low-dimensional solution representation for problems with 

slowly decaying Kolmogorov’s width (e.g., advection-

dominated moving-shock problems). To overcome this issue, 

efficient nonlinear manifold ROMs [55, 56] have been 

developed, in which the nonlinear manifold solution 

representation through neural networks is used to effectively 

capture solution dynamics with low-dimensional latent 

spaces. Figure 1-2 illustrates the accuracy and robustness in 

extrapolation and speed-up trends measured against the level 

of physics embedded in the ROM. 

 
Figure 1-2. Categorization of surrogates according to their incorporation 
of physics-constraints (the underlying governing equation or the existing 
numerical discretization methods for the governing equation). Having 
more physics constraints often means increased accuracy and 
robustness in extrapolation. Conversely, it also means decreased 
speed-up. 

Researchers have completed deep theoretical work over the 

past several decades to develop projection-based ROMs. 

With the emergence of ML, projection-based ROMs and AI 

are expected to merge and improve the field of surrogates for 

HPC simulations.  

To summarize, surrogate models can be categorized by their 

sophistication and adherence to physics (by construction). 

The simplest type, black box models, are purely statistical 

and machine-learned constructs, without any physics/ 

scientific “smarts” built into them. They are easier to train, but 

their failures are difficult to diagnose and fix. “Interpretable” 

surrogate models introduce a degree of causality and 

physical constraint in the surrogate model’s architecture, 

allowing easier diagnoses of failures. Physics-informed 

surrogate models are statistical constructs that honor 

(approximately) the governing equations of the phenomena 

being modeled but are very difficult to train and use. ROMs, 

the last category, are not statistical models but they are 

rather derived from the governing equations via controllable 

approximations. They are difficult to formulate, but once 

trained, allow users to trade off complexity (and 

computational speed) versus approximation error. 

DOE has been a world leader in construction and integration 

of surrogates into various applications, particularly for 

uncertainty quantification (UQ). However, there is fertile 

ground for improved surrogate methods using AI and for 

surrogate integration into AI workflows to meet future needs. 

The experience from these early adoptions allows us to chart 

a course over the next decade to integrate surrogate model 
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approaches to address computational challenges throughout 

DOE mission areas. 

1.2 Grand Challenges 

In order to meet the next generation of its mission challenges, 

DOE must establish world leadership in development and use 

of AI surrogates. This will mean (1) building general purpose, 

multi-simulator surrogate models for specific domains, 

(2) establishing self-guided surrogate model construction 

from highly complex data structures and with physical 

constraints, and (3) developing infrastructure to smoothly 

plug surrogate models into HPC simulations, AI training 

workflows for autonomous systems, and monitoring/digital 

twins for seamless integration, agnostic to the software 

frameworks used to build the surrogate. 

Building general purpose, domain meta-surrogates to 

combine data from across scales, from diverse models, 

and of varying fidelities. Predominantly, state-of-art, 

simulation-based science is at a point where substantial 

progress relies on the development of surrogates for specific 

applications, often relying on single models of a fixed fidelity. 

This fails to fully leverage the modeling capabilities in 

DOE science. 

For many DOE applications, there are competing simulation 

models, each of which may exist for different levels of 

cost/fidelity trade-off. Typically, independent surrogate 

models are built for single simulators on specific problems, 

even for very similar tasks. This “siloed” behavior is inefficient 

and costly. Instead, building general purpose domain 

surrogates that can learn from data and sub-surrogates from 

all models, across fidelities, will make more accurate and 

robust predictions. This will reduce the impact of model-form 

error in individual codes.  

An example would be a meta-surrogate for high-energy-

density (HED) hydrodynamic systems that can take in data 

from simulating heterogeneous HED systems with multiple 

codes (i.e., xRAGE and Hydra) and can build a meta-

surrogate that can give accurate prediction of individual code 

output for new cases, but also give a prediction for the 

physical system leveraging information from all 

codes simultaneously. 

Establishing self-guided meta-surrogate model 

construction from complex data structures and with 

physics constraints. Building high-quality surrogate models 

is data-expensive and requires both detailed understanding 

of the problem structure and substantial effort to identify 

weaknesses in simulator or surrogate predictive capability 

with iterative model refinement. Research advances in AI for 

surrogate models will lead to AI-driven, intelligent data 

collection for adaptive training of surrogate models and 

iterative model criticism and improvement for stronger 

surrogate predictive capability. Advances in cost-aware active 

learning will allow meta-surrogates to: 

a. Dynamically identify and collect data across models and 

experimental space to ensure predictions are accurate 

with controlled uncertainties. 

b. Test and improve model structure to reduce model-form 

error in simulation and surrogate performance.  

c. Dynamically expand and contract the model parameter 

space to adapt to effect sparsity for insensitive model 

inputs while growing to handle prediction for new 

scenarios and system designs. 

Developing infrastructure to smoothly integrate 

surrogate models into HPC simulations, AI training 

workflows for autonomous systems, and 

monitoring/digital twins that are agnostic to the software 

frameworks used to build the surrogate. To fully utilize 

surrogates to meet the needs of the other AI building blocks 

and for the domain goals, surrogates must be smoothly, 

easily integrated into DOE workflows. The software and 

hardware infrastructure to make a portable, performant, 

platform-agnostic framework for composing, combining, and 

adapting AI surrogates will enable their smooth assimilation 

and allow for quick incorporation and testing of new methods 

and approaches as surrogate technology advances. 

For example, as mentioned in 2.1, large-scale HPC 

simulation can benefit from leveraging surrogate models as 

“closures.” The communication layer to easily incorporate 

surrogates of specific closure models or meta-surrogates 

encompassing multiple closure models, regardless of the 

framework for the trained surrogate, does not currently exist 

but would be critical for wide-spread adoption of closure 

surrogates. 

Even further, this infrastructure will allow multi-scale 

surrogate-simulator-AI systems to meet DOE goals. 

Figure 1-3 shows an abstracted diagram of a multi-scale 

system where the full system is used for monitoring and 

control with a micro-scale closure model that also allows for 

micro-scale system monitoring. Integrating the full micro-

scale simulator into the full-scale code would be infeasible, as 

would running the full-scale simulation in the monitoring and 

control loop. A surrogate of the micro-scale, using active 

learning to guide evaluation of the micro-scale simulation, 

then is used as a full-scale closure. The full-scale surrogate is 

used for fast-querying for control and monitoring tasks. This 

diagram shows a general form of multi-scale surrogate-

simulation-AI system that would be unlocked by the 

development of this infrastructure. 

Meeting these grand challenges is fundamental to other AI 

building blocks described in this section as well as domain 

needs. Composable surrogate models are necessary for 

capturing all scales for building a full-scale digital twin of the 

power grid for monitoring, testing “what-if” scenarios, and 

generating AI strategies for handling disruptions in real time 

(these are further discussed in Chapters 03 and 04). 



 

01. AI AND SURROGATE MODELS FOR SCIENTIFIC COMPUTING 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY   

21 

Multi-scale simulation for DOE applications, from stockpile 

management to fusion energy systems to climate science, is 

founded upon modeling heterogeneous processes at high 

fidelities. Doing so, while leveraging the best DOE scientific 

computing capabilities, requires surrogate models to provide 

fast, accurate prediction with well-quantified uncertainties for 

sub-scale physics to large-scale models. 

Surrogate models are also critical for fast iteration to guide 

optimal, autonomous design across the DOE mission space, 

from National Nuclear Security Administration (NNSA) 

interests to energy production and storage, to Energy 

Earthshots (see Section 02 of this report). 

1.3 Advances in the Next Decade 

These Grand Challenges motivate three surrogate-specific 

capabilities that we seek to develop within the DOE 

community in the next decade. Underlying these are 

additional requirements for advances in cross-cutting 

technologies: data management infrastructure for large 

training data and hardware platforms for heterogeneous 

workflows. Thus, we follow with a set of challenges organized 

by the five crosscutting technologies outlined in Section 03 of 

this report. 

1.3.1 SURROGATE-SPECIFIC CAPABILITIES 

1. Building AI-enhanced surrogate models that handle 

complex data structures into technical workflows: 

Future workflows will require the capability to handle 

complex image, natural language, and graph/network data 

structures while mixing surrogate models with conventional 

models in the form of networks or hierarchies. New 

research incorporating advances in AI with these data 

modalities as well as new workflow tools to assist with the 

assembly handling the disparity in scales will be required. 

2. Constructing trusted surrogate models: DOE’s 

established practice of making critical decisions based on 

model predictions requires understanding and 

communicating bounds on model-based predictions. This 

problem becomes exponentially more difficult with the 

development of a networked hierarchy of models in meta-

surrogates. Building the foundations to provide meaningful 

UQ bounds when the assumptions of traditional methods 

must be violated and when generalizing to data beyond 

that previously seen in training will be critical to building 

trust in AI surrogate use. 

3. Training surrogate models in a scalable and 

sustainable manner: The capability to scalably (in terms 

of processors, platforms, and users) train surrogate 

models will require a new AI-enhanced, multi-platform 

software framework. Such a framework does not exist and 

will require significant research to define an appropriate 

architecture before it can be implemented and tested. 

We expand on these three surrogate-specific decadal 

advances next.  

Building AI-enhanced surrogate models that handle 

complex data structures into technical workflows. 

Scientific workflows consist of a series of transitions to data 

by modules. These modules have traditionally consisted of 

physics-based models or post-processing scripts. The 

workflows are shallow, and workflow automation tools such 

as Sandia Analysis Workbench (SAW, [57]) can address 

them. In the future, however, some modules may be entirely 

AI/ML-based, while others may be hierarchies of surrogate 

models or have closures embedded in a physics-based 

model. Such hybrid networks of surrogates, which may 

embody physics at disparate time/length scales, are 

invariably “stiff” systems; no scalable methods can address 

them. Advances in fundamental mathematics that can either 

address the contrast in scales or smooth them over will be a 

prerequisite for achieving this capability. 

Inference from observation (i.e., inverse problems, property 

inference, inverse design) plays a large role in scientific 

research; the existence of (networks of) fast-running 

surrogate models can enable the solution of high-dimensional 

inverse problems (e.g., estimation of multi-dimensional fields 

rather than scalar parameters). However, in many DOE 

applications, observations are sparse, and scientific research 

in DOE has typically employed Bayesian methods that 

quantify uncertainty in the outputs of such inverse problems. 

However, scalable, high-dimensional Bayesian inversion 

 

Figure 1-3. Diagram of infrastructure allowing surrogate model integration into a multi-scale monitoring and control problem with multiple HPC 
simulations and real-world data integrated into a single system. 
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solvers that are performant are rare, and fundamental 

research in Bayesian mathematics will be required to exploit 

the power of composable networks of surrogate models. 

The Idea of composable surrogates also raises several 

challenges: how to achieve the compositions; how to detect 

and avoid surrogate-to-surrogate incompatibilities during 

assembly; and how to compile, maintain, and integrate a 

repository of composable surrogates with tools that compose 

a scientific workflow. Constructing such mix-and-match 

workflows will require concepts borrowed from component-

based software design, which DOE has explored in the past 

[58], but which have not been widely accepted in scientific 

simulations. Scientific workflows of the future, with a mixture 

of physics-based and data-driven models, will thus require 

workflow tools that do not exist today.  

Recent advances in generative models for text, images, 

video, and networks hint at the great potential for surrogate 

modeling of complex data structures generated by big 

physics facilities—radiograph images, temporally and 

spatially-resolved spectroscopy, etc.—that are currently 

converted to scalar or low-dimensional vector summaries for 

surrogate modeling. Advances in connecting surrogates of 

complex data from simulations to similar data structures 

generated by experimental diagnostics will be critical for 

allowing surrogate-simulator-AI systems to connect into 

experimental workflows to meet autonomous science goals. 

Constructing trusted surrogate models. Despite their 

predictive skill, surrogate models are approximate and can 

fail in myriad ways, the most common being out-of-

distribution (OOD) use (i.e., outside the feature space 

spanned by the training dataset). This affects the 

generalization ability, uncertainty assessment, and 

robustness of surrogate models. One strategy to improve the 

trustworthiness of surrogate modeling results is to impose 

physical realizability constraints, either during model 

construction or training. The discovery of causal relationships 

in training data, by assembling/integrating fundamental 

relationships predicted by physics (in contrast to relying on 

correlations discovered in data) can also be called “trust by 

construction” (see example in [59]). Such assembly will be 

necessary for AI-enhanced control laws used in complex 

engineered systems such as scientific instruments or 

autonomous vehicles, which may have to function in 

contested environments in which they may encounter 

scenarios outside their training data (see Chapter 04). Today 

there are no general methods by which physics can be 

included in the architecture of an arbitrary surrogate model, 

although much work has been done for specific types of 

surrogates such as closures [35, 38]. Thus, endowing 

surrogate models with trust during construction will require 

further work in the mathematics of OOD detection, causality, 

and other aspects of surrogate modeling. 

A second approach to building trust in surrogate models is to 

provide uncertainty bounds with their predictions. Minimizing 

uncertainties increases the requirements for the quantity and 

diversity of training data. An example of this approach is to 

assemble training data from various sensing modalities 

(e.g., images, time series, and tensors). However, this is not 

currently used because of our fundamental ignorance of how 

multimodal data may be assimilated into surrogate models, 

given that there will be wide disparities in their fidelities, 

quantities, and forms. Transfer learning could potentially 

address this problem, but we currently lack the mathematical 

basis for learning from multimodal data. 

The crudest—but perhaps the most effective—way of 

endowing surrogate models with trustworthiness is to qualify 

them (i.e., determine the types of physics/processes present 

in their training data and demarcate the feature-space where 

the surrogate model may be used). However, such 

qualification requires that developers create unsupervised or 

semi-supervised methods to characterize the training dataset, 

which in turn necessitates that they incorporate 

physics/domain information into the unsupervised methods. 

Some preliminary work has been done [60], but general 

techniques that will scale to multiple types of physics have 

not been developed. Fundamental algorithmic research is 

thus necessary to enable developers to qualify surrogate 

models, as well as to construct the software frameworks with 

such hybrid unsupervised learning methods. 

Training surrogate models in a scalable and sustainable 

manner. The widespread use of surrogate models across the 

DOE complex will require automating their construction, likely 

via AI/ML agents. Because surrogate models are first trained 

on traditional simulation model-generated data (and in some 

cases further tuned using experimental data), automation of 

the (adaptive) sampling of the input space (to generate 

informative datasets) and selection and tuning of the 

surrogate model architecture will be required. The training 

process may also span multiple hardware architectures, each 

optimized for the disparate tasks involved in constructing the 

surrogate. Significant research has gone into specific tasks 

such as active learning and adaptive design of experiments 

to efficiently generate training data, and automated tuning of 

machine-learned model architectures. But other key tasks 

remain, including AI-based orchestration of the training 

process and embedding those orchestration tools in an AI-

enhanced software framework that constructs surrogates.  

Such a software framework, supporting the multiple platforms 

where the training process is executed, must be designed 

and developed. Preliminary work suggests that such a 

framework is possible. Dakota [61] automates the process of 

sampling an input space, running simulations to generate 

training data and training a surrogate on these data, but is 

limited to conventional surrogate models and does not span 

platforms. SAW [57] is a workflow automation tool that 

maintains the provenance of all simulations within its purview 

and integrates with Dakota, but it is limited to conventional 

platforms. In both Dakota and SAW, the workflow is 
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automated via expert-driven scripts rather than AI. Thus, 

although they may form the starting points of the AI-

enhanced software framework we envision, the final product 

will require significant research in the appropriate framework 

architecture and design, followed by implementation and 

evaluation. 

1.3.2 CROSSCUTTING TECHNOLOGY 

CAPABILITIES 

To meet the challenges outlined above, advancements must 

also be made in the technical crosscuts detailed in the 

chapters comprising Section 03 of this report. These include 

(1) the fundamental mathematical underpinnings of surrogate 

modeling; (2) the software frameworks for building and 

training surrogates; (3) corresponding frameworks for 

integrating surrogates into workflows; (4) data handling for 

implementation and integration of surrogates and AI into DOE 

infrastructure; and (5) hardware architectures that provide 

scalability, flexibility, and composability—from HPC to edge. 

Next, we outline priority directions in these areas that will 

bridge the technological gap previously discussed regarding 

the development and application of surrogate models. 

Mathematics and fundamental research. Research to 

address the current shortcomings of surrogate models, as 

identified above, will require advances along four fronts. First, 

we need a new theory of surrogate models to establish when 

such a model is ready for production use. This theory would 

be similar in character to proofs of convergence of statistical 

models, replacing the standard notions of convergence in 

some metric with some quantitative measure of correctness 

and consistency. Proofs of consistency and correctness [62, 

63] would also facilitate detection of outliers and rare events. 

The mathematical properties of surrogates (e.g., stiffness), 

and restrictions on their use cases (e.g., detection of OOD 

use) that bound their generalizability, must also be identified 

and quantified.  

Second, research is needed to create a new framework that 

extracts surrogate models from multimodal data without 

imposing a fixed architecture. This will require methods to 

impose priors/constraints/regularizations in such a setting 

(e.g., to embed physical models, conservation laws) with the 

algorithm that discovers the model. It is currently unclear how 

this might be done, beyond the obvious method of including 

the constraints in the loss function. 

Third, we need training algorithms that can fit models to data 

under prescribed requirements for accuracy, cost, and 

resources. These algorithms must learn and exploit the 

geometry of the training data and select training samples 

where needed (i.e., active learning), requiring research on 

how a finite set of samples needs to be distributed within a 

high-dimensional feature space to maximize the extraction of 

information [64, 65].  

The final mathematics and fundamental research thrust 

regards the development of verification and validation 

methods for surrogate models, so that they will be 

trustworthy. This must encompass new methods for 

explainability [66, 67] and interpretability, as well as 

unsupervised/semi-supervised methods that quantify the 

information content of a training dataset (e.g., identify the 

types of physics it has). Methods that extract a set of 

representative prototypes from a training dataset (to allow 

deep dives) are part and parcel of the methods for 

trustworthy AI [60].  

Software frameworks for training AI surrogates. In order 

to meet the software needs for AI-surrogate modeling and to 

leverage the power of surrogates in DOE computing, we 

need to invest in software development for (1) a portable, 

performant, platform-agnostic framework for composing, 

combining, and adapting AI surrogates; (2) a software 

framework for deploying reproducible, verified, and validated 

surrogate libraries; and (3) software for AI-driven, automated 

surrogate construction with a high-level front end to enable 

domain scientists to build surrogates without requiring 

extensive AI expertise. Together, these three priority 

research directions impact all aspects of leveraging surrogate 

modeling to achieve autonomous and AI-accelerated 

scientific discovery. The framework for composing, 

combining, and adapting AI surrogates will ensure that 

advances in surrogate modeling can be integrated with 

heterogeneous codes and executed on diverse hardware for 

AI and autonomous systems. An infrastructure for verified 

and validated surrogate libraries will ensure trustworthy, 

reliable deployment of surrogates across domains, while AI-

driven surrogate construction will reduce barrier-to-entry for 

domain experts to utilize surrogate model technologies to 

make scientific advancements. Further, these advancements 

will integrate smoothly into autonomous workflows to 

accelerate experimentation and discovery by minimizing 

human-in-the-loop factors, as we discuss next.  

Workflows for integrating surrogates and AI. Making 

these software advances will facilitate necessary 

advancements in building AI workflows for DOE science. 

Leveraging the power of AI to create workflow composition 

assistants that translate scientific problems into workflows 

without requiring complex domain or computational 

knowledge will streamline the paths to solutions, leveraging 

DOE’s diverse leadership computing architectures and 

experimental facilities. Moreover, it will broaden and diversify 

participation in the DOE science mission, catalyzing new 

ideas and strategies. As we advance autonomous science 

across the DOE complex, self-healing workflows that auto-

detect and correct errors (malicious or unintentional) at scale 

will be necessary to ensure robust operation. Such workflows 

will include automated detection of surrogate failure and 

degradation (e.g., when surrogate systems leave domains of 

trustworthiness) to ensure that the AI agents are relying on 
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accurate approximations of computational science models 

and not untrusted extrapolations. By the end of the decade, 

we foresee an intelligent, AI-driven, federated workflow 

scheduler that dynamically executes workflows from the exa-

cluster to the edge, integrating scientific instruments and self-

driving laboratories (as discussed in Chapter 05) to 

accelerate science and engineering breakthroughs across 

the DOE. 

Data management for integration of surrogates. Advances 

in data management will also be critical to the next decade of 

AI research and development toward AI-enabled science. 

Data wrangling (e.g., finding, cleaning, feature engineering) 

represents a significant fraction of the process of building, 

training, and improving surrogates. The use of AI systems to 

reduce human involvement is urgently needed to dramatically 

reduce the time and cost of data wrangling. Investment in 

methods for storing, sharing, and finding heterogeneous data 

sources, along with automated data preparation and 

augmentation, will ensure data availability with high 

throughput for AI training, testing, and operational tasks. Fully 

leveraging the wealth of data generated by the DOE scientific 

enterprise, will demand infrastructure for efficiently sharing 

data, including real-time continuous data, using intuitive 

queries both across the DOE complex and with academic 

and industry partners. Beyond simply making the data 

available, leveraging AI to interrogate available data for data 

selection, recommendation, classification/labeling, and 

generating configurable data preparation and augmentation 

pipelines will reduce the data processing overhead necessary 

in AI workflows. 

Hardware architectures for AI surrogate integration. 

Operating AI systems across the computational continuum of 

exascale to edge will require not only advances in software 

and workflows to bridge the heterogeneous scales, but new 

frontiers in flexible, composable hardware to reach the 

potential that autonomous science offers. Investment in 

composable hardware accelerators will ensure that 

surrogates can be built, trained, and tested throughout the AI 

pipelines, allowing adaptive scalability as requirements for 

model size and resource vary. Large computational facilities 

will be critical for providing data from world-class simulation 

for training surrogate models, as well as providing “exascale 

as a service” capability for AI surrogates to execute high-

fidelity simulations “as needed” for active learning. It will also 

be essential to develop hardware features to deploy trained 

AI agents seamlessly and robustly from leadership-class 

HPC with bespoke accelerators to low-power edge devices 

sensitive to SWAP (size, weight, and power). These 

advanced hardware architectures will require native support 

for UQ, and they must be built for robustness (physical 

robustness for edge devices, and for long, stable operation 

for training surrogates). 

1.4 Accelerating Development 

To enable the long-term achievement of the research thrusts 

described above, we propose several candidate pilot projects 

that have the potential to jump-start some of the theoretical 

and algorithmic development outlined, using existing data 

and incremental extensions of existing tools. These pilots 

illustrate a pathway to immediately begin making progress 

toward achieving the identified grand challenges. 

 ML closures for plasma turbulence for fusion learned from 

high-fidelity sub-scale simulation and experimental training 

datasets: This pilot will require the development of (1) high-

dimensional, high-order, scalable optimization algorithms 

for fitting ML surrogate models, and (2) development of 

composable infrastructure between sub-scale simulation, 

full-scale simulation, and inference using experimental 

data. These directly connect to the first and third grand 

challenges. 

 ML surrogate for the ocean model in Earth system models 

to accelerate spin-up: This pilot could develop techniques 

to impose stability in networks of surrogates operating at 

different length and/or time scales in multiphysics and/or 

multi-fidelity networks, and efficient design and training of 

surrogates relevant to the second and third grand 

challenges. 

 Discover biological mechanisms that link environmental 

forcing (hyperspectral data) to biological response (omics 

data): This pilot would investigate how surrogates could be 

trained by assimilating multimodal data (hyperspectral data 

and omics data). In addition, the pilot could investigate 

whether the architecture of the surrogate model could be 

discovered from data. These goals would be applicable to 

the first and second grand challenges. 

 Generative ML surrogate for large-scale cosmology 

simulations: This pilot includes ML-accelerated subgrid 

physics and AI/ML methods for increasing dynamic range 

by incorporating learning from high-resolution simulations 

(“super-resolution”). This pilot essentially involves 

construction of AI-enhanced closures for cosmological 

simulations and embedding them in a physics model that is 

part of a complex cosmological simulation workflow 

relevant to the third grand challenge. 

1.5 Expected Outcomes 

Advancements in AI surrogate models and their integration 

into science, engineering, and autonomous workflows will 

accelerate science and engineering to meet the grand 

challenges we face, many of which are detailed in Section 02 

of this report. Building surrogates into AI workflows will 

ensure that trained AI agents are able to explore and learn 

from the highest-quality computational approximations to 

physical systems, unlocking the potential of autonomous 

systems and AI for DOE science. These capabilities can 
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revolutionize power generation, storage, and delivery for the 

21st century; manage the nation’s nuclear stockpile so 

experts can evaluate weapons performance with confidence 

and make informed decisions without relying on nuclear 

testing; drive advancement in fusion energy science, 

ensuring that the U.S. leads the way to fusion power 

generation; and provide insights needed to address a rapidly 

changing climate and avoid or mitigate environmental 

catastrophes. 

DOE has invested over decades to become the world’s 

leader in scientific computing, creating physics simulations 

that can represent complex processes in real-world systems 

with unmatched fidelity. AI surrogates represent a unique 

opportunity to increase the impact of these investments by 

enabling improvements in model execution time by factors 

ranging from 100 to 1B. By investing in research and 

development for AI surrogate technology and building 

surrogate models of high-performance physics simulation into 

AI workflows, we will leverage DOE’s expertise to solve the 

big problems that impact our nation and the world. 
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02. AI FOUNDATION MODELS FOR SCIENTIFIC KNOWLEDGE 
DISCOVERY, INTEGRATION, AND SYNTHESIS 

Many of the U.S. Department of Energy (DOE) scientific 

domains and mission spaces contain precious few samples 

of interest that are properly labeled by subject matter experts 

(SMEs) but have vast troves of unlabeled datasets. To apply 

artificial intelligence (AI) methods in these areas will require 

breakthroughs in the field of low- or zero-shot learning to 

overcome the challenge of sparse labels. We define the 

concept of a master model as a class of models that 

demonstrate emergent behavior and can solve new tasks 

after “seeing” only a limited number of examples. Foundation 

models are a cutting-edge approach to developing master 

models. 

Foundation models—built specifically for DOE missions—

hold impressive promise for transforming both the way the 

DOE does its science and the impact and reach of that 

science. The concept of a foundation model is one of the 

most significant AI approaches derived from the scale of 

computation and data combined with the new computing and 

data systems being deployed through the DOE Exascale 

Computing Project (ECP), which are ideally suited for it. Per 

[1], a foundation model is one that is “trained on broad data 

(generally using self-supervision at scale) that can be 

adapted to a wide range of downstream tasks.” 

Foundation models are intended to become the digital 

equivalent of an SME; they will have a deep understanding of 

a particular domain, displaying the ability to develop keen 

insight and discover meaningful patterns in vast troves of 

data, that may initially seem uncorrelatable. The significance 

of foundation models cannot be overstated, as they “are 

based on standard ideas in transfer learning and recent 

advances in deep learning and computer systems applied at 

a very large scale, demonstrate surprising emergent 

capabilities [2] and substantially improve performance on a 

wide range of downstream tasks” [3]. 

Foundation models should be seen as a critical piece of a 

national science transformation, driven by the DOE AI for 

science, energy, and security mission areas, that will 

accelerate our pace of discovery for basic science, applied 

science, national security, and broader economic impact. 

Foundation models represent a pinnacle in inductive 

reasoning (models learned from data), and provide a 

significant, complementary asset to the standard deductive 

reasoning that is used to create the DOE’s traditional 

modeling and simulation capability. Constructed using a 

transformer model architecture (Figure 2-1) [4], the key 

promise of foundation models is that they offer to extract 

previously unseen correlations and patterns within existing 

datasets, and to span the gap for application domains where 

there are no explicit governing equations or physical rules. As 

the term “foundation” implies, the DOE science community 

has the opportunity to create models analogous to large-

scale instruments, enabling many individual teams to work 

together with many other teams to contribute data and 

expertise to build, and then incrementally train, a shared 

foundation model for their downstream tasks. 

DOE has a clear mission-driven need to produce foundation 

models for science, energy, and national security. Across 

DOE missions, these models are likely to transform what is 

scientifically achievable. We expect that the combination of 

wide, downstream functionality with emergent capabilities will 

allow researchers to incorporate wide ranges of scientific 

knowledge and correlation, synthesize that knowledge to 

formulate profound new questions to set scientific scope, and 

rapidly find answers to previously unsolvable questions. 

PROJECT SPOTLIGHT 

Project Name: Transfer learning for inertial confinement 

fusion 

PI: Luc Peterson 

Organizations Involved: Lawrence Livermore National 

Laboratory, Weapons and Complex Integration – Inertial 

Confinement Fusion (ICF) and Advanced Simulation and 

Computing programs 

Goal: Evaluate transfer learning as a method of 

calibrating a simulation-based neural network to 

experimental data, creating a model that is predictive of 

ICF experiments. 

Significant Accomplishment: Leveraging just 

19 Omega ICF experiments and 30,000 low-fidelity 

simulations in a 9D design space, we were able to create 

transfer learning neural network models that could predict 

the outcome of future experiments with significantly lower 

error than the simulations alone. 

In the News: Humbird, K. D., Peterson, J. L., Spears, 

B. K., and McClarren, R. G., 2020, “Transfer learning to 

model inertial confinement fusion experiments,” in IEEE 

Transactions on Plasma Science 48 (1), pp. 61–70, Jan. 

doi: 10.1109/TPS.2019.2955098. This paper was a 2022 

IEEE Transactions on Plasma Science (TPS) Best Paper 

Award winner. 
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Mature foundation models will be able to ingest a large range 

of data types—images, time series, scalars, and more—to 

produce a concise and never-before-seen representation of 

scientific phenomena. These representations will enable 

vastly improved predictive capabilities, greatly deepen the 

insight extracted from observations, again enabling scientists 

to ask and answer questions that are intractable today. 

For example, a foundation model could be built on broad 

datasets, both experimental and simulated, from the 

spectrum of fusion energy research to answer fundamental 

questions essential to fusion energy production, such as 

building on recent DOE breakthroughs toward sustainably 

achieving and surpassing “breakeven” with respect to energy 

produced versus energy used to drive the experiment [5]. In 

fact, we might expect such a model to suggest and evaluate 

a range of strategies: from preventing energy-sapping 

instabilities, to guiding safe device and complex system 

operation, to expediting the design of commercially viable 

systems in public–private partnerships. 

In addition to the missions that motivate a need for foundation 

models, no entity exists—other than DOE—that is fully 

positioned to undertake such an endeavor in nationally critical 

sciences including fusion science, nuclear stockpile 

stewardship, climate preparedness, bio-responsiveness, 

and many others, such as those described in Section 02 of 

this report.  

DOE also has clear advantages for building world-leading 

applied-science foundation models by virtue of its key 

structural and cultural features: mature interdisciplinary teams 

spanning the computational and physical/life sciences, 

enormous amounts of data (simulated and empirical), and 

world-leading high-performance computing (HPC) 

capabilities—in full display with the >1000-person ECP. This 

combination of enterprise resources, human capacity, and 

scientific mission is unique to DOE. To create and exploit 

foundation models will require intentional and deliberate 

government investment in building the AI excellence that 

must accompany the teams, data, and compute power. 

We detail below the current status of foundation models while 

emphasizing the bold, nation-scale challenges that can be 

launched and completed with the assistance of strong DOE 

investment and guidance. 

2.1 State of the Art 

Foundation models are being researched in a variety of 

scientific areas such as computer vision [6], protein structure 

prediction [7], organic molecules [8], biological literature 

mining [9], and DNA sequence analysis [10]. Simultaneously, 

 

Figure 2-1. Transformer model architecture underlying foundation 
models [4]. 

GAME-CHANGING OPPORTUNITY 

Advances in natural language processing demonstrate 

the potential for generative AI models—those that can 

design and create systems—to be built and trained with 

an unprecedented scale of data and computation. 

GPT-3, a large language model (LLM) created by 

OpenAI.com, generates text based on user prompts. 

Prompt: Write a paragraph on the importance of AI to 

the future of the United States and the Department of 

Energy's mission. 

GPT-3 AI Model Response: Artificial intelligence (AI) is 

rapidly transforming our economy, society, and 

environment. AI has the potential to revolutionize the 

way the Department of Energy works, from energy 

efficiency to renewable energy to national security. AI 

can be used to improve prediction models, automate 

data analysis and decision-making, and provide insights 

into energy markets and other complex systems. AI can 

also be used to develop better predictive models of 

energy supply and demand and to enable more efficient 

and cost-effective energy management. This could help 

the Department of Energy manage energy efficiency 

and renewable energy programs more effectively and 

efficiently, helping to reduce energy costs and 

emissions. AI could also help the Department of Energy 

monitor and protect the nation’s energy infrastructure 

from physical and cyber attacks. AI has the potential to 

be a powerful tool for the Department of Energy in its 

mission to secure, clean, and affordable energy for all 

Americans. 

 

 

 

http://proceedings.mlr.press/v119/chen20s.html
https://www.pnas.org/content/118/15/e2016239118
https://arxiv.org/abs/2108.10307


 

02. AI FOUNDATION MODELS FOR SCIENTIFIC KNOWLEDGE DISCOVERY, INTEGRATION, AND SYNTHESIS 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY   

30 

in industry, several startups are heavily prioritizing these 

models (e.g., Hugging Face [11], AI21 Labs [12], Cohere [13], 

Aleph Alpha [14]); and big tech companies such as Google 

[15], Facebook [16], and Microsoft [17] are increasingly 

investing in developing and using these models in products 

that impact billions of people. Given the scale at which these 

models are being created—current foundation models have 

hundreds of billions, or even trillions, of parameters and they 

are trained on gigabytes or terabytes of data—their 

development is only possible for a few.  

Global crises such as the COVID-19 pandemic, climate 

change, and international conflicts highlight the urgent need 

to find innovative AI-enabled solutions that can sift through 

vast amounts of diverse data from multiple sources to quickly 

find patterns, detect threats, identify correlations, make 

predictions, develop new vaccines and materials, and 

allocate and optimize resources. Furthermore, they can 

interact with external sources and self-update, thus taking 

advantage of the continuously expanding and increasing 

scale of diverse data sources. 

As illustrated in Section 01 of the report, foundation models 

will be part of a constellation of interrelated technologies that 

will be leveraged to advance multiple aspects of national 

security, from material design to climate change, to 

healthcare, to food production, to power distribution. They 

have already shown promise in compressing large amounts 

of data and deriving new information from the knowledge they 

ingest. These capabilities pose an important opportunity to 

drive and accelerate national security, and their successful 

adoption will determine how quickly the United States can 

respond to disasters and drive economic and strategic 

competitiveness for the future. 

The critical property of foundation models—support for many 

different downstream tasks, including those not initially 

contemplated—can be illustrated in materials science. Here, 

the difficulty of integrating diverse data sources (e.g., material 

properties, natural language, chemical structures, process 

flows) in forms consumable by neural networks, has 

confounded the adoption of machine learning (ML) in the 

field, because individual models can typically predict only 

several parameters. In 2020, scientists at Waseda University 

developed and applied a graph-based data representation 

approach to overcome this limitation, using 14 data sources 

from 10 individual material science project teams to train a 

single (large) neural network to predict more than 40 

parameters [18]. More recently, a team at Microsoft Research 

developed a foundation model for climate and weather 

modeling [19]. The potential for such shared models—

developed, trained, and used by dozens of scientific teams—

illustrates the role that very large models can play in 

revolutionizing DOE’s traditional modeling and simulation 

approaches. 

Once trained, foundation models will provide new tools for 

rapid and targeted multimodal data acquisition, integration of 

private and public data, and modeling and decision support 

analysis within their domain. Possible sources of integrated 

multimodal data will include large-scale scientific experiments 

coupled with exascale modeling and simulation campaigns, 

molecular design for advanced manufacturing and drug 

design, public health mitigations, delivery of care, satellite 

imagery, communications signals, social and environmental 

indicators, social media data, and other large sources of 

information. 

 

2.2 Grand Challenges 

We propose two grand challenge problems that will greatly 

advance the state of play for AI in applied science while also 

capitalizing on existing DOE strengths. Together, these two 

challenges will advance the state of the art for foundation 

models in applied science, drive critical infrastructure and 

techniques to keep these models current and valid, and build 

key controls to ensure responsible use, to limit risk, and to 

detect security/accuracy threats. They are to: 

1. Build a set of carefully selected world-class, 

transformational foundation models for key scientific 

domains with expertise similar to that of an SME 

(e.g., materials, high-energy-density physics [HEDP]). 

Each model instance would be a massive multi-task, 

broad-spectrum applied science foundation model based 

on a broad swath of DOE data associated with a particular 

set of mission challenges (e.g., biology, nuclear stockpile). 

2. Deploy an AI system leveraging multiple foundation 

models in conjunction with traditional scientific 

modeling and simulations. This will demonstrate the 

end-to-end integration of this approach and would 

represent a blending of the standard deductive reasoning 

with the emerging inductive reasoning of AI methods. 

Each of these Grand Challenges is discussed below. 

“Given this potential, we see foundation models as the 

subject of a growing paradigm shift, where many AI 

systems across domains will directly build upon or 

heavily integrate foundation models. Foundation models 

incentivize homogenization: the same few models are 

repeatedly reused as the basis for many applications. 

Such consolidation is a double-edged sword: 

centralization allows us to concentrate and amortize our 

efforts (e.g., to improve robustness, to reduce bias) on a 

small collection of models that can be repeatedly applied 

across applications to reap these benefits (akin to 

societal infrastructure), but centralization also pinpoints 

these models as singular points of failure that can radiate 

harms (e.g., security risks, inequities) to countless 

downstream applications.” R. Bommasani et al [1] on the 

opportunities and challenges of creating and using 

foundation models. 

https://huggingface.co/transformers/
https://www.ai21.com/blog/announcing-ai21-studio-and-jurassic-1
https://www.fastcompany.com/90670635/ex-googlers-raise-40-million-to-democratize-natural-language-ai
https://www.fastcompany.com/90683767/powered-by-cloud-self-learning-ai-models-are-turning-programming-on-its-head
https://blog.google/products/search/search-language-understanding-bert/
https://ai.facebook.com/blog/ai-advances-to-better-detect-hate-speech/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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2.2.1 BUILD A SET OF CAREFULLY SELECTED 

WORLD-CLASS, TRANSFORMATIONAL 

FOUNDATION MODELS FOR KEY SCIENTIFIC 

DOMAINS WITH EXPERTISE SIMILAR TO THAT OF 

AN SME 

Foundation models excel at combining streams of disparate 

data to produce novel, sometimes emergent, predictions 

based on the inherent correlations in that data. The inductive 

reasoning driven by these models provides a significant 

complement to the traditional deductive reasoning that 

underpins the world of scientific modeling and simulation. The 

DOE hosts some of the world’s most valuable and high-

precision scientific data across a vast number of applications. 

We propose here a grand challenge problem to build a set of 

digital SMEs by training foundation models for multiple 

domains of interest to the DOE, based on all of DOE’s 

available applied-science data within each domain. These 

data can include simulation output from enormous 

supercomputer simulations, experimental data from singular 

experimental facilities, legacy datasets from historical 

experiments, simulation code and programming input from a 

wide array of scientific computer programs, and even the 

totality of a field’s published scientific literature. 

These rich streams of data can be combined in a uniform and 

distilled representation that allows a number of novel tasks to 

be performed by the resulting foundation model, effectively 

creating a digital SME that can complement existing SMEs 

and serve as a catalyst for knowledge transfer to early-career 

staff. These foundation models will also serve as master 

models within their domain, providing a nexus for integrating 

multiple related data modalities that, to date, have been 

largely inaccessible by significant swaths of each DOE 

community. Foundation models, acting as digital SMEs, can 

be imagined for any, and perhaps all, of the following 

purposes: 

 Make detailed predictions of physical system evolution 

based on synthesis of experiment data, simulation data, 

and even potentially codes; 

 Illuminate previously undiscovered phenomena that 

emerge from the integration of scales and scientific 

disciplines; 

 Detect inconsistencies in published results and 

measurements based on combinations of theory and 

observation across disciplines; 

 Enable rapid design or inverse design of new systems, 

devices, chemicals, materials, and processes; and 

 Identify and predict rare events or anomalous behavior 

within complex systems. 

The research and development required here is substantial. It 

requires national-scale investment, and leverages the DOE’s 

workforce, infrastructure, and expertise. The challenge would 

require: 

 Development of new methods to represent multiple 

disparate sources of data in a robust and meaningful way 

for ingestion into foundation models. To successfully 

accomplish this for scientific applications, the DOE will 

need to shift from a primary focus on data representations 

for languages and natural images to structures such as K-

dimensional vector fields, large and small graphs, and a 

greater consideration for sparse information, all of which 

provide a more robust encoding of complex scientific 

phenomena. 

 Creation of self-supervised learning tasks and supervised 

domain adaptation tasks for scientific and national security 

use cases. For each new scientific data type being 

included as input into the foundation model, it is necessary 

to develop semantically meaningful learning tasks that are 

elevated from the simple task of auto-encoding. For 

language models, the task of predicting the missing word 

from a properly constructed sentence is a powerful, self-

supervised task that allows models to autonomously learn 

significant components of a language’s structure, grammar, 

and other elements. Developing analogous tasks for 

material design, hydrodynamics simulations, and other 

tasks is a necessary, but challenging task that is uniquely 

suited to the multidisciplinary research expertise of the 

DOE and will not be adequately addressed by the 

commercial community. 

 Advances in data curation and pan-DOE connectivity. 

 Qualitative leaps in foundation model development, 

representation learning, and transfer learning. Key 

opportunities abound in the ability to develop new learning 

methods that can combine the current results of 

experiments, traditional HPC modeling, and simulation with 

traditional scientific literature. 

 Transformations of HPC-scale computing to train and 

deploy models with billions to trillions of free parameters. 

To date, the training of foundation models is the exclusive 

domain of a select number of organizations and national 

institutes. Each model represents a heroic training run that 

is the culmination of hundreds to thousands of staff hours. 

The DOE’s investment in advanced- and leadership-class 

exascale computing places the national labs within this 

domain, but it will require significant investments in 

workforce and research and development to make the 

training of these models accessible to multiple research 

teams—and no longer the exclusive province of “hero” 

runs. In short, the DOE will need to democratize exaflop 

days of training for deep-learning models to broaden their 

accessibility. 

 Updates of experimental and production facilities to 

become AI-ready in order to integrate foundation models 

into their operations. 

These foundation models would also require associated 

theory with respect to learning objectives and methods so 

they could be specialized for targeted and critical missions. 
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Specifically, while large language models have evolved into 

today’s foundation models, outside of natural imagery and 

text, the existence of these foundation models for scientific 

and national security applications has yet to be 

demonstrated. The ability to develop this emergent behavior 

with respect to zero- or low-shot learning is unproven, and a 

technical moonshot will be required to demonstrate this 

capability across multiple domains. To begin, we recommend 

that models based on broad, pan-DOE data be used to 

create models that will be trained and fine-tuned to execute 

important tasks for multiple DOE domain areas. 

We describe three examples that leverage considerable DOE 

research in AI to date: molecular design, cancer treatment 

discovery, and national security. 

1. Foundation models specialized to molecular design 

The development of a master model that has the ability to 

generate complex molecular compounds, polymers, crystals, 

proteins, or synthesizable drug compounds would be 

revolutionary. The demands for such a model would require 

new representational learning that preserves both structure 

and function of complex three-dimensional (3-D) objects that 

are governed by local properties (i.e., bonds), but also micro- 

and macroscopic structure (e.g., folding and periodic 

structure). The learning tasks that are required to train these 

models from a self-supervised and domain adaptation 

perspective are unknown, as is the most appropriate 

representation for developing these models. Fundamental 

research around the characterization of known compounds is 

crucial to preserving a sufficient amount of information while 

preserving computational efficiency. 

Despite the challenges, the ability for a foundation model to 

generate novel compounds that are optimized for user-driven 

specifications and properties would have significant impact 

on both the national economy, but also the agility of the DOE 

and the U.S. Government to respond to emerging threads. 

Such a model would impact core components of the National 

Nuclear Security Administration (NNSA) stockpile 

stewardship efforts, lead to new drug discovery, and 

fundamentally differentiate advanced additive manufacturing, 

which would in turn have impacts across the board from 

national security to new designs for green energy solutions. 

2. Foundation model for cancer treatment 

The seminal paper on foundation models [1] uses healthcare 

and biomedical research as a key illustration of the 

opportunities and challenges for these models. Foundation 

models built by DOE on broad-spectrum applied-science data 

can be specialized by ingesting the wide array of healthcare 

data available across the world. They can become the central 

reservoir of the medical and relevant non-medical knowledge 

needed to integrate and connect varied disciplines and 

diverse sources/modalities of data, distill their information into 

a multifaceted representation, and—if properly developed—

provide an acceptable, safe way to disseminate knowledge 

with a proper level of encryption and de-biasing of the data. 

These models have the potential to optimize the feedback 

loop between healthcare experts and real-world information, 

leading to improved decision making. They can be finely 

tuned for specific tasks in healthcare and biomedicine and 

then used by the government (e.g., for pandemics and 

security), medical professionals (e.g., healthcare providers 

and biomedical researchers), and the public. Thus, they can 

support multiple points of contact that efficiently connect data, 

tasks, and people. 

Foundation models, with their ability to integrate enormous 

amounts of ever-increasing multimodal data at rates 

surpassing human expertise, could dramatically accelerate 

biomedical research and facilitate more effective and efficient 

healthcare. Expediting the development of medicines, 

identifying who will develop cardiovascular disease or 

diabetes in advance, identifying who will benefit from a highly 

expensive and/or toxic and/or life-changing cancer treatment, 

and predicting areas of high vulnerability for the next 

pandemic are only a few examples that could save millions of 

lives and dollars, and put our country at the forefront of bio-

preparedness. 

3. Foundation model specialized for national security 

Although foundation models are being developed in a wide 

range of disciplines, foundation models such as those for 

security, biomedicine, and healthcare also have the potential 

to spread harm and pose a national threat, and they should 

only be developed as a joint effort leveraging expertise from 

government agencies. For example, they could be used to 

counterattack a pathogen specifically engineered by AI for 

lethality or to target a genetic profile. 

DOE labs have the secure computing power, AI and decision 

support expertise, and interagency collaborations in place to 

start unlocking capabilities across science, climate, 

healthcare, infrastructure, manufacturing, agriculture, 

development of new materials, and countless other sectors. 

In fact, national security requires DOE to urgently develop 

this capability to prepare for future societal crises. 

Furthermore, partnerships must be developed with multiple 

healthcare, energy, and climate systems, including the 

national Veterans Healthcare Administration, the Centers for 

Disease Control and Prevention, U.S. Department of 

Homeland Security, U.S. Department of Health and Human 

Services, universities, industry, and international partners to 

securely curate, store, and integrate relevant data streams 

and to accurately quantify requirements on crisis response. 

This will allow them to be addressed with the interrelated 

healthcare foundation model, climate foundation model, 

materials foundation model, or smart grid foundation model, 

among others, as shown in Figure 2-2. 
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2.2.2 DEPLOY AN AI SYSTEM LEVERAGING 

MULTIPLE FOUNDATION MODELS IN 

CONJUNCTION WITH TRADITIONAL SCIENTIFIC 

MODELING AND SIMULATIONS 

A pilot AI system that leverages multiple foundation models 

should be developed in conjunction with traditional scientific 

modeling and simulations to demonstrate the end-to-end 

integration of this approach involving a blending of the 

standard deductive reasoning with the emerging inductive 

reasoning of AI methods (these concepts are detailed in 

Chapter 03). 

The integration of emerging foundation models with existing 

HPC modeling and simulation approaches defines the next-

generation workflow that has been described as cognitive 

simulation. Fundamentally, there is a significant challenge 

when integrating foundation models with billions to trillions of 

trained neural network weights, all of which can be executed 

at lower precision than traditional modeling and simulation 

workloads (ModSim). As a result, the interface between these 

two domains is emerging and requires a significant 

demonstration. 

Within the cognitive simulation workflow, we expect that 

traditional ModSim applications will integrate responses from 

trained foundation models in multiple capacities, such as 

surrogates for in-the-loop physics calculations or generative 

model-driven design space exploration. In these use cases, 

the demands for low-latency, high-bandwidth execution of 

trained foundation models will become a significant 

percentage of the compute budget. Research into next-

generation AI accelerators, novel hardware architectures, and 

efficient execution of large, complex neural network models 

will be critical to enabling these cognitive simulation 

workflows. 

Finally, as foundation models offer an inductive approach to 

developing emergent behavior on new and challenging tasks, 

this will place an increased burden on both the interpretability 

and validation of trained models. All of these topics are 

covered in Chapters 01, 03, and 04. 

2.3 Advances in the Next Decade 

Over the next 1–3 years, promising data representation and 

self-supervised learning techniques will be identified for 

multiple modalities within one or two SME domain areas. 

Current parallel training techniques will be extended to 

enable scalable training of foundation models for scientific 

applications. Prototype, small- to moderate-scale (million- to 

billion-parameter) foundation models will be developed for a 

few domain areas. Multi-modal scientific datasets will be 

curated that are suitable for training combined self-

supervised foundation models and supervised training for 

multi-task adaptation. 

Over the next 3–5 years, proof of principal applications and 

theory will be developed for robust training of scientific 

foundation models. The research identified from the cross-

cutting methods chapters such as Chapter 12 (Mathematics 

and Foundations) and 13 (AI Workflows) will be combined to 

improve the interpretability and robustness of model training. 

The size of foundation models that can be trained on a 

regular basis will increase. 

Over the next 10 years, robust training of large foundation 

models will demonstrate emergent behavior across multiple 

modalities for several domains—essentially first-generation  

 

Figure 2-2. Data from multiple agencies, DOE computing and experimental facilities, and expertise connected in an 
ecosystem that supports the creation and deployment of foundation models that are readily available for decision making. 
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digital SMEs. Multiple digital SMEs will be integrated at scale 

into a cognitive simulation workflow to demonstrate the end-

to-end coupling of both deductive and inductive reasoning 

approaches involving a combination of automated as well as 

assisted reasoning tools. Initial deployments of security 

applications leveraging foundation models will be made. 

Over the next 20 years, there will be widespread adoption of 

assured, sustainable, auditable offensive/defensive 

applications of foundation models. Practices and tools will 

become well established for developing new foundation 

models in new domain areas, and digital SMEs will be 

deployed across the DOE complex. 

2.4 Accelerating Development 

Along with advancements in autonomous discovery, 

foundation models promise to deliver novel insight into 

complex national security and scientific areas that are 

underserved by traditional deductive-based modeling and 

simulation, because they are not well characterized by first-

principles equations, are too complex to be modeled and 

simulated at sufficient scale and fidelity, or are subject to 

constraints that are not yet well understood. 

Regardless of the source, development of inductive, data-

driven foundation models leveraging advancements in 

autonomous discovery (see Chapter 03) that can act as 

master models for significant domain areas of science, 

energy, and security offers a revolutionary approach to 

engaging both the data and challenges in these fields. 

However, to unlock this promise, the DOE must have the 

ability to train and deploy these models at scale, in 

multiplicity, and without requiring extraordinary “heroic” effort 

for each and every model. In short, the DOE must 

democratize exascale computing for AI-ready modeling and 

simulation workflows as well as training and deployment of 

these foundation models. Furthermore, novel research and 

development will be required to adapt academic and industry 

practices to the unique science, energy, and security 

applications that are in the DOE’s areas of stewardship. 

2.5 Expected Outcomes 

Much as precision medicine promises personalized medicine 

for each patient, the development of foundation models will 

offer tailored and scalable subject matter expertise in the 

form of digital SMEs for science, energy, and security 

applications. 

Fundamentally, the ability to create a foundation model for a 

domain area will allow the DOE to bring an unprecedented 

amount of domain knowledge to bear on a multitude of 

problems. Foundation models can harness vast troves of 

crucial, yet unlabeled, data within the DOE complex to bring 

new insight to scientists, analysts, engineers, and policy 

makers. This insight will be available to spur U.S. economic 

competitiveness and accelerate the DOE’s ability to discover, 

design, manufacture, and deploy novel innovations and new 

solutions to the challenges faced by our country and the 

world. 
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03. AI FOR ADVANCED PROPERTY INFERENCE 
AND INVERSE DESIGN 

Many scientific problems can be cast as design problems, in 

which a model or structure is optimized to achieve certain 

desired behavior or characteristics. For example, the 

discovery of new materials that lead to solar cells with 

increased efficiency, better chemical processes that require 

less energy to produce essential industrial chemicals or can 

more efficiently purify water, new proteins and pathways for 

synthetic biology to efficiently make biofuels or new drugs, or 

new devices and architecture for microelectronics leading to 

more efficient and faster chips in products we use every day 

(phones, cars) can all be solved as design problems 

Likewise, complex experiments with many parameters can be 

“designed” to achieve a specific result. This process is 

sometimes called inverse design, whereby scientists “invert” 

specified (or desirable) properties to recover a new design for 

a complex system (e.g., a new material or a chemical 

process), and is fundamental in both science and 

engineering.  

Property inference is related to inverse design, where the 

scientists attempt to “design” a model’s parameters and 

properties to closely match an observation. It allows scientists 

to rigorously characterize a system (engineered or natural) as 

observed “in the wild,” as opposed to its idealization obtained 

from purely theoretical approaches. For instance, a material 

property might not be directly measurable, but by “designing” 

a model to match an observation, the property can be 

inferred from data. This basis in realism allows a very direct 

route to predictive models and underpins fields like 

uncertainty quantification (UQ).  

An inverse design process allows a more robust and 

automated approach to discovering optimal design 

configurations; the alternative (relying on human ingenuity 

and/or trial and error) does not scale to large design spaces. 

This means that experts must limit their design searches to 

relatively few possibilities. However, the use of innovative 

artificial intelligence (AI) methods in advanced property 

inference and inverse design has the potential to accelerate 

by orders of magnitude the traditional model computations 

and/or experiments that can take hours, weeks, or months.  

Discussed here is an integrated roadmap for how advances 

in AI can enable us to model and analyze more complex 

systems, specifically toward creating capabilities and 

frameworks to drive design—and, in particular, inverse 

design—that can be used to advance and accelerate the 

science and engineering of Department of Energy (DOE) 

mission areas, including materials, chemistry, biology, 

physics, microelectronics, energy technologies, and other 

engineered systems.  

3.1 State of the Art 

Inference’s fundamental goal is to reconstruct the conditions 

or parameters that give rise to data, observations, and/or 

signals. In simpler cases, exploration of this parameter space 

can be driven by expert scientific knowledge, by trial-and-

error, or by systematic exploration using a combination of 

experimentation and forward models (e.g., simulations). 

Pushing the boundaries of modern science are cases with 

ever larger parameter counts, for which researchers are 

increasingly exploring AI approaches.  

Machine learning (ML) and AI have been used for physical 

property inference in the sciences for some time. For 

example, they have been used in classification or regression 

based on supervised learning on simulated or experimental 

datasets. More recently, they have exploited deep learning to 

move to higher dimensionality and larger datasets [1]. 

However, there are limitations in the availability of data from 

experiments and computationally expensive high-

performance computing (HPC) simulations, as well as in 

techniques to reliably extrapolate into new regimes that lack 

data. Self-supervised learning is used to address these 

issues in some cases [2] but more remains to be explored. 

PROJECT SPOTLIGHT 

Project Name: Molecular and strain design through 

machine learning 

PIs: Hector Garcia Martin and Hans Johansen 

Organizations Involved: Lawrence Berkeley National 

Laboratory 

Goal: Create tools able to recommend molecules and 

bioengineered strains which meet a desired specification.  

Significant Accomplishment: Created two 

computational tools (Macaw and A.R.T) that use novel 

approaches to generate molecules predicted to meet a 

desired property specification (e.g., a binding affinity of 

50 nM which is a critical metric for the design of new 

medical drugs, or an octane number of 90 for the design 

of novel biofuels), and strain designs that optimize a 

desired goal (e.g., tryptophan productivity, which is 

critical for the economical production of animal feed).  

In the News: News feature in Berkeley Lab News 

(https://newscenter.lbl.gov/2020/09/25/machine-learning-

takes-on-synthetic-biology-algorithms-can-bioengineer-

cells-for-you/), publications in Nature Communications 

(https://www.nature.com/articles/s41467-020-18008-4, 

https://www.nature.com/articles/s41467-020-17910-1), 

and Journal of Chemical Information and Modeling 

(https://pubs.acs.org/doi/10.1021/acs.jcim.2c00229). 

https://newscenter.lbl.gov/2020/09/25/machine-learning-takes-on-synthetic-biology-algorithms-can-bioengineer-cells-for-you/
https://newscenter.lbl.gov/2020/09/25/machine-learning-takes-on-synthetic-biology-algorithms-can-bioengineer-cells-for-you/
https://newscenter.lbl.gov/2020/09/25/machine-learning-takes-on-synthetic-biology-algorithms-can-bioengineer-cells-for-you/
https://www.nature.com/articles/s41467-020-18008-4
https://www.nature.com/articles/s41467-020-17910-1
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00229
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Furthermore, obtaining uncertainties in inferred parameters is 

crucial in many areas of science, with newer methods being 

applied, including Bayesian deep learning [3] and likelihood-

free inference [4]. 

Inverse design is a relatively new research direction in 

science and engineering. Unlike widely used design 

processes, which are often driven by human knowledge and 

intuition of the science and engineering problem, the goal of 

inverse design is for a scientist or process engineer to specify 

desired properties, behavior, or performance and then find 

the best available solution using an optimization algorithm 

that explores the design space. Current inverse design 

approaches rely on a random or pseudo-systematic search of 

the design space or a slightly more systematic search 

through the parameter space, for instance using genetic 

algorithms or Monte-Carlo Tree Search (as used by Google 

LLC in the AlphaFold [5] protein folding project). In addition to 

protein folding, early efforts to utilize inverse design have 

been explored in a variety of fields, from materials and 

chemical research to engineering and high energy density 

physics. These approaches are executed in an automated 

way until a solution that meets the specified target is found. A 

critical aspect of inverse design is that the assessment of a 

potential solution is fast, so that a large parameter space can 

be explored rapidly and accurately.  

A fundamental obstacle to broad application of inverse design 

is that many scientific data are expensive to acquire (for 

instance a large computer simulation or costly experiment). 

Additionally, this process can be noisy and involve dozens or 

hundreds of parameters. By automating, expanding, and 

accelerating the design-search process, advances in AI, and 

its concentrated application to the problem of inverse design, 

could have far-reaching implications and transform several 

important science, engineering, energy, and security DOE 

missions. 

1. Creating Biomolecules On-Demand. In nature, biological 

systems such as microbes or cells- have the innate ability 

to efficiently create new materials and molecules or absorb 

hazardous materials for internal use. AI-enhanced inverse 

design could achieve full control of biological systems and 

harness their abilities for producing new products or 

converting waste products.  

Industry has used the natural abilities of biological systems 

to make products for over a century. For example, industry 

has exploited the fermentation process for penicillin 

production. The birth of biogenetic engineering opened 

doors to modifying microbes or cells to create new 

materials and molecules not naturally produced but 

desired by industry at a higher yield or reduced cost. 

Examples for DOE missions include the conversion of 

plant-based materials into ethanol or fuels, and biodefense 

against new pathogens for national security. Biological 

systems can also be engineered to extract hazardous 

materials, such as radioactive materials or toxic metals, or 

to break down plastics. Modifying biological systems is 

extremely complex and requires a detailed understanding 

and precise control of a system’s functions. Models of 

biological systems are complex, often incomplete, and 

computationally expensive. The potential efficacy of AI and 

inverse design in biomolecular design has been show in 

recent work, for example generating molecules [6] and 

functional protein sequences with specific target properties 

[7]. Engineering the desired behavior of a biological 

system requires the exploration of an exponentially large 

parameter space. Here, AI-enabled forward acceleration 

through inference and inverse design has the potential to 

dramatically advance the field [8]. 

2. Materials by Design. Developing next-generation 

materials is critical to DOE missions, national security, and 

U.S. technological competitiveness and leadership. AI-

enhanced design that harnesses the physics of materials 

would greatly accelerate the discovery and production of 

new materials with required properties.  

The U.S. can increase its competitive advantage by 

designing materials that (1) eliminate use of rare and 

expensive elements not readily available domestically, 

(2) can easily be manufactured and require minimal 

energy sources, (3) are readily recycled and upcycled as 

part of the material lifecycle, and/or (4) have properties 

that are optimal for specific applications, from energy 

storage to safer explosives. Machine learning and simple 

inverse design approaches are already being explored for 

specific problems in materials research [9, 10]. For 

example, there are 1050 possible combinations to create 

alloys from nickel, ion, cobalt, and copper. Such materials 

are needed in multiple variations, from steel and concrete 

to plastics and catalysis used in the manufacturing of 

chemicals and fuels. Materials research and development, 

engineering, and manufacturing form a vast combinatorial 

design space that overwhelms current practices involving 

large-scale simulations and time-consuming experiments. 

The scientific community and industry have adopted AI 

approaches to accelerate the simulations of specific 

properties through inference. However, significant 

challenges remain in the adoption of AI, such as accuracy 

in the face of limited training data and the need for AI 

models that accurately describe many properties 

simultaneously. Exploration of the use of inverse design 

methods accelerated by simulation and AI inference 

models is typically limited to a single property in a given 

design space. The key to accelerating the design of new 

materials lies in developing new inverse design 

approaches that can explore the full design space, from 

fundamental materials properties to stability and 

manufacturability.  

3. Design of Microelectronics. Building next-generation 

microelectronics also requires the exploration of an 

immense design space of relevant physical parameters. 
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These range from the choice of materials and quantum 

properties to macroscopic 3D geometry and continuum 

(electromagnetic) behavior to practical factors such as 

manufacturability [11]. AI would drastically accelerate the 

optimal design and production of novel but practical 

microelectronics in critical mission areas.  

Examples include designing for radiation hardness in 

aerospace applications and nuclear deterrence and 

designing improved materials or geometric design for core 

components (such as memory, 6G communication, or 

computing chips). Fabrication of each microelectronics 

design is expensive and time-consuming, which limits 

opportunities for experimentation. Moving beyond the 

limits of human knowledge and the timeframes and costs 

of these design processes will demand AI models that 

accurately infer properties of microelectronic systems at 

multiple scales, from the atomic and microscopic scales to 

the macroscopic scale involving complex multiphysics 

behaviors. Combining AI models that accurately and 

rapidly infer essential and often multiscale properties of 

the microelectronics system with inverse design 

approaches will be imperative if the U.S. is to maintain 

leadership in the design and manufacturing of next-

generation microelectronics.  

4. Stockpile Modernization and Nuclear Deterrence. 

Developing and maintaining a safe, secure, and 

operationally ready nuclear stockpile for nuclear 

deterrence is of utmost importance to national security. AI-

enhanced design would enable a fast modernization 

program that minimizes cost, is safe, greatly reduces the 

time from design to “First Production Unit,” and is capable 

of rapidly responding to evolving threats.  

Without a return to nuclear testing and with only limited 

experimental data upon which to build models, much of 

the design optimization of nuclear weapons, their 

manufacturing, and stability during environmental 

conditions over decades relies on large and complex 

multiscale and multiphysics simulations commanding large 

HPC resources, including exascale computing platforms. 

These simulations must be highly accurate, with extremely 

well-defined and well-understood error bounds to ensure 

that new designs pass the extremely rigorous certification 

and qualification processes for nuclear technology. High 

accuracy and fidelity from property inference will be 

essential to either replace or accelerate traditional large-

scale simulations. Novel inverse design approaches will be 

needed to guide and speed up the complex multi-scale 

multiphysics design optimization processes inherent to 

nuclear stockpile modernization.  

5. Accelerating Manufacturing with Automated Design. 

Rapid and innovative design and the manufacturing of 

complex systems or machines are critical to ensure 

U.S. competitiveness. Decision-making in design and 

manufacturing is driven by human experience and 

knowledge and supported by computer simulations and 

experiments [12]. AI methods could significantly accelerate 

the production of complex systems by automating design 

and manufacturing processes.  

For example, next-generation hybrid or electric aircraft 

with intercontinental range would require radically new 

designs, yet the design and manufacturing of a new type 

of aircraft can take 10 to 15 years. Additive manufacturing 

(also known as 3D printing) has been transforming the 

industrial production of parts, enabling rapid prototyping, 

on-demand manufacturing, and creation of new parts that 

would not be manufacturable with traditional tooling 

methods. The aviation industry is an early adopter of 

additive manufacturing, as are the automotive and 

renewable energy industries. The DOE scientific 

community is also using additive manufacturing to build 

innovative new instruments. 

Utilization of AI with uncertainty quantification to better 

explore the design space with higher fidelity has the 

potential to accelerate these optimal design and 

manufacturing processes. For example, accelerating 

expensive computational fluid dynamics simulations with 

inference from accurate AI models—critical in many 

industrial design processes—will lead to reduced costs 

and a faster time-to-solution. Inverse design is critical to 

support and substantially accelerate the decision-making 

process in the design and manufacturing of complex 

systems, and it will help determine what is printable with 

additive manufacturing for aircraft and other machines. 

Manufacturing through AI requires a new breed of AI 

methods that are physics-informed, optimization-aware, 

capable of mitigating uncertainty, computationally efficient, 

able to address calibration through online experimental 

and field data, and advanced enough to enable system-

level, automatic decision-making. 

6. Robust Energy Infrastructure. Our nation is highly 

dependent on reliable and secure energy supply. An AI-

designed comprehensive and accurate model of the 

nation’s energy infrastructure would enable the U.S. to 

make critical decisions in real-time, as well as develop 

medium- and long-term policy decisions that will ensure a 

stable energy supply now and in the future.  

The energy infrastructure is one of the most complex ever 

built, and it must be managed today in terms of its 

unprecedented spatial and temporal extent, complexity, 

and interconnectedness of energy generation, storage, 

and transmission capabilities. Despite this interconnected 

complexity, control and information exist only at the local 

or regional levels, with limited sharing of information. 

Large-scale simulation models are used for decision 

support and control at the regional level, but even with 

exascale computing systems, large-scale heterogeneous 

coupled systems models encompassing the national grid 

remain intractable computationally. Moreover, the 
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U.S. energy infrastructure is rapidly changing in 

fundamental ways, becoming more complex as new types 

of energy sources are integrated into the system, such as 

large- and small-scale renewables, variable energy 

resources (e.g., wind and solar), and energy storage, 

including batteries, and buildings that shift loads and feed 

renewable energy back to the energy infrastructure.  

This complexity, in combination with the increased 

prevalence of extreme weather events and the inadequate 

tools to manage, monitor, and control these systems, is 

leading to more frequent disruptions of our energy supply. 

The status quo—even apart from rapidly increasing 

complexity and disruptors—leads to poor, costly decision 

making, wasted resources, slow recovery from events, 

suboptimal planning of new resources such as additional 

energy storage, and greater susceptibility to catastrophic 

disturbances [13]. It also prevents decision makers from 

developing effective strategies toward a carbon-neutral 

energy infrastructure. Advances in AI are needed to 

replace larger simulation models with inference from AI 

models and support real-time decision and control through 

inverse design and optimization processes, while also 

integrating inherently multi-modal, heterogeneous, and 

rapidly growing data from the energy infrastructure into 

(global) energy infrastructure models with high fidelity to 

provide trustworthy predictions. Inverse design based on 

accurate inference AI models will allow stakeholders to 

make informed decisions, leading both to more stable 

energy infrastructure and to lower energy costs. 

7. Intelligent Water and Agriculture Infrastructure. Water 

and agricultural products are the backbone of the U.S. 

They form an intricately connected complex system that is 

poorly coordinated due to the large numbers of 

stakeholders, distributed data with different ownership, 

and lack of spatial and temporal resolution needed for 

decision-making. An AI-enabled global model of the water 

infrastructure that incorporates predictions of weather 

extremes and trends from climate models would support 

both short-term and long-term informed decision-making.  

Such a model would serve as a building block for 

agriculture models and be of critical value to the energy 

infrastructure component that relies on hydropower. Yet no 

comprehensive water model exists today. Essential 

U.S. water data are fragmented, undermining our ability to 

effectively plan and act in the near- and long-term. Large 

climate models use supercomputing resources and could 

be accelerated with inference from AI models to allow for 

time-sensitive and decadal modeling to support decision-

making and planning. Inverse design and related 

optimization approaches could be developed to optimize 

waterflows across the country and minimize resources 

needed to grow crops. Water-climate models incorporating 

AI could integrate data from heterogeneous data sources, 

satellites, sensors, and simulation models. This kind of 

water-climate model would be instrumental in the 

optimization of agricultural processes and the 

development of actionable precision agriculture 

(e.g., optimized seed placement for maximization of 

production, minimization of fertilizer use, and the reduction 

of waste). The water and agriculture infrastructure are 

emergent fields when it comes to the use of AI, with some 

early demonstrations underway [14]. 

3.2 Grand Challenges 

Across the domains outlined above, vast and accurate 

inference from AI models will be critical to rapidly exploring 

the high-dimensional parameter spaces in design and 

operation of complex, multi-scale systems. Property inference 

from AI-based surrogate (Chapter 01) or foundation models 

(Chapter 02) is a fundamental building block of AI as well as 

a key ingredient for inverse design. Next-generation inverse 

design methods will rely on accurate and trusted AI models to 

accelerate and optimally search the parameter space for 

property optimization or decision-making.  

Six key grand challenges that need to be addressed to 

enable mainstream adoption of AI for inverse design are 

outlined below. 

1. Inference with High Accuracy and Uncertainty 

Quantification. Highly reliable inference of properties 

from trained models is an essential requirement for wide-

scale adoption of AI in science and engineering [5]. The 

grand challenge is to be able to build next-generation 

trust-worthy AI models that respect the accuracy of 

underlying experimental or computational training data and 

reliably provide uncertainty estimates of their predictions. 

Such models can then be used as trusted sources for the 

simultaneous inference of multiple properties needed to 

meet design requirements. AI models that quantify 

uncertainty and fidelity of inferred properties, including at 

the edges/tails of the parameter space for which the model 

has been trained, will be vital to earning confidence and 

trust from industry adopters and regulators. 

2. Learning with Limited, Heterogeneous Data. In many 

critical science and engineering domains, the data 

available to train AI models for property inference are 

limited, often spanning only subsets of the desired 

parameter space. Additionally, the data are 

heterogeneous, created by physical experiments, 

observations, and computational simulations (each with 

their own uncertainties) that must be integrated. For 

example, only a small fraction of the possible biomolecules 

and materials have been studied experimentally or 

computationally, but one would want the AI model to 

generalize across the whole structural space. The grand 

challenge is to build accurate AI models for property 

inference that require minimal information to learn, 
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incorporate domain knowledge, and seamlessly assimilate 

diverse datasets. 

3. Adaptive Learning with a Deluge of Heterogeneous 

Data. Some science and engineering domains are 

confronted with a deluge of multi-modal data, which places 

very different constraints on the training of AI models for 

the inference of properties. For example, the energy 

infrastructure is instrumented with multitudes of sensors 

that are distributed across the country and that rapidly 

generate and return massive amounts of data across 

diverse temporal and spatial scales. These same 

challenges also manifest in water and agriculture systems, 

as the growing need for intelligent decision-making drives 

the need for more detailed monitoring and data integration. 

Furthermore, with the arrival of exascale computing, large-

scale simulations have the ability to rapidly generate 

petabytes of data. The grand challenge is to acquire, 

secure, curate, and contextualize data to train or update AI 

models needed for accurate property inference in real-

time. Solving this grand challenge will be essential for 

science and engineering to take full advantage of AI. 

4. Physics-Constrained Inference across Scales. Many of 

the complex systems referenced are driven by multiple 

fundamental governing equations, predominantly physics, 

which span many spatial and temporal scales. For 

example, inference models describing the nuclear 

stockpile or microelectronics cover length scales from 

atoms to the whole system and timescales from 

milliseconds to days. The grand challenge is to ensure AI 

models infer information consistent with governing 

equations, such as the laws of physics. Advances are 

needed to properly and simultaneously account for physics 

and multiphysics constraints across a hierarchy of scales. 

An additional advantage of physics-constrained AI is that it 

will reduce the parameter space that must be explored for 

optimal or inverse design. This will be of great benefit for 

domains with scarce data for inference model training. The 

development of AI approaches that can self-learn the 

behavior of the laws of physics across multiple scales will 

be important for systems where the coupling of 

mathematical equations at different scales is not well 

defined, but where the flow of information across scales is 

critical for the accuracy of the model. 

5. Explainable, Interpretable and Trusted Inference. Most 

of the AI models for property inference currently available 

are “black box” in that neither its developers nor users can 

explain why the model arrived at a specific decision. The 

grand challenge is to build AI models that are explainable 

and interpretable, and in which humans can understand 

the decisions, predictions, and inferences made by the AI 

model as well as quantify the trustworthiness of the AI 

model for a given problem. Trustworthy and 

understandable AI inference and predictions will drive 

actionable design processes and decisions for domains 

such as precision agriculture and energy system control 

[15], but only to the extent that trust in AI models can be 

reliably quantified. 

6. Inverse Design in Complex Design Spaces with 

Actionable Outcomes. Fast and accurate inference with 

AI models will markedly accelerate the search for optimal 

designs in science and engineering domains, particularly 

where the parameter optimization space is exponentially 

large. The grand challenge is to develop methods that 

rapidly search large parameter design spaces in a 

systematic and rational way, supported by domain or 

physics knowledge. Solutions for this grand challenge 

should be capable of handling complex, often competing 

objectives and constraints, such as desired material 

property versus manufacturability, cost, safety, and 

recyclability. That is, advanced AI inverse design systems 

must make decisions based on the full process cycle. This 

will require the development of representation learning to 

constrain and create more flexible design spaces and 

novel reward functions capable of handling the complexity 

and interactions among diverse requirements, from 

physics to business constraints. 

3.3 Advances in the Next Decade 

To tackle the grand challenges of advanced property 

inference and inverse design, significant investment and 

progress in AI mathematics, algorithms, software, and 

infrastructure is required in multiple, cross-cutting technology 

areas. 

1. Mathematics and Algorithms. The most important 

requirement for widespread adoption of advanced 

property inference and inverse design methods is the 

ability to build highly accurate uncertainty-aware AI-based 

surrogate (Chapter 01) and foundation (Chapter 02) 

models. Mathematical approaches and algorithms will 

need to be developed to seamlessly merge diverse 

heterogeneous datasets and train AI models that achieve 

the desired accuracy. New developments are needed to 

integrate uncertainty quantification with property inference 

to enable reliable decision-making for control and design.  

DOE science, engineering, energy, and security mission 

areas generate data from multiple modalities, with vastly 

different acquisition rates and fidelities [16]. For many 

mission areas, the available data are limited, and the rate 

of data generation is low. This sparsity of data drives the 

need for new ML algorithms that can infer accurately from 

minimal information and can be rapidly updated when new 

data become available through active or adaptive learning 

approaches.  

Significant development efforts will be needed for data 

representations and AI models that can properly encode 

and operate across multiple length and time scales, 

including the hierarchical and multiphysics information 
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characteristic of DOE mission areas. Finding optimal 

representations is prerequisite to making AI models 

explainable, interpretable, and trusted by humans. 

Explainable AI (XAI) has been pursued by the Defense 

Advanced Research Projects Agency (DARPA) [17] as 

well as the National Science Foundation (NSF) [18, 19], 

yet with only partial overlap with DOE mission areas. 

Major advances are also critically important in the ability 

of AI models to discover data representations themselves, 

and to adapt the model in concert with the data 

representation [20]. 

New mathematical approaches and algorithms are also 

needed to enable inverse design approaches that can 

explore the design/parameter space rapidly and 

intelligently, producing optimal solutions and control 

decisions at scales not presently tractable. Optimal 

representations, combined with the integration of domain 

knowledge, can create essential constraints and flexible 

design spaces. New approaches are needed to design 

complex reward functions for AI system optimizers that 

take into account often conflicting constraints ranging from 

desired properties to manufacturability, cost, and safety. 

2. Data Infrastructure. Progress in the DOE science, 

engineering, energy, and security mission areas 

increasingly requires large multi-disciplinary teams at 

experimental facilities, in the field (e.g., energy, water, and 

agricultural infrastructures, or urban integrated field 

laboratories), and/or at computational centers. These 

teams and facilities create complex multi-modal datasets 

with hundreds of different data types, with varying size, 

and many acquisition rates. New development is needed 

to create data infrastructure that can acquire, curate, and 

manage this data in an automated fashion [21]. It will be 

important to develop comprehensive and inclusive data 

standards that can facilitate the integration of these 

diverse data sources into training sets for AI models, such 

as the surrogate and foundation models discussed in 

Chapters 01 and 02.  

For many mission areas where movement of data is 

precluded, data privacy and security are important. 

Advances in the development of federated data and 

learning systems will be needed to address these 

challenges. 

3. AI Software and Workflows. Development will be 

needed to develop robust, modular, composable software 

and workflow components that can manage evolving, 

heterogeneous datasets that are inherently distributed 

and, in many cases, constrained in movement and access 

by privacy and security requirements. Advances are 

needed to ensure that robust workflows can incorporate 

active/adaptive learning within such ecosystems and 

integrate advanced property inference and inverse design 

approaches with uncertainty quantifications to analysis. 

4. AI Hardware. A major driver for the inference and inverse 

design building blocks driving DOE science, engineering, 

energy, and security mission areas is the need for data 

infrastructures and workflows that can leverage near real-

time performance of emerging hardware infrastructure. 

New hardware components must be explored and 

developed to rapidly and continuously ingest data from 

multiple modalities, update AI models, and provide real-

time inference for inverse design, decision-making or 

high-speed control of complex systems. Research is 

needed to evaluate AI hardware accelerator technologies 

on data acquisition latencies and time-to-solution for AI 

model training and inference. 

3.4 Accelerating Development 

Pilot projects over the next decade will drive the development 

of and demonstrate the utility of newly developed 

mathematics, algorithms, and data, software, and hardware 

infrastructure. The success of these pilots will provide a 

framework for advancements in other DOE mission areas.  

Pilots that could be used to accelerate progress with respect 

to the grand challenges and advances needed in the next 

decade are described below.  

1. Rational Design in Biochemistry, Chemistry, and 

Materials. Several national laboratories have projects 

developing ML approaches for materials and biochemical 

process discovery, with singular or narrow 

application/property areas. A pilot in each of the 

biochemistry, chemistry, and materials domains will drive 

urgently needed progress in adaptive learning from multi-

modal data and build foundation models for inferring a 

wide range of properties with experimental accuracy; 

develop models that span multiple application domains 

and couple these models with inverse optimization 

approaches for end-to-end rational design. 

2. Automated Design and Optimization of Engineered 

and Manufacturable Systems. An initial series of small-

scale pilots should focus on the development of physics-

informed AI models that are optimization-aware, capable 

of mitigating uncertainty, computationally efficient, able to 

address calibration through online experimental and field 

data, and capable of enabling system-level algorithms for 

key application targets. Building on the accurate, 

trustworthy, proof-of-principle AI models resulting from 

this pilot, the next phase will be to enable the automated 

design of specific engineered and manufacturable 

systems.  

3. AI for Energy Resilient Infrastructure. This DOE 

mission area can be used to demonstrate AI inference at 

multiple time and length scales as well as the integration 

of various models for optimization with inverse design 

approaches. A pilot should build a carefully selected set of 

AI-based surrogate and foundation models for control, 
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optimal design, and inverse optimization at scales not 

tractable by current energy system models. Such models 

should integrate transient models in decadal design for 

cost efficiency, resilience, and reliability. The AI models 

developed by this pilot should capture the challenge of 

utilizing high order multi-modal datasets (>100 different 

data types) from local, regional, and national levels. Trust, 

data privacy and security, federated data approaches, and 

real-time data generation, such as from increasingly 

powerful measurement systems using edge computing, 

should be considered in the AI model development. 

4. Resilient Water and Agriculture Resources. No 

comprehensive regional, much less national, water model 

exists, and such types of models would require integration 

of fragmented, distributed data sources. An initial pilot 

should focus on the development of a federated data 

capability with workflows and data formats from 

multimodal data, providing mechanisms to ensure data 

security and privacy. This data capability should in turn be 

combined with the development and training of a 

comprehensive and dynamic AI water model such as at 

the scales of the major metropolitan areas targeted by 

DOE’s Urban Integrated Field Laboratories program. The 

outcomes of this water model, which should be 

trustworthy, will form a foundation for the next series of 

pilots and the integration of water and climate models for 

optimization and decision-making on water management, 

such as to address severe weather-related flooding in 

vulnerable urban communities. Eventually, this model 

should also enable the integration of agriculture models to 

design precision agriculture strategies that optimize 

resource utilization. 

3.5 Expected Outcomes 

Advanced property inference and inverse design are 

essential components to accelerating design and optimizing 

control in science, security, engineering, and manufacturing 

with AI. Advanced AI models that are accurate, optimally use 

available data, and are explainable and trustworthy will be 

interrogated and used for “what if” scenarios in design 

processes and decision-making. Inverse design with reduced 

(or even without) humans-in-the-loop interaction will have a 

transformational impact on the U.S. economy as it will 

accelerate the development of new products and processes 

both directly and by enabling critical infrastructure—

particularly energy—to operate more reliably, with greater 

resilience, and at lower cost. 

The use of AI will accelerate the pace and turnaround of the 

design of new, sustainable products and processes with 

greatly reduced cost. This will secure U.S. leadership in key 

economic growth areas spanning biomolecular and materials 

engineering and manufacturing. It will also help the nation 

secure a modern and safe nuclear stockpile, rapid response 

capabilities against future biological threats, and stable and 

integrated electric, water, and agriculture infrastructures. 
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04. AI-BASED DESIGN, PREDICTION, AND CONTROL OF 
COMPLEX ENGINEERED SYSTEMS 

Complex engineered systems refer to systems designed and 

constructed by people and comprising many subsystems 

whose behaviors cannot be separated or isolated from the full 

system or the environment in which the system operates. 

Complex systems are characterized by nonlinearities, 

interactions, connected multiscale components, sensitivity to 

initial conditions, and emergent behaviors [1]. 

Complex engineered systems underpin much of the critical 

infrastructure in the U.S., ranging from the energy network 

(encompassing power generation, distribution, storage, and 

consumption) to transportation systems to supply chains. 

Complex engineered systems can also include those that 

must operate in and/or interact with complex environments, 

such as autonomous vehicles, the U.S. Department of 

Energy’s (DOE’s) leadership-class computing environments, 

nuclear power (including fusion power) systems, large-scale 

scientific instruments (such as light sources or accelerators), 

advanced manufacturing facilities [2, 3, 4], and advanced 

turbine engines. Biological systems display many of the same 

behaviors and challenges as complex engineered systems 

and are covered more extensively in Section 02: Domains. 

4.1 State of the Art 

Changing contexts in recent years (for example, changing 

climate conditions, evolving population dynamics, and water 

availability) are creating stresses in the nation’s critical 

infrastructure. There is a real and urgent need to understand 

the impacts of these changes on our infrastructure and to 

quantitatively assess and deploy solutions (e.g., control 

systems) to mitigate current and projected negative 

impacts—while being flexible enough to adapt to future 

demands on these complex systems. These infrastructure 

systems must be designed to incorporate new capabilities 

based on predicted changes (prognostics) as well as 

observed status. While the scale of the challenges may differ 

from system to system, each system faces a growing number 

of demands beyond those that the system was initially 

designed to support. 

Three examples of complex engineered systems illustrate 

their centrality within the DOE mission: the electricity grid, 

including generation, distribution, storage, and consumption; 

large-scale science facilities, including high-performance 

computing and accelerator facilities; and magnetic 

confinement fusion (tokamak) reactors. 

1. U.S. power infrastructure. Electricity is a visible and 

critical part of the U.S. power infrastructure and includes 

generation, distribution, storage, and consumption. Key 

components of this infrastructure are highlighted below. 

The power (electricity) grid integrates these components 

and is designed to deliver electricity reliably from 

generators to consumers. 

a. Distribution. The grid must balance base load 

generation—each source being a complex engineered 

system in its own right—with load demand at all times, 

with very limited capabilities for centralized control. 

Effective grid management must integrate capabilities 

across many scales, from individual homes (including 

electric vehicles, home energy storage, and micro-

generation) to large-scale generation facilities. The grid 

must also respond to wide variations in demand and 

changing environmental conditions while also being 

robust and resilient to disruptions, such as cyber threats 

and space weather (Figure 4-1). Today’s electricity grid 

is aging, which presents new opportunities to 

PROJECT SPOTLIGHT 

Project Name: Deep learning progress 

in fusion research 

PI: William Tang 

Organizations Involved: Princeton University, Princeton 

Plasma Physics Laboratory 

Goal: Deliver AI/HP–enabled advanced warning for 

avoidance/mitigation of dangerous disruptions before 

critical damage can be done to the international burning 

plasma experiment scheduled to begin in 2028 for the 

International Thermonuclear Experimental Reactor. 

Significant Accomplishment: We’ve moved beyond 

passive prediction of disruption for huge observational 

databases to active control; the key to the advance is the 

introduction of an innovative deep-learning surrogate 

model capable of carrying out validated first-principles 

simulations as a “real-time simulator” leading to a “digital 

twin” for tokamaks. 

In the News: The PI received the 2018 NVIDIA Global 

Impact Award with citation “for groundbreaking work in 

using GPU-accelerated computing to unleash deep 

learning neural networks for dramatically increasing the 

accuracy and speed in predicting dangerous disruptions 

in fusion systems” and subsequently published the work 

in Nature (Kates-Harbeck, J., Svyatkovskiy, A., and Tang, 

W., 2019, Predicting disruptive instabilities in controlled 

fusion plasmas through deep learning, Nature, 568, 526–

531, https://doi.org/10.1038/s41586-019-1116-4). 

https://doi.org/10.1038/s41586-019-1116-4
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incorporate advanced artificial intelligence (AI) 

capabilities, including advanced system designs, new 

modeling and prediction capabilities, AI-based control 

and decision making, and improved robustness to 

severe disruptions—whether related to natural forces 

(e.g., weather, wildfire, earthquake, flood) or human 

adversaries. Additionally, the underlying composition of 

the electricity grid is evolving, for example, through the 

addition of distributed generation (e.g., private 

photovoltaic panels) and storage (e.g., whole-home 

batteries), as are the dynamics of use (e.g., electric 

vehicles, their associated charging loads, and capacity 

to support storage for other uses). These facets of the 

evolution of energy technology bring even greater 

complexity and nonlinearity to the electricity grid.  

 

Figure 4-1. AI-based design, prediction, and control are 
critical for the U.S. electricity infrastructure. 

b. Generation. The electricity infrastructure also includes 

inertial-based generation, such as nuclear power 

plants, and inverter-based generation, such as wind 

and photovoltaics. Baseload generation systems 

(fission, gas turbine)—operating as peaking systems—

require new control paradigms to maximize efficiency 

and economics. Each of these generation systems 

(subsystems within the overall electric infrastructure) is 

a complex system in its own right. That is, they exhibit 

nonlinearities, with feedback both internal to the system 

and through its interaction with the grid. 

Nuclear power plants are one of the few zero-carbon 

options for electricity generation that can also support 

process heat applications. As such, nuclear power 

systems are important for district heating, water 

desalination, and hydrogen production. Future nuclear 

power systems include microreactors, which are 

expected to solve local or regional short-term energy 

needs, such as for electric power after natural disasters 

or at forward operating bases. AI systems, such as 

inverse design and property inference (Chapter 03), will 

be critical for the design of future plants, as will 

surrogate and foundation models (Chapters 01 and 02) 

for control and maintenance. These AI capabilities will 

also be critical in extending the life of the current 

nuclear power facilities through better prognostics and 

monitoring of health, fuels, and components. These and 

similar challenges are predominantly driven by the high 

cost of construction and operation, along with lifecycle 

issues such as the disposition of used fuel. Individually 

and collectively, these challenges affect the nation’s 

ability to advance and rapidly deploy future nuclear 

power systems, including small modular reactors and 

microreactors. They also present opportunities to 

incorporate advanced AI-based capabilities across the 

nuclear power lifecycle (from design through licensing, 

construction, operations, and maintenance, to 

decommissioning and fuel disposition). 

Inertial-based generation also encompasses gas 

turbines. In these systems, the occurrence of low-

probability but high-impact rare (abnormal) events 

poses critical challenges to performance and reliability. 

For example, in these energy systems combustion 

instabilities (such as lean blowout, flashback, and 

thermoacoustic instabilities) can cause catastrophic 

failure and damage. These risks are further 

exacerbated when gas turbine engines are operated on 

low/zero carbon fuels (hydrogen, sustainable aviation 

fuels) as opposed to regular jet fuels or natural gas. It is 

of great importance to understand and predict such rare 

events in order to avert their occurrence. 

AI offers capabilities for automated discovery and 

assessment of the underlying precursors and 

causalities governing rare events encountered in 

energy systems. Such capabilities are essential for the 

development of prognostic and control strategies to 

enable safe operation of these engines in high-

efficiency mode while preventing rare combustion 

events. 

c. Consumption. Advanced heating and cooling systems 

for high-performance buildings have become 

increasingly complex. Decarbonizing them requires 

new design and operational approaches that must be 

deployed in millions of buildings. Transformational 

approaches are needed as buildings move from being 

passive energy consumers to being not only active 

consumers in a dynamic energy market—in which they 

need to provide reliable and dispatchable load flexibility 

to the grid—but also active prosumers—a role where 

they provide heating, cooling, and energy storage for 

district-scale systems that integrate buildings, 

manufacturing infrastructure, and mobility systems. 
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Artificial intelligence methods and approaches 

discussed here and in previous chapters have the 

potential to streamline design approaches, support 

system-aware operational optimization, and automate 

deployment of advanced analytics and control 

methods. 

2. Large-scale science facilities. DOE’s Office of Science 

is responsible for designing, building, and operating large-

scale facilities for scientific discovery. Such facilities 

include, for example, leadership (high-performance) 

computing facilities and their internal and international 

connectivity; accelerators; light sources; and instruments, 

facilities, and field laboratories supporting nanoscale 

science (e.g., electron microscopes), bioscience 

(e.g., plant phenotyping), and earth systems monitoring. 

a. High-performance computing (HPC) facilities and 

their connectivity. AI capabilities described throughout 

this report will rely on next-generation HPC capabilities 

for scientific and engineering research and 

development. The current exaflop-class facilities require 

millions of dollars of infrastructure investment, tens of 

megawatts of energy for power and cooling, and 

include millions of electronic components ranging from 

computational cores and accelerators to storage 

devices to communications infrastructure. Overlying 

these components are millions of lines of software, 

including complex application codes, operating 

systems, runtime systems, input/output controllers, 

workflow frameworks, data management utilities, and 

scientific simulation models. These components are 

interconnected at every scale, from the system 

networks that interconnect processor nodes to 

machine-room networks integrating storage to the 

national ESnet infrastructure and its domestic and 

international connections. Current challenges for AI in 

managing HPC facilities include performance modeling, 

performance optimization, scheduling, power manage-

ment, prognostics and maintenance management, and 

proactive resource management. The critical 

importance of each of these will increase significantly 

as the next generation of HPC facilities is increasingly 

tightly integrated over campus and wide-area ESnet 

networks (themselves complex engineered systems) 

with edge devices, including scientific instruments, and 

with other complex engineered systems that will be 

connected through different modes, such as dedicated 

wired networks, beyond-fifth-generation (5G) networks, 

and quantum networks. Effective use of AI will also be 

critically important for exaflop and larger systems, 

where power optimization and management at the 

application level can translate to a significant difference 

in operational costs. Concurrently, the scale and 

complexity of these HPC systems introduces 

nonlinearities and system availability challenges that 

will require AI methods for control and optimization.  

b. Particle accelerators. Particle accelerators are 

complex multisystem machines that include many 

variables with nonlinear dynamics. DOE has invested 

hundreds of millions of dollars in the design, 

construction, supporting infrastructure, and operations 

of multiple accelerator facilities, which are integral to 

many aspects of the DOE scientific mission, from 

exploring fundamental physics to material studies. In 

recent years, the use of machine learning for particle 

accelerators has grown to include, but is not limited to, 

diagnostics, anomaly detection, forecasting, and AI-

based controls. Integrating these methods into a 

comprehensive DOE effort for advance AI-based 

controls—including synergies with similar challenges 

faced by HPC facilities—will be necessary to enable 

better use of the facilities, including more efficient 

operations and improved/accelerated science 

discovery.  

3. Magnetic confinement fusion (tokamak) reactors. 

Tokamak reactors use extremely powerful magnetic fields 

to confine plasmas that are a potential means of 

sustaining and controlling fusion in power plants. The 

$25B International Thermonuclear Experimental Reactor 

(ITER) [5] burning plasma experiment is the clearest 

example. These complex devices involve physics at many 

scales. Challenges include the development of efficient 

surrogate models for use in design, control, and 

prognostics; the avoidance or mitigation of plasma 

disruptions (to avoid damage to the device); and control of 

the power generation process [6, 7]. Deploying AI to 

control the plasma is the most promising strategy to 

increase the chance of sustained energy generation within 

two decades.  

These examples highlight the different temporal and spatial 

scales inherent in complex systems and the complexity of 

individual components that make up most complex systems. 

Improving the design and control of such systems will require 

the ability to model the individual components and 

understand the interactions that occur within and among 

components across these scales. Time scales, for example, 

cover microseconds to decades and spatial scales include 

anything from single components to regions or nations. 

Although traditional modeling and simulation can provide 

insights, models at the necessary resolution are effectively 

computationally intractable, especially when considering the 

need for real-time control. Traditional models, constrained by 

computational capacity, also fail to adequately capture 

temporal and spatial interactions between subsystems and 

between the system and the environment. Moreover, even 

with these compromises, the models lack sufficient speed 

and accuracy to allow users to understand these systems, 

predict system behavior, or build control systems. For these 
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reasons, traditional approaches to modeling each part of a 

connected system separately are no longer sufficient when 

dealing with changing contexts (for instance, changing 

climate and population dynamics) and their interactions. 

Wholistic, first-principles modeling is not feasible even with 

the exascale computing resources recently delivered by 

DOE. Indeed, the nature of a complex engineered system is 

such that modeling its components alone is insufficient (even 

if it were computationally feasible) because system behavior 

is driven not only by components themselves but also by 

nonlinear interactions and associated dynamics among the 

components. 

AI building blocks discussed in earlier chapters, such as 

surrogate and foundation models and capabilities such as 

inverse design, provide the keys to the successful design, 

prognostics, and control of complex engineered systems. 

Initial AI tools are already pervasive in many such systems, 

including those used in science and engineering, but despite 

their impact to date, the full potential of AI in this context 

remains unrealized in the face of challenges such as those 

described next. Specifically, the effective application of AI to 

complex engineered systems is reliant on advances in both 

data acquisition and computing.  

1. Data. Sensors are becoming ubiquitous and can provide 

accurate, real-time information about complex systems 

and an ever-expanding volume of historical data on 

system behavior, from which new AI models can be 

created and trained. In the next decade, advances in 

intelligent and autonomous sensors will amplify the need 

and impact of AI systems for data management and 

analysis, creating orders of magnitude more (and more 

complex) data. The introduction of AI in sensors creates a 

computational continuum from edge to HPC systems, 

which will both catalyze new AI capabilities for optimization 

and control while also generating new, larger, and more 

complex datasets. The models developed and trained with 

these new data sources will also be instrumental in 

addressing inherent uncertainties and errors in sensor data.  

2. Computing. Even as true exascale has been reached in 

centralized HPC facilities, other advances, including the 

computing continuum just discussed, have leveraged 

powerful, energy-efficient, and cost-efficient computing 

capabilities that can be embedded in facilities and edge 

devices. The continuum bounded by these two very 

different computing modes—centralized and edge 

computing—also introduces opportunities for AI models 

(built and trained using HPC facilities) that implement 

lifelong AI-enabled learning (executed across the 

continuum) to provide AI-supported real-time control and 

prognostics in complex systems. 

The vision of AI-enabled design, prediction, and control of 

complex engineered systems is captured effectively by the 

concept of the digital twin (DT). This term has been used in 

many contexts but can be generically defined as a digital 

representation of an engineered system having the ability to 

respond to a current or predicted state of a physical system, 

where this representation is specifically used to facilitate 

better control, prognostics, and maintenance of the complex 

system over its lifecycle (Figure 4-2). These characteristics, 

in particular the ability to control complex systems, mean that 

digital twin must operate several orders of magnitude faster 

than the physical system. Thus, the challenges of developing 

and integrating the necessary AI capabilities for complex 

engineered systems can be described in the context of the 

creation, optimization, and use of digital twins.  

The DT concept is one that many companies have embraced 

over the past decade, particularly in the context of 

manufacturing and assembly. However, these investments 

are generally focused narrowly on individual systems 

(e.g., an assembly line) and for specific products. In contrast, 

the development of DT systems encompassing experimental 

facilities or national-scale infrastructure, or those required for 

national security, have not been sufficient developed with 

regard to the use of AI and machine learning [8]. 

 

Figure 4-2. Conceptual flow diagram for a digital twin. 

4.2 Grand Challenges 

The following six research challenges, presented in the 

context of digital twins, must be addressed in order to 

leverage the promise of AI capabilities in the design, 

prediction, and control of complex engineered systems [7, 8, 

9, 10, 11]. These six challenges are not independent of each 

other, nor are they independent of the other approaches 

described in this section, such as the development of AI-

based surrogates (Chapter 01). 

1. Assurance. The complex engineered systems most 

visible within the DOE mission space involve critical 

infrastructures. Here, assurance of the correctness of AI 

models used for the design and control of these systems is 

a central grand challenge. At an intuitive level, assurance 

addresses the question of whether an AI is making the 

right decision for the right reason, ensuring 

trustworthiness. Assurance encompasses many more 

factors, however, from uncertainty quantification to causal 

inference [12, 13]. Five facets of assurance are essential: 
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a. Uncertainty quantification. Uncertainty is an intrinsic 

part of both the data and the model built and trained by 

the data. Rigorous bounds must be computed to 

guarantee a robust and reliable DT and, by extension, a 

robust and reliable complex engineered system. The 

capability for uncertainty quantification will help users 

know when to trust the predictions from the model and 

greatly enhance the correct use of the AI system.  

b. Validation. Validation of a DT considers the 

appropriateness of the model and can only be 

considered in the context of the intended application. 

Validation must be a continuous process that follows 

the evolving state of the physical system. Any validation 

process must consider the appropriateness of training 

and inference data, the specific model form and 

hyperparameter choices for the AI model, and the 

training process. 

c. Robustness. Robustness can be characterized as how 

the machine-learning model responds to small changes 

in the data. Robustness for the DT and for AI models 

more generally depends as much on the selection of 

the data and measures of closeness as on the model 

design and training. For the DT, provision for 

robustness must be expanded to consider the full 

workflow, adversarial attacks, and unexpected 

occurrences in the environment or the data. The control 

system must respond robustly to noisy data, distribution 

shift in the data, and other normal fluctuations, while 

identifying anomalies that need to be investigated 

further and addressed. 

d. Explainability and causal analysis. Explainability is 

the ability of an AI system or DT to explicitly associate a 

decision with a specific meaningful correlation identified 

in the data. Developing explainable AI models is a 

challenge that must be addressed before an DT can be 

fully deployed in the operation of many, if not most, 

engineered systems, particularly those associated with 

critical infrastructure. Causal analysis goes beyond 

correlation to identify the causal relationships that 

underlie the identified correlations. Causal analysis 

gives the system the ability to respond appropriately to 

disruptions; establishing these relationships will require 

the ability to test hypotheses by running experiments on 

the physical system. Explainability should not be an 

afterthought but rather should be built as a part of the 

AI systems in a DT. The DT should also provide 

mechanisms to incorporate physics knowledge and 

domain constraints. 

e. Anomaly detection. Anomaly detection is the ability to 

identify or predict system behaviors or environments 

that were not considered “normal” or “usual” in 

designing or training the DT. Examples include system 

failures, system state shift, and adversarial attacks 

against the physical system (e.g., a cybersecurity 

intrusion, as distinct from adversarial attacks against 

the training and operation of the DT). Detection of 

anomalies is a critical part of any assurance effort but is 

identified as a separate area here because of the 

challenge of detecting and identifying system states 

that do not appear in training data. 

2. Model construction and the machine learning process. 

The core of the DT is a model (or a set of models) that is 

built and updated on the basis of data from the physical 

system and the environment in which it operates. These 

systems span multiple spatial and temporal scales, data 

from many measurement modes, and large numbers of 

parameters, many of which cannot be measured directly. 

Furthermore, the process of creating the model itself 

entails significant challenges in data reduction, a process 

that focuses on identifying and representing the 

information contained in data. AI models are often updated 

continually and thus require continual or lifelong learning 

capability, in contrast to many existing modalities, in which 

sufficient training data is available prior to training the 

model. This challenge also includes federated learning, 

mechanisms to protect privacy or intellectual property or to 

reduce data transfer bandwidth requirements by 

distributing training to include edge devices. Challenges 

include identifying the model form, the training data and 

training process, and the appropriate prior information 

needed to construct the DT.  

3. AI-based control systems. Control is a mature area of 

research, and most engineered systems have effective 

control systems. Nevertheless, AI presents new 

possibilities, many of which are increasingly important 

given the complexity of today’s complex systems and the 

demands placed on them by changing technology, 

environmental conditions, and usage patterns. Exploiting 

these possibilities will require advances in AI approaches, 

such as reinforcement learning and neuromorphic 

systems. There are many technical challenges, including 

the use of data-efficient learning, incorporating physical 

constraints, learning in partially observable large-scale 

complex systems, data and learning methods for 

distributed control, decision making under uncertainty, 

transfer learning, and power and speed requirements for 

real-time control, as well as the challenges in assurance 

presented previously and discussed by Sutton and 

Barto [14]. 

4. Co-designed software and hardware ecosystem and 

workflow. This challenge has three aspects. First, the 

physical system must be engineered to interact with the 

DT. This aspect of integration includes sensor design and 

placement, power management, and incorporation of 

edge-based, resource-efficient, and energy-efficient 

computational capabilities and control systems that can 

interface with the DT. Integrating the physical system with 

its digital representation also includes designing the 
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capability to deal with robustness and resilience issues, 

including data issues and adversarial attacks that could be 

introduced through the DT. Second, the DT itself 

introduces challenges for the hardware and software 

ecosystem, including issues of communication and 

bandwidth and the challenge of DT hierarchies (DTs for 

components and overall systems) and federation 

(i.e., when many instances of a physical system—each 

with an individualized DT—are deployed). Third, the 

ecosystem must include hardware that is embedded in the 

physical systems, which often imposes severe power, 

latency, bandwidth, and speed constraints [3, 15]. 

5. Data quality, availability, and governance. One 

challenge is the quality of data, which can be approached 

from a technical perspective. Specifically, improved 

sensors, combined with algorithmic advances in the 

placement of these sensors and processing of their data, 

will do much to address this challenge. The availability and 

accessibility of data is also a significant challenge, 

particularly because many of these systems are distributed 

(both geographically and across diverse businesses). In 

many, if not most, engineered systems, the availability of 

data can be severely restricted by the regulatory 

environment, privacy concerns, and intellectual property 

concerns. This challenge can be partially addressed 

through the development of an improved workflow, 

supported by technical solutions to issues such as privacy 

and equity. Digital twins and simulators that can take 

advantage of the DOE supercomputers can be used to 

generate synthetic data. However, regulations and 

requirements will also play a major role in making data 

available. Data constraints also pose a challenge to the 

efficiency of AI learning. Provenance of data used to train 

AI systems, particularly DTs associated with operational 

systems, will also be important, for instance to mitigate 

adversarial attacks through “poison” data schemes [16]. 

6. Standardization and metrics. The development and 

deployment of control systems with DTs is currently very 

system- and application-specific. As DTs become common 

in engineered systems, standard protocols for their design, 

production, deployment, certification, and maintenance will 

become necessary. Safety issues that arise when using 

DTs will drive a regulatory environment that will require 

standardization and guarantees. In addition to being 

necessary for safety and regulatory purposes, 

standardization and metrics will improve interoperability 

and performance and enable an overall increase in 

efficiency in the design and deployment of DTs, while also 

enabling the rapid growth of an industrial base to support 

this emerging technical area. Moreover, as complex 

systems are formed through vertical and horizontal 

composition of subsystems, DTs must be constructed in a 

way that allows DT-equipped components and 

subsystems can be composed in the same hierarchy as 

the engineered physical systems. This requires 

standardization and advances in composability. 

4.3 Advances in the Next Decade 

To realize the vision of robust and reliable control of the 

nation’s critical infrastructure and other complex engineered 

systems, such as DOE facilities and instruments, significant 

investment and progress will be required in each of the 

crosscutting technology areas (see Section 02). 

Mathematics and algorithms. The most immediate need for 

implementing a DT approach is to have robust and reliable 

surrogate models that can be used to construct and train 

control systems and on which DTs can be based. Surrogate 

models are described at length in Chapter 01, and for the 

prediction and control of complex engineered systems, 

knowledge-informed models and encodings for partially 

observed systems are the highest immediate priority, with 

significant progress expected in the next five years. 

Application- and use-specific surrogate models must be 

developed while addressing severe power, accuracy, and 

speed requirements in real-time control applications.  

In addition to physics-informed surrogates, robust, data-

efficient, and distributed reinforcement learning (e.g., for 

control algorithms) methods must be developed. 

Reinforcement learning is notorious for being a 

computationally difficult problem for complex systems, 

requiring significant volumes of data and robust test 

environments. Here, challenges include large state spaces, 

effective data representation and transformation approaches, 

widely varying time scales between control signals and 

system response, reinforcement learning that incorporates 

constraints, continual learning with the ability to update 

control policies, and robustness to limited or missing data. 

From a foundational perspective, the ability to generate 

theoretically sound convergence guarantees of optimality in 

online setting and verification is among the critical 

challenges. Significant progress must be made in each of 

these areas within the next 10 years to enable effective use 

of AI in the robust control of complex engineered systems.  

To move DTs from demonstration to operation, there must be 

an explicit focus on assurance, with significant progress 

specifically in the areas of validation, causal inference, and 

security and privacy. Simply put, there must be an 

evidence-based methodology for assuring that AI can be 

used securely and robustly in control systems for critical 

infrastructure. 

Data infrastructure. Data are the key to machine learning, 

and several challenges have been described. Within a 

decade, there should be common, secure data infrastructures 

for systems critical to our nation’s infrastructure, such as the 

electricity grid and for DOE science and security 

infrastructure, including complex engineered instruments and 

facilities. This agreed structure would include standard data 
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formats and expectations regarding provenance, availability, 

security, and privacy of data. Technical progress is also 

needed in providing a distributed infrastructure and tools for 

curation and maintenance of data throughout its lifecycle. In 

addition to providing a data infrastructure, DOE must work 

with industry to make critical data available for training the 

models necessary to enable DTs for the nation’s critical 

infrastructure, from the components level to the local and 

regional grids operated by private entities.  

AI software and workflow. Two technology crosscuts are 

combined into this topic. The focus for the next decade must 

be research as described in this chapter and pilot projects 

with preliminary demonstrations of validated control systems. 

Progress will be needed in software and workflows, with an 

explicit focus on validation, security, privacy, and the 

management of data and models. New software design 

paradigms that are secure, robust, resilient, composable, and 

analyzable by design are needed. 

AI hardware. Successful deployment of AI for the control of 

complex engineered systems will require embedded, AI-

specific hardware deployed in control systems “at the edge,” 

as well as significant computational resources in the form of 

either dedicated, AI-specific HPC or HPC with AI 

accelerators. Existing and future AI hardware accelerators, 

such as graphics processing units, tensor processing units, 

and field-programmable gate arrays, are diverse and provide 

different characteristics with respect to training time, 

inference time, latency, power, and energy demands. A 

promising avenue in improving AI hardware is in customizing 

DT models to the given hardware platform. During the next 

decade, it will be necessary to leverage recent investment in 

semiconductor technology and to work with industry to 

develop and evaluate both embedded controllers and HPC 

capabilities. New sensors and actuators, and the computing 

and communications hardware necessary for edge AI 

computation, must be hardened and packaged to function 

reliably in extreme environmental and operating conditions 

common to most complex engineered systems, from particle 

accelerators to the power grid. As with the models and data, 

there is a need over the next 10 years to develop and 

evaluate methods to provide assurance on AI hardware 

as well.  

4.4 Accelerating Development 

Significant investments will be needed to achieve the decadal 

advancements described above, and these must be matched 

with investments in pilot projects and demonstrations. Five 

areas in which significant pilot demonstrations could be used 

to accelerate progress are described below. These pilots will 

drive specific technology advances both in the general areas 

described above and in specific application needs. 

Potential research activities to accelerate development might 

focus on achieving the following outcomes: 

1–3 years: 

 Common data infrastructure solutions 

 Foundations of assurance—knowledge-informed models at 

scale; metrics and validation 

3–5 years: 

 Demonstration of AI-based control at a pilot scale, 

including single-facility and local (e.g., single 

“neighborhood”) demonstrations.  

5–10 years: 

 Scale up of algorithms/models to incorporate distributed 

control and the use of HPC resources. 

 Scale-up demonstrations to manage critical infrastructure 

at the regional or national level. 

In addition to these target outcomes, there is an immediate 

need to develop the basic infrastructure required to develop 

and demonstrate new capabilities. This infrastructure will 

range from the assembly and curation of datasets to the 

design and deployment of various scales of test beds, 

including instrumentation of existing test infrastructure to 

support the integration of new sensors, edge computation, 

and actuation associated with DT systems. 

These capabilities could be demonstrated by the following 

potential pilots. 

1. The U.S. power grid. This is a high-priority target 

application for accelerated research, development, and 

demonstration of AI for robust forecast and control. A pilot 

should involve a significant geographic area that includes 

both business and residential users, features significant 

penetration of generating capacity (including, for example, 

residential solar generation), and is susceptible to 

weather-related outages. The pilot will also need to be 

defined in terms of integration phases with respect to 

scope (moving from small district to regions) and 

functionality (e.g., initially limited to providing advisory 

information and gradually incorporating operational 

decisions and ultimately control actions). 

2. Control, including resource management, of a DOE 

leadership computing facility and/or scientific 

instrument. The objective of this pilot would be to 

increase overall facility throughput and availability for a 

scientific workload. There are a limited number of 

possibilities, ranging from control of an individual DOE 

leadership-class computing center to a pilot involving the 

integration (over ESnet) of a distributed system connecting 

a DOE instrument (e.g., a light source) with a leadership-

class machine. 

3. Transportation and mobility systems. Several national 

laboratories have established projects in transportation 

systems. For example, Oak Ridge National Laboratory has 

already deployed optimized signal controllers in 
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Chattanooga, Tennessee, and Argonne National 

Laboratory has developed and demonstrated technology in 

Chicago, Illinois, to gather detailed traffic flow and vehicle 

mix data to train transportation models. A pilot would 

expand beyond these capabilities to provide system-wide 

optimization by coupling autonomous connected vehicles 

with traffic signal control in a major metropolitan area and 

providing data to supply-chain operations to allow 

improved fleet planning.  

4. Control of a tokamak fusion reactor. A key goal 

associated with the 21st-century grand challenge for 

magnetic fusion energy concerns the control of the 

international ITER burning plasma experiment scheduled 

to begin in 2028. The need is to deliver advance warning 

for avoidance/mitigation of dangerous disruptions before 

critical damage occurs. A forward-looking pilot would build 

on the ability to use AI for passive prediction of disruption 

and to extend this capability to active control using a DT 

for a tokamak [17].  

5. Early detection of rare events in turbine engines. As 

part of DOE’s deep decarbonization goals for the 

transportation and land-based stationary power generation 

sectors, a major focus is on demonstrating high-efficiency 

and safe gas turbine operation on 100% renewable fuels 

(hydrogen and sustainable aviation fuels). A pilot project, 

in this regard, would develop and demonstrate a robust 

AI/ML framework, coupled with either high-fidelity 

simulations or real-time experiments, that is capable of 

causal representation learning and prognostics of rare 

events. 

4.5 Expected Outcomes 

Engineered systems are becoming more complex and 

interconnected. While this evolution presents tremendous 

possibilities for improved efficiency and effectiveness leading 

to economic competitiveness, it also makes such systems 

more susceptible to disruption, whether through adversarial 

attacks (e.g., cyber-attacks), environmental events, or 

component failure. 

The use of AI for control of complex engineered systems will 

advance U.S. economic competitiveness in a number of 

critical areas, such as manufacturing, computing, renewable 

and green energy generation, and energy storage. These 

advances will also support U.S. energy security in the face of 

emerging threats. Critical to these advances are a research 

agenda developing the fundamental advances in AI and 

demonstrating these advances in multiple pilot-scale projects 

on an accelerated timeline. 
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05. AI AND ROBOTICS FOR AUTONOMOUS DISCOVERY 

Evidence-based science demands a coupling between 

observation, analysis, experiment, and synthesis. This 

alignment represents a potential inflection point for the 

modern scientific process where automation and robotics, 

enabled with artificial intelligence (AI) and machine learning 

(ML) models, can accelerate experimental science in a 

similar fashion to the way that modern AI/ML have 

accelerated data analysis. Data has been acknowledged as 

the fourth paradigm [1], and the combined use of AI/ML and 

automation is positioned to become a fifth paradigm, enabling 

us to infer complex patterns from experimental and simulation 

datasets and to derive new knowledge that can be tested 

using subsequent experimental design(s). Advances in AI/ML 

approaches, including deep generative models, surrogate 

models, active learning, and reinforcement learning, are 

already enabling new discoveries across a variety of fields, 

including materials sciences, chemistry, physics, and biology. 

AI/ML methods applied to the design and optimization of 

high-throughput laboratory experiments, enabled by these 

advances in AI/ML techniques, offer new means to probe 

matter and understand complex phenomena in 

unprecedented detail. However, meaningful progress is 

impeded by the lack of connection between computing and 

high-throughput laboratory instruments and experiments. We 

posit that automation and robotics can accelerate the 

progress and increase the throughput of large-scale scientific 

experimentation, while driving novel means to investigate 

complex, emergent phenomena in scientific domains relevant 

to the U.S. Department of Energy (DOE). 

For this report, the definition of autonomous discovery is 

borrowed from King, et al. (2009) [2], where it is envisaged as 

an independent robotic scientist that “automatically originates 

hypotheses to explain observations, devises experiments to 

test these hypotheses, physically runs the experiments by 

using laboratory robotics, interprets the results, and then 

repeats the cycle.” King et al. demonstrated this vision, not 

surprisingly in biology, by designing ADAM (Figure 5-1), a 

robot that could automatically generate functional genomic 

hypotheses about yeast. The vision of harnessing AI/ML 

capabilities (including those described earlier in this section 

of the report) to create autonomous robotic scientists (or even 

robotic facilities) has been seen as being of high benefit and 

high risk, with the latter impacting investment levels and 

limiting our ability to prototype, much less realize, such 

specialized autonomous discovery facilities. 

New AI/ML approaches during the past several years, such 

as outlined in the previous two chapters, significantly reduce 

the perceived risk of autonomous laboratories, offering 

opportunity to reinvent each step in this discovery loop (data 

analysis→hypothesis→experiment/observe), as well as to 

speed the iteration of that loop, fundamentally accelerating 

the discovery process. We discuss these opportunities as 

well as the role that automation/robotics will play in tightening 

the integration of theoretical, experimental, and 

computational processes. 

 

Figure 5-1. A schematic of the robot scientist ADAM that was used to 
generate novel hypotheses in examining yeast functional genomics [2]. 

In the observation stage, scientists use instruments (including 

microscopes, telescopes, sensor networks, etc.) to capture 

data representing diverse phenomena. Novel experimental 

instrumentation and the increasing resolution of these 

PROJECT SPOTLIGHT 

Project Name: Autonomous platform (Polybot) for 

electronic polymers discovery 

PI: Jie Xu 

Organizations Involved: Argonne National Laboratory 

Goal: Accelerate the development of a new class of 

polymer-based electronic materials that are flexible, 

durable, degradable/recyclable and easy-to-manufacture 

for our future electronics 

Significant Accomplishment: Developed a new 

experimental platform (Polybot, 

https://www.anl.gov/cnm/polybot) that combines the 

strengths of rapid and robust experiment acquisition from 

robotic technologies with fast analysis of complex 

datasets using ML, which enables autonomously 

electronic polymer engineering toward targeted 

structures for desired solid-state properties. 

In the News: Significant feature in Newsweek 

magazine: “America’s Greatest Disruptors: Budding 

Disruptors,” available at: 

https://www.newsweek.com/2021/12/24/americas-

greatest-disruptors-budding-disruptors-1659089.html, 

accessed December 5, 2022. 

https://www.anl.gov/cnm/polybot
https://www.newsweek.com/2021/12/24/americas-greatest-disruptors-budding-disruptors-1659089.html
https://www.newsweek.com/2021/12/24/americas-greatest-disruptors-budding-disruptors-1659089.html
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instruments rapidly expand observation space and the 

resulting hypothesis space. Researchers can prove/disprove 

these hypotheses through the application of accepted 

research methods and experimental design. But these 

advanced instruments are expensive and in high demand, 

limiting access and consequently the number of hypotheses 

that can be tested and similarly confounding scientists’ ability 

to reproduce, assess, and expand on research driven by 

these new advancements. The ability to automate scientific 

processes in the lab will also entail significant reduction in 

costs while enabling higher reproducibility and productivity for 

individual scientists as well as large team-science projects.  

Increasingly, advances in AI and computing are necessary to 

enable exploration and access that are simply intractable 

today due to demands for large-scale laboratory instruments 

and/or computational demands. In biology, for example, new 

phenotypes within bacterial strains, such as to increase the 

production of threonine, are important subcomponents of 

bioproduction processes (including biofuels production). Yet 

engineering these strains involves a massive design space 

(Figure 5-2). Designs must optimize across at least 

10 different genes, including several transcription factors, 

enzyme complexes, and other factors. Assuming even a 

single gene (which is translated to a protein product) with 

about 100 amino-acid positions, exhaustive mutagenesis and 

evaluation can exceed 20100 calculations. In addition, with 

various other components interacting, this problem can easily 

exceed 10160 considerations in the design space. Indeed, the 

number of potential factors to explore expands with every 

new discovery of novel pathways, gene interactions, and 

even epigenetic factors influencing phenotypes. Concurrently, 

as our knowledge expands around alternate effects, the 

number of potential factors to explore also expands (e.g., the 

bacteria’s ability to thrive in specific environmental 

conditions). Similar design space scales affect protein design, 

where human-guided design can at best explore extremely 

narrow subsets of the design space. AI/ML techniques offer 

the means to navigate the combinatorial complexity of these 

vast hypothesis spaces by, for instance by identifying novel 

patterns or potential designs based on inference models 

trained on the experimental and computational results from 

similar experiments. However, carrying out even 

105 experiments exceeds the capacity of today’s fully human-

in-the-loop laboratory processes, even with modern 

instruments. Simply put, automation/robotics offers the only 

viable and practical means to address the combinatorial 

complexity of experimental design, and ultimately to 

accelerate scientific discovery. 

Experimental design for observation and experimentation is 

also paced by human observations, decisions, and actions in 

the laboratory. Domains including biology, materials design, 

earth-systems modeling, ecological systems, and high-

energy physics have these limitations in common. As with the 

biological systems design space discussed above, the 

combinatorics of computational or laboratory experiment 

design parameters are significant in even relatively simple 

physical, natural, or engineered systems. 

Remote access and robot-assisted automation constitute the 

first step toward AI-driven laboratories (discussed below), as 

illustrated by many laboratory prototyping activities combating 

the COVID-19 pandemic. Scientists, forced to work remotely 

due to pandemic restrictions, used robotic instrumentation 

and automated instrument controls to perform critical 

research such as high-throughput screening of small 

 

Figure 5-2. A schematic of how protocols can be automatically extracted from a methods section of scientific 
literature. This example is contextualized for engineering bacterial systems that can produce excess threonine 
(as the end phenotype). Various experimental steps such as DNA transformation, amplification, etc., and 
conditions are evaluated and automatically “coded” such that we can implement them on our robotic systems. 
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molecules/drugs and X-ray crystallography/cryo-electron 

microscopy or genetic sequencing of SARS-CoV-2 samples. 

In fact, the urgency of the pandemic combined with the use of 

robotics illustrated the democratization benefits with respect 

to accelerating science. 

Automation, robotics, and AI/ML also offer a potential solution 

to a growing scientific crisis: reproducibility. More than 70% of 

researchers surveyed in 2016 failed to reproduce the results 

of another scientist, with 52% recognizing this as a significant 

crisis [3]. One estimate suggests that nearly one-third of 

published data may need to be re-evaluated because of poor 

reproducibility of these experiments; similar estimates are 

corroborative in other disciplines as well. Challenges in 

scientific reproducibility can stem from ambiguity in method 

and protocol, lack of specification of inputs and outputs, and 

faulty data analysis. Data generated via many experimental 

techniques are still difficult to reproduce, and human-

implemented protocols are often tedious and error-prone, 

requiring specialized training (and technicians). Studies can 

require specialized equipment that can become obsolete or 

inaccessible, and protocols may have ambiguities or gaps, 

such as undocumented calibration parameters. Here again, 

the urgency of the COVID-19 pandemic led to increased 

sharing of protocols and, due to urgency, improvements in 

the precision and completeness of protocols. Addressing 

these challenges narrowed the gap that currently obstructs 

the development of AI-driven robotics that execute and 

eventually improve laboratory protocols. 

Data management progress in recent years such as enabling 

access to AI/ML-related data and methods using the FAIR 

(findable, accessible, interoperable, reusable) principles has 

been promising but remains nascent. This is particularly 

challenging for laboratory data and will be even more 

daunting with the explosion in experimental data resulting 

from AI/ML and automated/robotic experiments.  

The use of abstractions and programming languages has 

enabled scientific computation with codes that readily 

execute on different hardware platforms, workflow 

frameworks to combine resources across multiple platforms, 

and tools to migrate through multiple generations of hardware 

architectures. These abstractions, languages, and 

frameworks used with large-scale systems built today 

(including Cloud, high-performance computing [HPC] 

systems, and custom hardware such as accelerators) are a 

result of investing with a focus on the productivity, usability, 

verifiability, and validation of the written computer code (using 

compilers, model checking software, etc.). These tools grew 

organically across multiple hardware and software vendors 

and still maintained a level of interoperability and 

compatibility that allowed bespoke solutions to remain viable 

over many years of development and across multiple 

computing architectures. These abstractions, languages, 

compilers, and other tools are lacking across the laboratory 

instrument (scientific) domains, locking the scientific 

community into bespoke, labor-intensive, and largely non-

reproducible experiments. Absent a comprehensive 

approach, much of discovery science will continue to be 

dependent purely on human intuition and technical abilities—

limiting experimental throughput and reproducibility, while 

continuing to be plagued with errors and quality control 

issues within the scientific process. 

These challenges span the thousands of individual laboratory 

experiments and their instruments but are equally 

consequential to the productivity and capacity of experiments 

using large-scale instruments at user facilities. Throughout 

the DOE complex, upgrades to various large-scale 

experimental and computing facilities are driving a notable 

increase in the volume of data collected and analyzed, 

straining the already limited capacity of fully “human in the 

loop” experiments. For example, the upgrade to the 

Advanced Photon Source at Argonne National Laboratory 

promises to improve the brightness of the X-ray beamlines by 

500 times, implying that measurements that once took 

several days to weeks will produce at least as much data 

within only a few minutes to hours, dramatically accelerating 

the rates at which data accumulates. Combined with new 

capabilities in scalable workflow management, which directly 

enables access and analyses of data in situ through edge-

enabled computing devices, the time-to-solution for analyzing 

generated datasets is being compressed such that the 

bottleneck is transferred to the “human-in-the-loop” decision-

making. This outcome can potentially impede scientific 

progress if the data are not analyzed in a timely manner. 

Automation and robotics within the scientific enterprise will 

democratize the scientific process, wherein participation from 

a variety of under-represented scientists and citizens can be 

evolved more organically and driven via engagement across 

disciplines. As noted earlier, increases in remote laboratory 

work necessitated by the COVID-19 pandemic—no longer 

limiting participation to those physically in the laboratory—

opened the entire discovery process to more collaborators, 

increasing the diversity and inclusivity of many COVID-19 

research projects [4–7]. 

5.1 State of the Art 

Robotics has a long history in manufacturing, providing many 

examples for adaptation to scientific laboratory experiments. 

Until recently, AI capabilities limited the extent to which 

automation could be implemented. In the 1960s, one of the 

first deployments of robotics was in the General Motors 

production lines. The Unimate (from universal automation) 

robot automated the movement of high-temperature metal 

parts onto cooling water baths [8]. A decade later, the AI 

Center at the Stanford Research Institute (SRI) built Shakey, 

one of the first autonomous robots that was able to break 

down commands into a series of simple actions needed to 

achieve a particular goal with logic [9]. Beyond this, there 
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have been several developments mostly focused on 

anthropomorphic systems that can interact and work with 

different instructions. The introduction of such automated 

systems drastically changed the face of modern 

manufacturing of cars (and other consumer products). 

Today, in industry and defense we also see extremely 

advanced remote control and semi-autonomous robots, for 

example, from Boston Dynamics, which rely on AI capabilities 

for basic operational movement capabilities such as balance, 

reflex, adaptive locomotion, and fine movements. But for the 

most part, these robots, like their autonomous vehicle cousin 

AI systems, do not yet use AI models for higher-level, more 

complex activities such as problem-solving or adaptation 

beyond navigation. Similarly, the autonomy/robotics industry 

solutions are proprietary, closed systems, limiting the 

integration of multiple components to those from a single 

company. The potential, however, to combine the advances 

in AI model capabilities—including generalization and 

emergent properties—with such advanced robotic systems 

creates an unprecedented opportunity to transform scientific 

experimentation and discovery. 

Within the scientific community, some of the first attempts at 

building a fully robotic scientist involved analyses of yeast 

genomes to characterize 13 orphan genes and their functions 

through a robot scientist called ADAM [2, 10], as well as to 

propose new small molecules (or drug candidates) for 

malaria using another automated system called EVE [11]. 

Since then, a number of studies have demonstrated robotic 

automation in laboratories to design new materials for energy 

storage [12, 13], for additive manufacturing to explore the 

toughness of a parametric family of structures [14], inorganic 

materials [15], two-dimensional (2D) crystal superlattices [16], 

novel biosystems [17], biocatalysts, de novo drugs [18], 

synthesis planning of small molecules [19], and many others. 

While an extensive list of articles covering autonomous 

discovery/self-driving labs is beyond the scope of this report, 

we refer the interested reader to [20]. 

Further, recent industry progress with cloud laboratories 

(remotely programmable and usable) such as Emerald Cloud, 

Strateos, and automated bioprocess/synthetic biology 

laboratories such as Ginkgo Bioworks and Zymergen, have 

demonstrated that automation/robotics can clearly accelerate 

industrial processes, from high-throughput screening (for 

biomedical applications and biomaterials design) to other 

allied areas. For DOE-specific applications, these industry-

demonstrated approaches also bring opportunity to 

accelerate progress in other fields such as bio-catalysis, 

advanced manufacturing, climate sciences, high-energy 

physics, and beyond—if there is synergistic growth across 

integrated facilities (as we discuss in section 3.2, Grand 

Challenges). Recent investments in public-private 

partnerships focused on laboratory process automation in 

chemistry, materials, advanced manufacturing, and synthetic 

biology, along with DOE investments in Bioenergy Research 

Centers and the Agile BioFoundry, also imply that these 

AI/robotics approaches can catalyze broad-reaching benefits 

in improving productivity and reproducibility, managing and 

optimizing experimental resources, and ultimately driving and 

accelerating scientific innovation. 

Despite their wide applicability and promise, AI-enabled 

automated labs face a consistent set of challenges that are 

common across multiple domains (biology, chemistry, 

physics, material science, etc.). Today, most high-throughput 

experiments are operated by a highly educated workforce 

(including PhD-level scientists) across DOE facilities—a need 

that has mostly emerged because of the robotic industry’s 

bespoke, complex solutions. For example, while several 

companies have developed proprietary robotics/control 

systems, there is a lack of open standards or community-

based development, including scalable application 

programming interfaces (APIs) for ensuring easy integration 

across such robotics/control systems. In terms of the 

computational ecosystem discussed above, the automated 

laboratory mirrors computing in the 1960s and 1970s, where 

each computer had unique, proprietary programming 

languages, operating systems, and architectures whose 

fundamental storage and operating units might be 8, 16, or 

24-bits. As in the early days of computing, this proprietary 

diversity in automated laboratory systems has led to a 

proliferation of ad hoc solutions even for the most common 

laboratory activities and procedures, requiring proprietary 

integration tools and software and adding to the cost and 

complexity of maintaining such systems. For scientific 

experiments, both the repetitive/common and bespoke 

solutions must co-exist and work seamlessly for automated 

execution of experimental steps to be achieved. 

Advances in AI/ML techniques discussed in earlier chapters 

of this report are poised to revolutionize this landscape, and 

with tangible impacts that will also prove motivating for 

industry to move toward more open systems, accelerating the 

development of automated laboratories. For example, 

developments in large-language models (or foundation 

models, discussed in Chapter 02) are now enabling robotic 

systems to automatically understand and infer the “steps” 

involved within a particular task (e.g., inferring choice of 

“healthy” snacks after a workout or creating procedures for 

complex tasks), and similar extensions are enabling robots to 

often mimic human behaviors by just watching. Advances 

such as with surrogate models (Chapter 01) will enable the 

near-real-time operational decisions necessary for robotic 

laboratory work, while the inverse design capabilities 

discussed in Chapter 03 will further extend the capabilities of 

foundation models. Given the strides made in visual systems 

and language models, we posit that these technologies are 

ripe for advancing automated laboratories as well. 
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5.2 Grand Challenges 

We highlight three grand challenges that exemplify the 

application of significant advances in AI and robotics to 

support autonomous discovery: 

 Building a robot scientist to accelerate scientific discovery. 

 Building a high-throughput automated facility for scientific 

discovery. 

 Developing smart integration for connected scientific 

facilities. 

5.2.1 BUILDING A ROBOT SCIENTIST TO 

ACCELERATE SCIENTIFIC DISCOVERY 

A central goal for automated discovery is to improve the 

efficiency and speed of repetitive actions within scientific 

processes (e.g., DNA transformation). Each experiment is 

typically conceived based on prior knowledge; refined based 

on observations; and optimized through iterative executions, 

evaluations, and adjustments, to eventually be distilled into a 

discrete set of steps that are then executed in the laboratory 

by some combination of humans and instruments (a 

“protocol”). Near-term advances in AI and robotics will enable 

these protocols to be executed more efficiently and quickly, 

but the development of a robotic scientist that can design and 

optimize the protocol itself is a grand challenge. This 

experiment design process may involve accruing and/or 

assembling a set of instruments (or designing new ones), as 

well as other intermediate steps that are documented for 

further downstream use. Thus, any scientific experiment may 

be viewed as an iterative workflow involving multiple steps, 

captured as a protocol (analogous to a computer program, 

but executed by humans and instruments rather than a 

computer). While human intuition for designing such 

experiments is synthesized from existing knowledge and 

experience, automation (via robotic scientists) requires 

learning this experience and synthesizing knowledge from 

structured and unstructured data sources—which is quite 

different from how humans learn scientific experimental 

processes. Hence, the automation of scientific process 

design with robotic scientists requires advances in knowledge 

distillation and synthesis that go beyond current approaches 

(that mostly include structured data within datastores, or 

information represented via ontologies). With advances in 

foundation models, there is an opportunity to capture implicit 

representations of knowledge both in a domain-specific and 

domain-agnostic manner. 

A robot scientist must be able to synthesize vast amounts of 

scientific knowledge and data, and then develop ways to 

incorporate prior(s) and generate new hypotheses based on 

current experimental observables. The aspect of constructing 

new hypotheses is dependent on an inner AI loop, which is 

dominated by fast analyses of existing data (e.g., exploiting 

surrogate models) and relating this analysis to scientific 

evidence drawn from distilled knowledge in prior literature 

and current observations. The outer AI loop will then provide 

a way to evaluate these hypotheses and select the “most 

promising” ones for experimentation. This outer AI loop will 

leverage active and reinforcement learning approaches.  

Further, robot scientists will require extensive automated 

planning for designing experiments. This need will demand 

rigorous statistical techniques such as optimal experimental 

design or via robotic planning approaches that have been 

targeted for self-driving vehicles or automated design 

capabilities such as discussed in Chapter 03. Although 

limited prototypes foreshadowing robot scientists exist for 

specific domains such as in manufacturing, generalizing such 

robot scientists for domain-agnostic scientific experiment 

design is a grand challenge. 

5.2.2 BUILDING A HIGH-THROUGHPUT 

AUTOMATED FACILITY FOR SCIENTIFIC 

DISCOVERY 

A fully automated experimental facility will be essential to 

enabling human and/or robot scientists to connect and 

collaborate on multiple experiments simultaneously, or to 

facilitate the adaptation and translation of experiments and 

protocols from one domain to another. This concept of an 

autonomous scientific facility will also require capabilities for 

robot scientists to be modeled as an assembly of connected 

work cells (Figure 5-3a) consisting of closely related 

instruments; or for a robot scientist to be assembled on 

demand to implement an experimental protocol (Figure 5-3b). 

Eventually, such connected robotic platforms could be used 

to execute larger experiments (or even ensembles of 

experiments) based on a common operating environment. 

One of the key challenges for implementing such high-

throughput automated facilities for scientific discovery is in 

enabling integration of DOE infrastructure, which 

comprises some of the nation’s large scientific instruments, 

with ad-hoc robotic instruments for specialized disciplines. 

Advances in the use of AI for control and optimization of 

complex engineered systems (Chapter 04) will be critical for 

the necessary modeling of such large-scale facilities, 

including the use of advanced simulation toolkits that provide 

not only system schematics and visualizations but also 

simulate instrument self-assembly (to execute a scientific 

experiment) and overall operation for specific classes of 

experiments. This will require significant investment in the 

development of “digital twins” and associated virtual 

environments (e.g., with augmented/ virtual reality) to support 

the full range of design and operation, including interactive 

instrument design, scaling, and the modeling and prototyping 

of experiments at scale.  

Similarly, different experimental techniques (e.g., neutron 

scattering, X-ray tomography, cryo-electron 

microscopy/electron tomography [EM/ET]) are often 

combined with computational simulations to characterize 

material properties at multiple temporal and spatial scales. 
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AI/ML techniques (specifically, surrogate models and active 

steering of experiments) can act as a “glue,” providing a 

significant leap in how such complex/emergent phenomena 

are measured. In addition, by creating a digital twin of each 

experiment, which is used to constrain systematics to a much 

finer degree than currently possible and where the twin is 

better characterized by AI/ML than any person could 

replicate, we have the potential to self-calibrate simulations 

and digital twins for dynamically changing systematics. 

A second challenge in this area is the development of self-

calibrating facilities, as illustrated in the processes being 

developed for future sky-mapping telescopes [21]. We posit 

that combining the execution and in situ analysis of multiple 

experiments and simulations via AI systems can improve 

upon instrument/experiment measurements by at least an 

order of magnitude, without redesigning the instruments. For 

example, in climate monitoring, edge AI and automation have 

enabled the controlling of scientific instruments (such as 

weather LIDAR) to detect features of interest in low-resolution 

scanning mode, then automatically adjust to high-resolution 

data collection with fixed aim at the detected feature.  

5.2.3 DEVELOPING SMART INTEGRATION FOR 

CONNECTED SCIENTIFIC FACILITIES 

DOE runs some of the nation’s large scientific instruments, 

including particle accelerators, synchrotron light sources, 

high-energy laser systems, HPC environments, and other 

instruments that are integral to the scientific enterprise not 

only within DOE but also across universities and industry. 

However, these facilities run primarily as independent 

systems. This is in sharp contrast to our routine ability to 

combine multiple, distributed computing, data, and sensing 

resources into coherent experimental configurations through 

the use of workflows and high-performance networks 

including the Energy Sciences Network (ESnet). 

DOE facilities and instruments are currently run at a scale 

that supports largely automated sample processing and 

loading conditions. Moreover, new instruments as well as 

upgrades to existing instruments introduce improved 

automation capabilities. These include partial (in situ) data 

processing and analyses that can provide operators with 

support for decision making (about the experiments to be 

conducted or even how they can troubleshoot some 

experiments). However, the automated sample processing 

utilizes robotics in a way that is largely driven by the 

motivation to increase the throughput and is less focused on 

creating smart interconnected experimentation. For instance, 

AI and interconnected experimentation can enable queued 

experiments to be combined with others to increase 

efficiency, reduce redundant work across facilities, and even 

include possible follow-up experiments in downtime. In these 

situations, AI/ML techniques can play an enabling role in not 

only improving the throughput but also in designing, 

optimizing, controlling, and executing experiments at 

unprecedented scale. With developments in active learning 

and reinforcement learning techniques and automation, these 

facilities could execute experiments autonomously with little 

human intervention needed for scheduling and operation.  

The combination of autonomous laboratories with new robotic 

and sensing technologies and advances in HPC sets the 

groundwork to create connected scientific instruments of 

the future: where federated experimental and computing 

facilities can “collaborate” on specific scientific tasks, 

providing significant acceleration (> at least an order-of-

magnitude speedups) than currently enabled by automated 

laboratories. While present-day laboratory automation 

focuses on siloed throughput, there are synergies from 

considering many large-scale instruments collectively as a 

federated network alongside expanding DOE supercomputing 

infrastructure. In addition, edge computing technologies 

including sensor networks and novel hardware architectures 

can enable high-throughput data analysis, which can then be 

fed into HPC-enabled simulations. The complexity of such 

integrated instruments—with diverse computational, sensing, 

measurement, and other resources—will demand AI 

capabilities to guide the configuration, optimization, and 

operation of experiments. 

 

Figure 5-3. A conceptual overview of an autonomous scientific facility composed of flexible workcells. (a) A workcell is composed of a set of 
connected instruments/robots that can be operated as a single robotic scientist. (b) This assembly is facilitated by “on-demand” units that are 
brought together by tugboats and can be used to investigate a variety of scientific phenomena. 
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5.3 Advances in the Next Decade 

These three grand challenges motivate three suites of 

capabilities that must be developed within the DOE. 

5.3.1 AUTOMATION-SPECIFIC CAPABILITIES 

Open co-design of laboratory robotics. DOE investment in 

laboratory robotics is essential to reach the data volumes and 

quality needed to enable autonomous discovery and self-

driving labs. While current approaches have produced 

working prototypes of self-driving labs, they do not exploit the 

full potential of robotics, as industry advances and academic 

research in robotics are often narrowly focused on replicating 

human actions and tasks. Unique micro- and nanofabrication 

expertise within DOE can be leveraged to operate at much 

smaller scales than conventional robotics, for example, for 

DNA assembly [22] or phenotypic screening [23], embedding 

molecular sensors on semiconductor chips [24], producing 

wireless and optically activated microscopic sensors [25] that 

enable a scientific internet of things (IoT), monitoring 

metabolism through quantum effects [26], or interacting with 

cells and their metabolism through light [27, 28]. Thus, DOE 

investment in laboratory robotics will provide unique abilities 

to study and manipulate matter at the appropriate data scale 

and cost, in domains where industry and academia cannot (or 

lacks incentive). 

Apart from sensors and instrumentation development, DOE 

investments toward the open co-design of laboratory robotics 

must include open software ecosystems that can provide an 

interoperable environment for laboratory equipment. Related 

efforts in Europe have focused on adopting open standards 

such as SILA [29] for robotic instrumentation; however, such 

standardization and toolkit adaptation remains elusive given 

the diversity of vendors and custom (and often proprietary) 

software developed for operating such robots or a particular 

company’s product line. This situation will require developing 

(1) open standards to enable interoperation, (2) protocols and 

frameworks to facilitate open exchange of information and 

metadata across experimental workflows, (3) self- and auto-

calibration capabilities for robotic instruments, and 

(4) computer vision and modeling approaches for capturing 

how experiments can be run. 

Robotics and automated laboratory in remote and/or 

harsh environments. Another important area of research is 

in the use of robotics and automated labs in settings that are 

dangerous or inaccessible (e.g., due to location or spatial 

scales) to humans or even extant electronics and robotics 

systems. There is a significant need for research that “lets” 

robotic labs handle the dynamic environments encountered in 

inhospitable environments, as well as for field research on 

scales or timescales that are impractical for human observers 

(e.g., longitudinal measurement campaigns). This research 

can potentially leverage work within the DOE National 

Nuclear Security Administration (NNSA) or other federal 

agencies such as the National Aeronautics and Space 

Administration (NASA); however, there are unique 

applications within the DOE scientific facilities where 

significant research investments are needed. 

Additional items to address in this domain include interacting 

with unique (never-seen-before) settings or conditions, 

requiring prediction outside of trained data bounds; 

interacting intimately with unknown, multi-domain physics; 

creating physical interfaces between the robot and 

objects/environments; learning from mistakes in some 

scenarios and having zero tolerance for mistakes in others; 

intelligently placing sensors and understanding their 

performance in the environment; and reacting/adapting to 

changing conditions, limited access, and limited power. This 

underscores the need to infer both perception and action well 

beyond any available training set, with the need to perform 

complex and unpracticed physical tasks (e.g., manipulation). 

Real-time autonomous agent learning for scientific 

facilities. Data generated by upgraded instruments and 

robotic instruments (including deployed field laboratories and 

sensor networks) pose an important challenge for managing 

autonomous scientific facilities. AI models will be required to 

support time- and/or resource-limited situations through the 

use of existing knowledgebases, while rapidly integrating new 

data in real time to feed forward into control and decision 

models will enable on-the-fly decision-making. Among other 

impacts, this capability would enable data collection by 

agents or robots whose distribution and data sampling could 

also be orchestrated by an AI system. Other potentially high-

impact application areas beyond autonomous laboratories 

include experimental apparatuses, additive manufacturing, 

and robotics in the field and inhospitable environments. While 

some real-time data integration is being performed in narrow 

fields today, we envision a broad integration of disparate data 

that requires fast cleaning, processing, and blending for use 

in training AI models.  

5.3.2 CROSSCUTTING TECHNOLOGY 

CAPABILITIES 

Mathematics and fundamental research. The ambitions of 

autonomous discovery with AI and robotics all rest on 

(1) developing computational interfaces to manage scientific 

goals and methods; (2) correct and reliable robotic execution 

of the goals; and (3) navigation and optimization among the 

physical constraints of materials, supplies, and experimental 

conditions. If these three distinct challenges can be unified 

computationally with advances in AI, then the fundamental 

capability of autonomous discovery can be realized. 

Abstractions and languages for encoding laboratory protocols 

for automated execution are also foundational to achieve the 

grand challenges discussed in Subsection 5.2 above. 

Specifically, scientific laboratory protocols in an automated 

setting will drive the generation of highly reproducible 

experiments and high-quality data. Scientific protocols are the 

step-by-step techniques used in research. A protocol in data 
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science research, for example, can be shared via the code 

used to transform the input data to statistical conclusions 

drawn or charts generated. Similarly, a protocol in biology is 

typically shared through written step-by-step instructions with 

a sufficient level of detail such that a reader of the protocol 

could replicate the study. Furthermore, protocols have 

different levels of generality. 

Protocols can be expressed solely in terms of reproducing 

the results of a single paper; however, protocols can also be 

used more generally for expanding on a particular result or 

applying it to different inputs. For example, a protocol to 

perform a type of gene “knockout” can simply outline the 

steps used to knock out a particular gene in a particular 

model given a particular study’s downstream conditions; or a 

protocol can be abstracted to be applicable for different types 

of models, different genes, and even different conditions.  

Protocols are today typically written for human colleagues 

who share a vast amount of background information, 

common sense, and practice. They involve a combination of 

human actions, instrument settings and procedures, and 

other functions in the context of a fully manual laboratory 

process. Advances are needed to translate this shared 

knowledge to computational infrastructure, along with 

standard APIs for digital control of instruments. The fluidity of 

abstraction as well as the challenge of translating traditional 

scientific protocols from open-natural language into closed-

machine steps is a major challenge. 

Model calibration is also essential for experimental design. 

Calibration refers to the ability of a model to correctly 

characterize its own uncertainty on a problem, and that its 

characterization nears exactness in practice. Calibration is 

achieved by linking experimental data to model inferences. In 

practice, calibration requires data infrastructures for collecting 

different conditions of data and for harmonizing across the 

data’s organization, given that calibration is generally specific 

to a particular instrument and its own noise and uncertainty 

characteristics. Further advances are needed in areas such 

as automating the calibration of AI models within 

experimental settings against instruments and tasks, as well 

as understanding how to translate calibration settings across 

instruments and experimental conditions. 

An allied area of AI research where there have been 

significant challenges is integrating neural network models 

with symbolic computation techniques (such as incorporating 

first-order logic). While emerging techniques are focused on 

developing neural-symbolic models, the best ways to 

incorporate them with emerging mathematical and formal 

logic constructs, such as probabilistic models, remain elusive. 

This situation is highlighted by the fact that language models 

developed for both general purpose and specialized (domain-

specific) areas are poor in predicting out-of-distribution 

samples, as well as in logical/deductive/abductive reasoning. 

Significant advances in formal logic and reasoning will be 

necessary to enable autonomous discovery facilities to 

flourish. 

Software and frameworks. Currently, scientists have no 

unified or accepted notion of a programmatic interface for 

performing experiments; collecting experimental results 

digitally; and using coding interfaces to control the 

instruments, the sample handling equipment, or other devices 

in the conduct of wet-lab research. Many unspoken 

assumptions are made in traditional laboratories—even with 

respect to important attributes such as ambient temperature, 

rinsing protocols, and handling of samples. These 

assumptions need either to be computationally inferred with 

the usage of AI planning models or explicitly outlined 

programmatically by the scientist. Furthermore, results from 

experiments need to be communicated back from the robotic 

platforms. While seemingly simple, it will be challenging to 

ensure that AI laboratory systems properly respond to cases 

such as experimental failure, noise, and even “serendipitous” 

anomalies—the root of much paradigmatic innovation in 

science. The process of transforming subjective experience 

into analytical and quantitative measures, emphasizing some 

aspects of experience over others, is also challenging. 

Finally, to fully leverage autonomous discovery especially in 

conjunction with AI techniques for optimal experimental 

planning, new techniques must be theorized for the 

convening of which experiments should be performed to 

achieve a specific goal. 

Data management and AI workflows for autonomous 

scientific discovery. Current scientific data are generally 

balkanized, disorganized, and disaggregated, accessible 

mainly (if at all) through the supplemental information of an 

associated publication. In experimental laboratory settings, 

the harmonization problem across batches, instrument 

models, conditions, and even presentations of the data is an 

additional challenge. In experimental sciences such as 

biology, much of the data today is kept in complex Excel 

sheets, stipulating the range of assumptions and conditions 

used for generating the data. With the aim of leveraging AI to 

drive experimental planning and prediction and even to 

generate synergistic connections between experiments and 

prior data, it is essential that new data infrastructure and 

methods be designed to accommodate historically generated 

data, as well as the increases in data generation from 

automated and autonomous instruments and laboratories. 

As facilities continue to expand and upgrade, the data 

volumes that will be generated, such as from various light 

sources, are projected to reach multiple exabytes per year. At 

these scales, data analyses processes and workflows need 

to be primarily autonomous: from identifying what raw 

datasets to store to the meaningful extraction of information 

from such datasets. 

AI predictive models are built by learning from massive and 

often disparate sources of training data, and the crucial steps 

of assembling training datasets currently requires months of 
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work for a human. The result is that opportunities for timely 

scientific discovery are missed. As the amount and 

complexity of available data across the science, energy, and 

security sectors continue to increase exponentially, the need 

for AI methods to augment, if not automate, the tasks related 

to curating and preparing data, managing heterogeneous 

data, and building training datasets will be indispensable for 

transformative change to occur in the efficiency and 

effectiveness of AI prediction in robotics, autonomous 

discovery, and beyond. 

The enabling technologies that could transform future data 

management and infrastructure systems will rely on major 

advances that are enabled by new AI methods and 

capabilities, including data format standardization, optimal 

data sampling, and data transfer. Major data-intensive uses 

of these transformative AI technologies across science, 

energy, and security will also present researchers with 

additional challenges such as those related to data security 

and privacy. These and other challenges and opportunities 

are detailed in Chapter 14. 

Beyond the challenges of building a data infrastructure to 

enable harmonization across user facilities, domains, and 

even computing and experimentation, such factors as 

explainability, trust, and rigorous system evaluation 

capabilities will pace the adoption of autonomous discovery 

within traditional scientific practice. For example, in 

developing a programmatic interface for user facility–based 

autonomous discovery, researchers will have to deal with the 

challenge of overcoming the experiential and education 

divide. This is an education and adoption challenge, and 

much progress is already underway with the increase in 

computational requirements across education in the scientific 

disciplines. Furthermore, such an interface needs to be co-

designed with many disciplines, experiments, and future 

experiments in mind, likely requiring many workshops and 

outreach activities. These practical challenges are already 

being met with solutions, as many science education 

programs increase computational learning requirements. 

AI-oriented hardware architecture. An additional area of 

research is needed in seamless integration of sensor 

networks with embedded AI/ML capabilities such that 

analyses of data can be performed in situ—where the data 

are generated. Edge analysis will be passed to subsequent 

steps of an experimental protocol such that downstream 

tasks can automatically “register” and “anticipate” failures as 

experiments are designed and executed. While advances in 

novel AI-oriented hardware continue to fuel the race toward 

exascale and zettascale computing, this race needs to be 

aligned with scientific use cases requiring compatible 

resources at the edge. This need extends the traditional co-

design of individual computing platforms to also include their 

integration with (and the design of) scientific instruments.  

5.4 Accelerating Development 

We outline two pilot projects that can provide both near-term 

improvements while also demonstrating forward paths that 

will provide insight, including “early failures,” to additional pilot 

projects in different domains. 

Regional, continental, and earth-scale monitoring 

systems initiative. With new sensor modalities, AI “at the 

edge” (within the sensors [30]) can analyze data in situ, 

detecting anomalous conditions and events, and ultimately 

provide (e.g., coupled with predictive models) real-time 

decision support for both natural and man-made events. 

Moreover, AI@Edge enables automation, for instance using 

an AI model to detect events or conditions of interest and 

reconfigure the instrument (e.g., sampling rate, focus, or 

direction of observation) to examine such phenomena in 

greater detail. Such intelligent sensing networks could then 

be used to monitor—and capture in detail—events such as 

earthquakes and extreme weather conditions. A pilot project 

is needed to integrate autonomous predictive and reactive 

modeling capabilities spanning the edge-to-HPC continuum 

in an Autonomous Discovery laboratory context. This effort 

will include training AI edge code for autonomy in detecting 

conditions or events of interest as well as pre-analyzing 

observational data. Additionally, these edge AI codes must 

include actuation capabilities, such as adjusting observational 

instrument settings (e.g., orientation, sampling rates, etc.). In 

turn, edge capabilities in this pilot must be integrated with 

HPC modeling systems to create a control and modeling loop 

that continually updates the HPC models (and ultimately will 

continually train AI models). 

This pilot could leverage existing DOE facilities and 

resources, such as accelerating the adoption of edge AI 

capabilities in weather observation instruments operated by 

the Atmospheric Radiation Measurement (ARM) User Facility 

as well as the new Urban Integrated Field Laboratories. 

Similarly, edge AI systems are already being deployed for 

experiments supporting not only ARM and U-IFL sites but 

also NNSA’s NA-22 program (in situ radiation monitoring and 

characterization) and the Office of Energy Efficiency and 

Renewable Energy (EERE’s) Vehicle Technologies Office 

(vehicle mix and flow observations). 

Pilot project on the design of (bio-)polymers for critical 

mineral extraction. Critical minerals are currently used in 

multiple clean energy technologies including electric motors 

and batteries. Although many of these elements are 

abundant in the Earth’s crust and are present in waste by-

products like coal ash, acid mine drainage, or consumer 

electronics, they are often dilute or difficult to separate with 

existing technologies. For example, China controls 80% of 

the world’s supply of rare-earth elements, of which 920 lbs. 

are needed for each F-35 jet. Similarly, other critical 

elements, such as the lithium and cobalt needed in batteries, 

are primarily produced in Chile and the Congo, respectively. 
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Given the inhospitable regions where such critical elements 

are found, there is an immediate need to extract, concentrate, 

and recycle critical minerals in a more efficient manner, for 

instance, by using chemical sorbents that act as selective 

sponges, and which need to be designed from existing 

knowledge (and from scratch).  

However, our knowledge in chemistry, materials, proteins, 

and organisms is siloed, and we need advances in both AI 

and robotics to enable the design of novel materials that can 

extract rare-earth minerals. Given the incompleteness of 

current knowledge, a pilot is needed to develop new, AI-

enabled laboratory processes to inform our understanding of 

biological principles that can be used to capture and 

concentrate these minerals directly. For example, bacteria 

have already been engineered toward reducing certain types 

of phosphates complexed with certain minerals. Yet the 

ability to design, build, and test large-scale cycles of rare-

earth extraction or processes and scaling them within 

reactors will require (1) automation and new biotechnology 

protocols to survey and design new synthetic organisms with 

the ability to process such materials, (2) new AI methods that 

go beyond interpolation to examine which pathways can be 

used in these applications, and (3) data collection at scale 

regarding rare-earth microbiomes including fungi and other 

organisms that can provide new ways to energize rare-earth 

extraction and clean energy technology. 

The pilot would also need to develop AI approaches that can 

automatically identify datasets for developing general-

purpose, multitask, and cross-discipline material property 

models for DOE-relevant domains, prioritizing data collection 

efforts for these materials/tasks where needed. The pilot 

initiative would entail the development of robotic standards 

using open-source standards such as the robotic operating 

system (ROS, [31]) and explore additional open standards to 

support the interoperability among instruments and scientific 

workflows and across facilities (for demonstrating a smart-

interconnected facility). 

In the ten-year timeframe, progress on two complementary 

areas would need to be achieved, including in (1) developing 

and promoting standards for modular hardware that support 

interoperability and discoverability with automatic data 

capture and storage; and (2) developing methods to 

automatically construct digital twins for laboratory equipment 

during operation. Intersection with other approaches, 

including property inference and inverse design, surrogates, 

foundation models, and prediction of complex engineered 

systems, will be needed. 

5.5 Expected Outcomes 

AI-enabled autonomous discovery presents a new, and 

urgently needed opportunity to increase the productivity and 

reliability of DOE’s investments in scientific instruments and 

infrastructure. Through interconnected networking, 

automation, and integrated AI for experimental design, 

autonomous discovery will reduce bottlenecks due to human 

involvement and increase reliability through systematic 

handling of materials and smart tuning of instruments. The 

impact of increased throughput, analysis, and aggregation of 

experimental data has the potential to drive scientific 

discovery by accelerating the ability to (1) screen new 

materials or drugs experimentally; (2) increase the calibration 

and decrease the uncertainty of models through the 

leveraging of AI-driven exploration, typically occurring during 

instrument downtime; and (3) increase scientific productivity 

by offloading time spent on protocol design to computing 

methods. 

There is potential for AI systems, as described here and in 

detail throughout Section 01 of this report, to revolutionize the 

nation’s manufacturing, therapeutics, and sustainability 

industries through advances in biological and inorganic 

material design capabilities. For example, AI for drug design 

has been an accelerating and growing field, initially 

leveraging high-performance computing with traditional 

modeling and simulation. Surrogate (Chapter 01) and 

Foundation (Chapter 02) models offer the potential to create 

AI-driven computational systems that can screen billions of 

compounds a day for a target of interest. A similar system for 

inorganic material design would enable the design, testing, 

and manufacture of new materials, employing not only robotic 

laboratory and manufacturing systems but also inverse 

design approaches outlined in Chapter 03. However, without 

commensurate AI-enabled experimental throughput, these 

models will be limited due to insufficient training and 

calibration, in turn reducing our capacity to synthesize and 

test the resulting vast array of potential compounds. These 

challenges are also mirrored in other domains such as 

material design.  

Autonomous discovery, integrating experimental science with 

AI-enabled computation, will also radically extend the reach 

of the enormous investments across the DOE complex in 

computing advances (e.g., the Exascale Computing Project 

[ECP]) and instruments ranging from genetic sequencers to 

entire user facilities. Illustrated in the life sciences domain, 

these advances offer the most promising path toward closing 

the massive gap between the identification of a disease or 

target of interest and an appropriate therapeutic—by 

accelerating the planning, design, and execution of 

experiments to identify targets and potential compounds of 

interest. The same outcomes will accrue not only to the life 

sciences but also to the material sciences and other domains 

(outlined in Section 02 of this report), lowering the overall 

cost of designing, engineering, and manufacturing novel 

materials.  
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06. AI FOR PROGRAMMING AND SOFTWARE ENGINEERING 

Software is ubiquitous throughout the scientific and energy 

infrastructure, whether it is controlling large-scale, complex 

instruments or monitoring and optimizing electricity 

generation and distribution. As these systems become 

increasingly complex, ensuring their robustness, reliability, 

security, and rapid recovery are not only more challenging 

but also more critical given the central role that these 

infrastructure assets play in every facet of society. 

Increasingly interconnected, today’s software-rich 

infrastructure is also vulnerable to both cybersecurity and 

natural disruptions that can propagate through systems—

demanding verifiably correct and robust code. Consequently, 

major productivity, quality, and verifiability improvements are 

needed in programming and software engineering for 

applications ranging from complex systems controls 

(see Chapter 04) to scientific applications (Section 02 of 

this report) to fully exploiting new HPC architectures. 

Recently, advances have been made demonstrating the 

feasibility of large-scale language models (e.g., GPT-3 [1], 

Codex [2], etc.) to write code and to translate code from one 

language to another. This chapter discusses the opportunity 

for using artificial intelligence (AI) to address the software 

needs of the control systems (including scientific instruments 

and energy infrastructure), scientific computing, and high-

performance computing (HPC) communities. The importance 

of this topic is not only highlighted in the 2020 AI4Science 

report [3] but also in a follow-on report, “Program Synthesis 

for Scientific Computing” [4]. More recently, the DOD 

community also created a report on “The Science of Software 

Development and Use,” [5], further laying the groundwork for 

pursing the opportunities discussed in this chapter. 

A central strategy is to develop AI assistants for code 

development and maintenance, software optimization and 

tuning, and software architecture and design to improve the 

productivity of human programmers by 10x or more, to 

improve the reliability of software systems, and with a focus 

on the needs of the U.S. Department of Energy (DOE) in 

science and engineering codes and for leading-edge 

architectures. Beyond the critical importance of addressing 

these and other current challenges, a key long-term objective 

is to develop AI systems whose algorithms exceed the best 

human-known algorithms and that ultimately include novel 

algorithms unanticipated by experts. 

6.1 State of the Art 

Early-stage commercial tools, such as GitHub Copilot [6] and 

Amazon CodeWhisperer [7], act as AI-assisted co-

programmers, generating code recommendations based on 

prior code and user comments. At the system software level, 

tools such as Ithemal [8] use AI techniques to make data-

driven choices with system software (e.g., compilers and 

runtime systems). Concurrently, there is extensive research 

in this area, focusing on using AI to perform a broad range of 

critical tasks such as text-to-code generation (to generate 

code from natural language description) [1], code completion 

(to predict following tokens based on code context) [9], code 

translation (from one programming language to another) [10], 

defect detection (to identify resource leaks, code 

vulnerabilities) [11, 12], clone detection (to measure the 

semantic similarities between codes) [13], cloze test (to 

predict the obscured section of a code) [14], code search 

(e.g., for a natural language query, to find the most relevant 

code in a collection of codes) [15], code repair (to fix bugs 

automatically), code summarization (to generate natural 

language comments for code), and documentation translation 

(from one natural language to another). 

The scale and complexity of DOE science and energy 

systems differentiates them from typical commercial systems 

and their associated applications (e.g., desktop computers, 

mobile devices, or cloud or web services) targeted by today’s 

commercial code assistance tools, including CoPilot and 

CodeWhisperer. While there are some extremely large 

industry data centers with tremendous computing capability, 

the types of applications and workloads they support often 

differ greatly from the demands of large-scale science. The 

PROJECT SPOTLIGHT 

Project Name: FourCastNet 

PI: Anima Anandkumar 

Organizations Involved: Lawrence Berkeley National 

Laboratory, NVIDIA, Caltech 

Goal: Scale deep learning models to forecast global 

atmospheric dynamics at high resolution to accelerate 

expensive numerical models in weather and climate. 

Significant Accomplishment: Developed the first deep 

learning model capable of forecasting global weather 

patterns with accuracy and resolution comparable to 

operational numerical weather models, which features 

orders-of-magnitude reduction in computational cost per 

forecast. 

In the News: Perlmutter-Powered Deep-Learning Model 

Speeds Extreme Weather Predictions. Available at 

https://www.nersc.gov/news-publications/nersc-

news/science-news/2021/perlmutter-powered-deep-

learning-model-speeds-extreme-weather-predictions/, 

accessed December 2, 2022. 

https://www.nersc.gov/news-publications/nersc-news/science-news/2021/perlmutter-powered-deep-learning-model-speeds-extreme-weather-predictions/
https://www.nersc.gov/news-publications/nersc-news/science-news/2021/perlmutter-powered-deep-learning-model-speeds-extreme-weather-predictions/
https://www.nersc.gov/news-publications/nersc-news/science-news/2021/perlmutter-powered-deep-learning-model-speeds-extreme-weather-predictions/
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unique needs, complexity of architectures, sparsity of code 

examples, and rapid evolution in systems all make the use of 

AI for programming and software engineering particularly 

challenging and limit the extent to which commercial systems 

can play a significant role. For example, the state-of-the-art 

approach to simplify code development for the diversity of 

HPC architectures is to invest heavily in performance-

portability programming abstractions such as Kokkos [16] and 

Raja [17]. While there have been recent examples of 

successful use and deployment of AI for HPC [18], the use of 

AI in support of HPC programming for scientific computing 

does not yet exist. 

Throughout this chapter, the terms “software” or “code” refer 

not only to specific source code for individual executable 

programs but also to more complex software systems, such 

as workflows, or to systems comprising various AI model 

components, along with their associated configurations 

(hyperparameters, weights, etc.). 

6.2 Grand Challenges 

A number of AI building blocks such as foundation models 

(Chapter 02) and inverse design (Chapter 03) will be critically 

important to achieving the cost, agility, and quality 

improvements necessary for current and future software 

systems. Here we outline three grand challenges that will 

themselves form the underpinnings for applying AI to the 

programming and software engineering needs across DOE’s 

scientific, energy, and security mission areas. The first 

addresses the software necessary for the control and 

automation of complex, interconnected systems—discussed 

in Chapters 04 and 05. The second grand challenge focuses 

on codes embedded throughout the DOE enterprise that 

support science and engineering across desktops, clusters, 

laboratory instruments, and other experimental, 

computational, and data infrastructure. The third grand 

challenge in this area specifically targets DOE’s leadership 

HPC infrastructure. 

6.2.1 AI FOR PROGRAMMING CONTROL 

SYSTEMS 

Control software for complex engineered systems, such as 

those discussed in Chapter 04 for the electricity grid, high-

performance computing facilities, nuclear power generation 

systems, and others, is critically important to support national 

security, economic competitiveness, and the quality of life in 

the U.S. These systems face ever-increasing threats from 

evolving and growing demand patterns, the changing climate 

(driving both changing demand and weather disruption), 

aging infrastructure, reliance on international supplies, and 

adversarial attacks. Similarly, control systems are at the heart 

of automated or AI-driven laboratories operated throughout 

the DOE complex as detailed in Chapter 05. A real-time 

control system will thus comprise many scales, many 

components, and many subsystems—each controlled by 

software systems—that must not only be internally correct 

and robust but must interoperate and adapt to both short-

timescale disruptions and long-timescale evolution. 

A grand challenge to use AI to generate control-system 

software could significantly improve our ability to ensure 

reliability and resilience for control systems that adapt to 

rapidly changing conditions. In the envisioned system, AI 

capabilities comprise the control software. Utilizing systems 

such as inverse design (Chapter 03), the AI system for 

control will be generated automatically based on domain-

specific design objectives, operational and simulation-

generated data, and assurance mechanisms quantifying the 

trustworthiness and correctness of the control system with 

respect to its design objectives. The system must also be 

robust, reliable, and resilient to faults from natural and 

adversarial causes. For example, a mission-critical 

infrastructure operating at 99.999% (“five nines”) of reliability 

will experience 5 minutes of outage annually. If this level, or 

higher, is required for the overall system, then the control 

software can be no less, and would ideally be much more, 

reliable. 

6.2.2 AI FOR SOFTWARE ENGINEERING OF 

SCIENCE AND ENGINEERING CODES 

Science and engineering codes designed for DOE are 

distinguished from the broader software community by 

algorithmic complexity and rigorous validation and verification 

requirements. In addition, scientific codes are very 

specialized and are not likely to exist in large repositories, 

confounding approaches such as those used by Co-Pilot and 

CodeWhisperer, which learn from vast landscapes of 

common methods and classes of applications. Finally, 

scientific codes are typically a composition of codes and 

libraries that require multi-physics, complex numerical 

methods, and a range of multi-fidelity and multi-scale 

solutions. The national importance of DOE’s science, 

engineering, energy, and security missions requires the 

laboratories to make significant investments in scientific code 

development. The potential for using AI to aid in that 

development is a grand challenge that could lead to massive 

improvements in productivity, software quality, and 

application sustainability—all critical challenges for the 

DOE complex. We briefly discuss each of these 

improvements next. 

AI-generated software could significantly improve 

productivity. The engineering and science codes that 

represent the bulwark of DOE’s science, energy, and security 

mission areas each take years, sometimes decades, to 

develop to the quality level required by those missions. These 

codes are developed with a wide range of requirements for 

fidelity, uncertainty quantification (UQ), verification and 

validation (V&V), and time to solution. The traditional 

approach—independent development by thousands of teams 
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across the complex—is time consuming and expensive. AI-

generated scientific codes would enable the generation of 

custom codes that incorporate new algorithms (ultimately 

including those created by AI models), are constrained by 

user requirements, and implicitly certified for production use. 

For example, integrating new components such as a new 

preconditioner or eigensolver today is gated by the ability of 

many software teams incorporating the components into 

libraries or other codes. An effective AI-driven software 

maintenance system would accelerate the adoption of such 

improvements. Success would mean order-of-magnitude 

productivity improvements and significant savings in 

expenses historically used for software design, development, 

evaluation, and production hardening. From a DOE mission 

perspective, our simulation and modeling capabilities would 

exhibit the agility, quality, and responsiveness increasingly 

demanded by mission needs, along with equally important 

reductions in costs associated with human-in-the-loop factors 

such as long development cycles and identifying and 

addressing software flaws.  

Software quality is a significant and growing challenge for 

scientific codes [19]. AI-generated software constrained by 

strict guidelines for software engineering [20] could lead to 

consistent quality of software and explainable, enabling 

human verification, and simplifying debugging. High-quality 

AI-generated and AI-verified software could also be more 

secure than our existing code base—ensuring code that is 

without known code vulnerabilities and is responsive to 

emerging cybersecurity threats. 

Finally, AI-developed software systems and the associated 

quality improvements will also dramatically improve software 

sustainability. Today’s codes, developed over many years by 

a succession of programmers, can involve hundreds of 

thousands of lines of code—a daunting challenge to maintain, 

much less to extend or port to new computing architectures 

or laboratory instruments. For the AI model, however, 

modifying, extending, and porting code are innate capabilities 

that make these tasks no more challenging, and potentially 

even easier, than code generation.  

6.2.3 AI FOR PROGRAMMING HIGH-

PERFORMANCE COMPUTERS AND ADVANCED 

ARCHITECTURES 

The past decade has seen extreme growth in heterogeneous 

architectures for high-performance computing. A recent DOE 

report stated that heterogenous accelerators are used in 

more than 100 of the TOP500 systems and in the majority of 

the TOP10 [21]. Each of the DOE’s leadership-class 

computing systems at the DOE’s science laboratories and the 

National Nuclear Security Administration (NNSA) implement 

different overall system architectures that each support a 

different organization of heterogeneous central processing 

unit (CPU) and graphical processing unit (GPU) node 

architectures, as well as multiple levels of complexity in the 

memory and storage systems. Future trends point to even 

greater complexity, with potential accelerators for dataflow 

[22, 23], neuromorphic [24], and quantum [25, 26] computing 

that could soon make their way into our HPC platforms.  

Designing codes that are portable and performant for the 

diversity of HPC systems and architectures that exist 

consumes a large number of staff and computing resources 

at these national laboratories and their industry and academic 

partner institutions. Given a well-defined scientific problem 

with user constraints, reducing the time and resource costs of 

these activities will require AI models that can generate the 

algorithms and software system design that would support a 

range of HPC systems, effectively exploiting their unique 

hardware features. These codes must not only support large-

scale parallelism in the system but also node parallelism and 

diverse internal architectures, while adapting computing and 

communication algorithms based on the network and storage 

topology and capabilities of the underlying platforms. For 

systems with configurable hardware, the AI models must 

further understand how to adapt the hardware to meet the 

primary objectives of the code, which could be optimized for 

energy efficiency, scalability, or time-to-solution. 

AI-generated software that makes effective use of our HPC 

systems will dramatically reduce the time it takes to transition 

those systems into a production state and also could reduce 

or even eliminate the need for years of development on early-

access systems. Moreover, these AI models have the 

potential to address emerging challenges associated with the 

extreme scale, complexity, and energy demands of exascale 

systems and beyond, notably in energy efficiency, scalability, 

and performance. Such improvements would enable better 

utilization of our platforms and accessibility to a much 

broader community of HPC users. 

6.3 Advances in the Next Decade 

To achieve the AI-enabled end states identified above, DOE 

and the broader research community must solve many 

intermediate and foundational challenges. Some of these 

challenges are themselves grand in their ambition and 

potential impacts on scientific and engineering generally. We 

highlight two technical advances that are of highest priority. 

6.3.1 ADVANCES NEEDED FOR AI-ASSISTED 

SOFTWARE DEVELOPMENT AND CODE 

GENERATION 

The grand challenges in this chapter describe an AI-assisted 

software development environment that is fundamentally 

different from the process involving human effort that exists 

today. In this new environment, a DOE scientist or control-

system engineer will act as an architect or orchestrator, 

providing high-level requirements and directives to an AI 

system tasked with creating the software. That AI system will 

generate performant, portable, scalable, and correct code for 
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a variety of different architectures ranging from large 

instruments and HPC systems to edge devices including 

intelligent sensors and scientific instruments. It will also 

generate the test suite, documentation, and codes necessary 

for V&V, as well as UQ. Equipped with these software 

systems, the scientist will iterate with the AI system as 

necessary to refine and finalize requirements and verify 

the results.  

All three grand challenges described above assume a 

“language” for expressing requirements, and this language 

does not yet exist. An important step toward creating such a 

language or set of languages is to define methods 

(e.g., natural language, programming models, symbolic 

algebra) to express requirements, constraints, and design 

objectives in a way that minimizes ambiguity for the AI 

system and that maximizes the system’s ability to generate 

verifiable and correct code. Equally important, the languages 

must be accessible to engineers, analysts, or scientists in 

order to enable precise articulation of the design criteria 

specific to that domain. For example, a control-systems 

engineer may want to articulate the design objectives and 

constraints of individual control subsystems, including the 

power, memory, and speed constraints in the design of an 

energy-distribution network. A physicist interested in using AI 

and HPC to model turbulent flow as part of a re-entry code 

may provide constraints for uncertainty, fidelity of the result, 

and deadlines for completion. While the end state of these 

languages is different from anything currently in existence, 

initial work can build on domain-specific programming models 

and some of the excellent early results from the broader AI 

community, including those discussed above in the context of 

the state of the art.  

While the end goal expressed earlier in the description of 

grand challenges is for fully automated AI code generation, 

tremendous progress could be made even in the immediate 

term using AI for “recommender” systems that provide 

guidance to software engineers, computational scientists, and 

control-system engineers. A focus on AI for software quality, 

productivity, and system portability is a natural evolution 

toward fully automated, AI-generated programs.  

To satisfy the level of rigor required for V&V and UQ, we will 

need a focused research effort toward AI tools that generate 

test suites from standards/specifications written in natural 

language (e.g., automatically generate tests from ingesting 

the message passing interface [MPI] or OpenMP standards). 

Both correctness and performance measures are needed. 

Realizing AI-generated test suites and the generation of 

ensemble workflows for V&V seem plausible in the next 5 to 

15 years. 

6.3.2 ADVANCES IN THE AI-ASSISTED HPC 

SOFTWARE STACK 

To create AI systems capable of generating codes to 

effectively utilize DOE’s assets such as HPC systems and 

research facilities, significant research is also needed on the 

HPC software stacks themselves. For example, achieving the 

objective of AI-generated code that can fully exploit unique 

architecture features will require a reconfigurable HPC 

software stack operating on the target system. This 

reconfigurable stack would, in turn, both enable a more 

flexible hardware design and simultaneously relax constraints 

on interfaces among runtime systems, programming models, 

and system software components. The resulting real-time 

adaptation of the software stack would also reduce or 

eliminate many trade-offs that currently end up being “baked 

into” the low-level software or even hardware during the 

design phase. Rather, with AI-generated code, these settings 

would be exposed to the AI-enabled software stack for 

resolution at execution time, factoring in the actual workloads 

being run on the system at that moment. Achieving this “on-

the-fly” adaptation will require significant advances in 

composability, reconfigurability, and observability of the 

numerous components comprising the HPC software stack—

in effect, not only using AI models to generate user codes but 

also to generate lower-level components of the software 

stack. This capability would increase the achievable 

performance of the system, as well as its ability to 

accommodate a much broader set of workloads, resulting in 

an increased “democratization” of these systems in terms of 

supported programming models and runtime systems. 

6.4 Accelerating Development 

The goal of AI-generated codes for advanced architectures 

could be significantly accelerated through a co-design 

approach with HPC and AI-hardware vendors. We anticipate 

a rapidly evolving commercial market for AI tools and 

hardware. With strategic DOE investments in co-design, as 

demonstrated by the Exascale Computing Project (ECP), we 

expect the vendors to be responsive to ideas that enable 

DOE scientists and engineers to make effective use of their 

hardware. In turn, communicating the specific needs of our 

science and engineering missions will lead to hardware 

designs more appropriate for our missions. 

Workforce development—detailed in Chapter 16—is also a 

critical issue, where AI-enabled programming and software 

engineering capabilities will have a pronounced impact. By 

loosening the current entanglement between computational 

science and computer programming skills, the envisioned AI 

systems will remove barriers to entry for a much broader 

audience. We need to recruit top-tier researchers as well as 

educate/train DOE scientists in the fast-moving world of AI 

and this new software-development paradigm. The 

challenges associated with developing the AI methods, 

particularly those around composition of complex scientific 

codes, will require not only a mix of computer scientists, 

mathematicians, and software engineers but also new ideas 

and novel approaches that often come from those with 

expertise outside of these disciplines. The somewhat unique 
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challenges for DOE (e.g., multi-modal, multi-fidelity, multi-

scale) will require us to work closely with our university 

partners to evolve curricula and develop talent pipelines that 

understand and embrace the unique requirements 

underpinning DOE’s scientific, energy, and security 

mission areas. 

Finally, the use of AI-generated codes introduces new 

challenges for intellectual property (IP)—in particular, for 

licensing/copyright issues (e.g., what is the license for code 

generated from a training set that also contains GPL-licensed 

code? Who owns copyright to AI-generated code?). While we 

expect some of these challenges to be resolved in the 

broader research community, these types of issues can often 

create roadblocks for innovation. DOE should have a plan for 

how to deal effectively with the IP, legal, and cybersecurity 

concerns associated with AI-generated code. 

6.5 Expected Outcomes 

Achieving the grand challenges, through advances outlined 

above, can be accomplished through the development of a 

series of increasingly sophisticated methods, components, 

and similar stepwise increases in the autonomy and level of 

controls afforded the AI systems. The target destination for 

this path is the creation and use of AI systems that generate 

codes from high-level requirements, including designing 

innovative algorithms for a vast array of scientific, energy, 

and security problems. The objective is to develop AI 

systems whose algorithms exceed the best human-known 

algorithms and that ultimately include novel algorithms 

unanticipated by experts. To achieve full impact, the AI 

systems will not only generate operational codes but will also 

provide accompanying products including test suites, 

documentation, and verification. 

By enabling scientists and control-system engineers to focus 

on domain science through expressions of requirements, this 

ecosystem will significantly reduce the human, time, and 

financial costs associated with the development, 

maintenance, and performance tuning characterizing today’s 

methods. Beyond individual codes, AI-created workflows that 

generate, deploy, and optimize code operating across the full 

spectrum of HPC, networks, and edge devices will 

significantly increase the effectiveness and efficiency of our 

systems and lead to innovative designs that interoperate at 

an unprecedented scale, ultimately increasing efficiency and 

accelerating scientific discovery. 
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SECTION 02: SCIENTIFIC DOMAINS 

 

Ultimately, the value of developing and implementing the new AI approaches outlined 
in Section 01 is to address the unique needs of DOE’s specific application and 
program areas. Throughout the report, we emphasize co-design approaches to this 
end, integrating expertise from program and application areas, mathematics, AI/ML 
foundations, computer science, instruments and data sources, new software and 
hardware architectures, frameworks, and platforms. This approach will also change 
the nature of computational workloads and significantly increase the scale of 
resources needed from DOE’s exascale systems as the emphasis shifts more toward 
model training rather than solely for executing models. Transforming these science, 
energy, and security endeavors will entail rethinking fundamental concepts and 
approaches including the traditional simulation, modeling, and data analysis 
approaches, and addressing new and rapidly evolving demands placed upon 
underlying physical and software infrastructure. For these programmatic domain 
areas—each comprising multiple programs and program offices—we highlight the 
open opportunities for harnessing new AI approaches and capabilities, the challenges 
that must be overcome to do so, and what investments are needed to seize those 
opportunities. 
 
 
Chapter 07: OFFICE OF SCIENCE (SC: ASCR, BER, BES, HEP, NP, FES, AND 

SCIENTIFIC USER FACILITIES) 

Chapter 08: ENERGY (EERE, OE, FECM, NE) 

Chapter 09: EARTHSHOTS 

Chapter 10:  NATIONAL NUCLEAR SECURITY AGENCY (NNSA) 
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07. OFFICE OF SCIENCE (SC: ASCR, BER, BES, HEP, NP, FES, 
AND SCIENTIFIC USER FACILITIES) 

The U.S. Department of Energy (DOE) Office of Science (SC) 

programs underpin the basic and applied research of DOE 

mission areas and domains across the complex. The 

Advanced Scientific Computing Research (ASCR) program 

supports the SC and broader DOE science, energy, and 

security mission areas through basic research in computer 

science, applied mathematics, distributed systems, and 

computational sciences. SC’s Biological and Environmental 

Research (BER) program supports transformative science 

and scientific user facilities to achieve a predictive 

understanding of complex biological, earth, and 

environmental systems necessary to ensure U.S. leadership 

in energy, infrastructure, science, and security. SC's Basic 

Energy Sciences (BES) pursues scientific research to lay the 

foundations for new energy technologies through discovery 

and to uncover new physics and phenomena spanning a 

wide range of materials and chemical processes that will 

drive innovation in areas such as energy resources, 

production, conversion, transmission, storage, efficiency, 

waste mitigation, quantum science, and microelectronics. Its 

High Energy Physics (HEP) programs aim to discover the 

ultimate constituents of matter and uncover the nature of 

space and time. The underlying theory and associated 

experiments in the three HEP frontiers—cosmic, energy, and 

intensity—cover science at all scales, from the smallest to the 

very largest [1]. The SC Nuclear Physics (NP) program aims 

to discover, explore, and understand all forms of nuclear 

matter. Nuclear physicists create, detect, and describe the 

different forms and complexities of nuclear matter that can 

exist in the universe, thereby better understanding the 

building blocks of the smallest nanostructures to the largest 

stars. SC’s Fusion Energy Science (FES) program focuses 

on the scientific and technological innovations necessary to 

enable a unique U.S. vision for economically attractive fusion 

energy, with the goal of a fusion pilot plant by the 2040s [2]. 

Magnetic confinement fusion (tokamak) reactors are a major 

focus area within this effort. 

DOE SC also supports a portfolio of 28 scientific user 

facilities supporting an international community of tens of 

thousands of researchers from DOE laboratories, 

universities, and industry across all of the SC scientific 

programs. These facilities range from light sources and 

accelerators to field laboratories, from high-performance 

computing (HPC) centers to DOE’s national Energy Sciences 

Network (ESnet). Experimental scientific user facilities enable 

exquisite characterization, synthesis, and simulations (theory) 

of a very wide variety of materials and devices, allowing new 

understandings of underpinning mechanisms and spawning 

new advances in biology, materials science, physics, and 

chemistry. Fundamentally, major open opportunities exist 

both in increasing the efficiency of the synthesis-

characterization-understanding workflow (via autonomous 

control and design of experiments) at user facilities, as well 

as in developing new algorithms and methods to improve 

solving of inverse problems relating structure to functionality. 

A fundamental “grand challenge” for the DOE Scientific User 

Facilities lies in how to best utilize these theory, computation, 

synthesis, and characterization facilities to solve specific 

problems in the most efficient and comprehensive manner 

possible. Today, only individual researchers address this 

challenge by making such judgements based on 

combinations of experience, cost of each experiment, and 

perceived utility. AI-based methods to optimize this workflow 

could transform the process with respect to critical measures 

including time-to-solution and reductions in cost. 

Finally, we note that the pervasive nature of ASCR research 

in the context of artificial intelligence (AI) is reflected 

throughout this report, notably in Section 01: AI Approaches 

and Section 03: Technological Crosscuts, and thus is 

covered only briefly in this chapter. 

7.1 Open Opportunities 

Each of the SC programs described above has active 

research applying and advancing AI/machine learning (ML) 

methods while developing strategies to harness the emerging 

capabilities outlined throughout Section 01 of this report. This 

work and planning reveal opportunities across the SC 

programs, relying heavily on ASCR.  

PROJECT SPOTLIGHT 

Project Name: Reinventing coherent imaging data 

inversion 

PI: Mathew Cherukara 

Organizations Involved: Argonne National Laboratory, 

Advanced Photon Source 

Goal: Use AI@Edge to enable real-time ptychography. 

Significant Accomplishment: An AI model (PtychoNN) 

allowed us to realize speeds that were 100x faster and 

required 25x less data than used in classical 

approaches. 

In the News: Cherukara, M. J., Zhou, T., Nashed, Y., 

Enfedaque, P., Hexemer, A., Harder, R. J., and 

Holt, M. V., 2020. “AI-enabled high-resolution scanning 

coherent diffraction imaging,” Applied Physics 

Letters 117, no. 4: 044103.  
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Two opportunities illustrate the potential for AI approaches to 

make advances. The first is to enable understanding of new 

materials, and the second is to transform scientific user 

facilities. 

 The development of general-purpose, AI-powered 

simulation tools could boost our capability to simulate 

materials and processes with high fidelity and 

spanning multiple orders of magnitude in spatial and 

temporal scales. These tools could greatly expand our 

fundamental understanding of the behavior and dynamics 

of materials and complex biological systems over larger 

timescales, something that is critical in a wide range of 

domains, from the development of better energy storage 

materials to the exploration of complex quantum materials, 

to the development of the next generation of 

microelectronic devices. AI can play three critical roles in 

the development of a next generation of simulation tools 

through: (1) the acceleration of computations using 

surrogate models; (2) the ability to generalize to new 

systems not encountered before; and (3) the development 

of intelligent systems capable of adopting the best set of 

conditions, parameters, and components for simulations, 

digital twins, and experiments. Two examples are the 

development of digital twins (discussed in detail in 

Chapter 04) that capture the full life cycle of a material, and 

the development of AI-powered universal atomic potentials 

for atomistic simulations that are 1,000 times faster than 

non-AI methods while retaining first-principle molecular 

dynamics precision. 

 Significant opportunity exists for AI to transform 

facilities such as the Facility for Rare Isotope Beams 

(FRIB), Jefferson Laboratory (JLab), the Deep 

Underground Neutrino Experiment (DUNE), and ton-

scale detectors for neutrinoless double beta decay. 

This ranges from operations—AI-based control of 

accelerators and detectors—through experimental design, 

to enabling more autonomous discovery. Accelerator 

science and engineering provide the foundation for these 

facilities and underlie discovery in other sciences, including 

medicine and technology. Development of digital twins of 

emergent accelerator technology and capabilities is 

occurring at increasingly high-fidelity levels. This advance 

provides an opportunity to pursue inverse design strategies 

(see Chapter 03) for enhancing today’s facilities and 

optimizing the building blocks of the facilities of the future. 

The opportunities we outline in the following section are 

organized in terms of the six AI approaches detailed in 

Section 01 of this report. 

7.1.1 AI SURROGATE AND FOUNDATION MODELS 

FOR SCIENTIFIC COMPUTING 

The development of hybrid models that use a combination of 

traditional numerical prediction approaches and data-driven 

architectures will enable new capabilities in nearly every 

domain, including observationally informed components 

directly coupled into modeling frameworks. Furthermore, 

hybrid models will be well suited to new leadership class 

computing with mixes of central processing units (CPUs), 

graphical processing units (GPUs), and new architectures.  

One example is DOE’s flagship Earth system model (E3SM), 

which is designed to answer questions regarding climate 

impacts on food, water, and energy security at global scales, 

E3SM typically requires significant computational resources 

and time that sponsors are often unwilling or unable to 

support. Replacing sub-models in E3SM with much faster AI 

surrogates could reduce computational requirements and 

help enable E3SM’s adoption as the primary tool for 

answering questions of climate impacts. 

A second example is nuclear physics. At all energy levels, 

nuclear theory has increased its use of high-performance 

computing [3]. AI-based surrogates provide opportunities 

both to accelerate the numerical routines underlying these 

advanced calculations as well as to provide training data for 

downstream uses.  

AI-based models represent a significant new opportunity to 

harness the large volumes of complex data that are costly to 

create, process, and manage, e.g., using foundation models 

(See Chapter 02) to create open and connected knowledge 

graphs. Trained on HPC systems, these models could also 

result in inference capabilities capable of running on 

embedded processors to enhance data collection through AI 

“at the edge.” BER, for instance, has invested significantly in 

measurement facilities (e.g., Atmospheric Radiation 

Measurement [ARM] facility and Environmental Molecular 

Sciences Laboratory [EMSL]) and field data collection 

(e.g., Next Generation Ecosystem Experiments). Building AI 

into sensors (edge computing) enables targeted data 

collection and preprocessing that reduces data volumes while 

simultaneously targeting the ideal measurements for specific 

science questions.  

These opportunities apply not only to existing observation 

systems but also to the design of new facilities and 

instruments. BER recently initiated the design and creation of 

three Urban Integrated Field Laboratories (U-IFLs). These 

U-IFLs in Chicago, Baltimore, and Texas represent 

opportunities in the application of AI to urban science, for 

instance, employing surrogate models to build rapid-running 

regional climate models that will enable urban planners to 

evaluate many potential interventions in addressing climate 

change impact on urban communities. Such a surrogate 

model could potentially lead to the use of an urban climate-

specific foundation model trained on the diverse and 

extensive volumes of data spanning regional weather and 

climate models through remote-sensed land surface 

temperature to traffic movement and socioeconomic and 

demographic data.  
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The tight coupling of experimentation with AI/ML models 

could also provide effective guidance in the bioengineering 

process to produce renewable bioproducts. Next steps 

include the development of integrated and explainable AI-

driven models of complex biological systems that encompass 

all omics, structural, phenomic, and environmental layers of 

information. Finally, combining mechanistic and machine 

learning models will increase the accuracy of both 

approaches. 

There is also an opportunity for AI, and Surrogate models in 

particular, to revolutionize the nuclear data pipeline, wherein 

data are compiled, evaluated, processed, and validated for 

end-user applications [9]. The existing pipeline is the result of 

human-intensive efforts; AI can be used to automate this 

process as well as to improve the fidelity of the resulting data. 

7.1.2 AI FOUNDATION MODELS FOR SCIENTIFIC 

KNOWLEDGE DISCOVERY, INTEGRATION, AND 

SYNTHESIS 

There is an opportunity to build general large-scale AI models 

that can be applied to a wide range of downstream programs 

and priorities in the materials and chemistry domains 

targeting structure and property predictions. In areas such as 

natural language and image processing, the development of 

large-scale models has revolutionized the way AI is applied, 

shifting from many bespoke and task-specific models to the 

use of one large-scale model that can be refined with a small 

amount of additional data to carry out many specific tasks. 

Implementing this approach in the biology, materials, and 

chemistry domains would be transformational for BES and 

BER priorities, creating core capabilities that could be reused 

across programs and improved over time. Using the 

chemistry domain as an example, potential downstream tasks 

enabled by a single large-scale model would include 

predicting properties of complex organometallic molecules 

that could lead to the discovery of more efficient catalysts and 

better separation technologies for rare earths, greatly 

improving our understanding of actinide chemistry or 

developing better electrolytes for electrochemical and energy 

storage systems. 

7.1.3 AI FOR ADVANCED PROPERTY INFERENCE 

AND INVERSE DESIGN 

Beyond accelerating the discovery of novel materials and 

molecules, the use of foundation models for property 

inference and inverse design would deepen our fundamental 

understanding of the connection between composition, 

structure, and properties, leading to new insights that would 

otherwise be extremely difficult to “tease out” of our traditional 

research and development (R&D) approaches and modeling 

and simulation. 

Problem domains involving anomaly detection [4], fast 

surrogates [5], interpretability, uncertainty quantification (UQ) 

[6], searches and inverse problems in high-dimensional 

spaces, and AI-based control and optimization of complex 

systems (e.g., accelerators, detectors) are lively research 

areas and constitute typical open opportunities for AI in the 

near future.  

7.1.4 AI-BASED DESIGN, PREDICTION, AND 

CONTROL OF COMPLEX ENGINEERED SYSTEMS 

HEP science has a major focus on UQ [6], and the use of 

high-fidelity digital twins is already widespread and growing, 

providing examples and insight across SC programs. 

For magnetic confinement fusion (tokamak) reactor R&D, the 

use of AI to predict and control plasma states in magnetic 

fusion energy (MFE) and inertial confinement fusion (ICF) 

systems has the potential to significantly improve our ability 

to optimize fusion performance. In turn, high-fidelity plasma 

predictions could be used to design improved facilities and 

operations. With the use of AI-enhanced modeling, HPC 

systems could be leveraged as real-time assets.  

AI-driven modeling, design optimization, and diagnosis could 

also fundamentally advance capabilities for control and 

optimization of high-repetition-rate inertial fusion energy (IFE) 

facilities. Success in this area will entail the integration of AI 

capabilities across compute scales—from edge/diagnosis, 

through orchestration, to HPC, with the goal of executing at 

increasing scale, eventually up to a fusion pilot plant. 

7.1.5 AI AND ROBOTICS FOR AUTONOMOUS 

DISCOVERY 

The criticality of these new approaches for BES and BER 

applications is outlined within Chapter 05. HEP is another 

example where AI-based autonomous discovery and robotics 

capabilities are critical in that research is highly data-driven, 

with deep theoretical roots and some of the most complex 

engineered systems in the DOE complex. For instance, data 

rates and volumes in all major current and future HEP 

experiments already require heavy use of automation and are 

ripe for the exploitation of transformative AI techniques in the 

coming decade and beyond; indeed, a substantial community 

has recognized the opportunity and is working actively in this 

direction [7, 8], laying the groundwork for the necessary 

advances and new approaches outlined in Section 01 of this 

report, including the use of autonomous discovery and control 

capabilities. 

7.1.6 AI FOR PROGRAMMING AND SOFTWARE 

ENGINEERING 

Nearly every SC science program will benefit from AI-

accelerated software engineering, particularly to mitigate 

disruptions from computer architecture changes as well as to 

integrate new, AI-enabled laboratory instruments and 

facilities with computational and data infrastructure. 
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7.2 Challenges to Overcome 

The AI opportunities listed above in Subsection 7.1 highlight 

many specific challenges to be overcome; these center 

around model development (including explainable AI, 

faithfulness, validation, composability, and multi-scale), 

datasets (collecting, curating, storing, and making them 

usable for the community), and integration (with existing 

scientific facilities, instruments, and software, including issues 

of access, instrumentation, steering, interoperability, and 

adaptability). We discuss each of these below. 

7.2.1 MODEL DEVELOPMENT 

In order to advance scientific understanding, AI models must 

be grounded in the rules of nature. Multiple techniques for 

creating AI constrained by known biological and/or physical 

principles have been proposed and are discussed in 

Chapter 01; however, the field is young and needs significant 

attention. Concurrently, the “black box” nature of AI models 

confounds our ability to validate the results, hindering 

adoption. This challenge is also outlined in Chapter 12 

(Mathematics and Foundations). Nascent methods for 

interrogating internal AI states for physical relevance have 

shown promise. Investments in efforts to maintain physical 

relevance and translate what AI has learned into physical 

understanding are essential to fully unlock the potential of 

new AI models. 

Additional advances are needed in digital twins, discussed in 

Chapter 04. Increasing their faithfulness to actual systems 

will help ensure that digital twins can reliably advise and 

eventually control system operations. The wider application 

and usability of digital twins will also need to be expanded, 

ideally to the point where users and operators can virtually 

predict the operation of a planned experiment. Such 

expansion of digital twins will help enable AI-based 

autonomous discovery. 

Building and optimizing what is effectively a digital twin of the 

lifecycle of a component/process will require modeling from 

the molecular to the fully operational system. This multi-scale 

task will require significant effort in developing the models 

and coupling across the scales. Developing AI methods that 

achieve this outcome will require new approaches; and for 

these approaches, we must also create uncertainty 

quantification that works across the necessary scales and 

maturity levels. Moving from synthesis to manufacturing will 

be facilitated if the original design and synthesis are informed 

by the subsequent manufacturing processes. 

A longer-term challenge is the development of a reference 

library of production-quality AI models that can be composed 

in turn to build large foundation models. Although initial 

success has been documented applying foundation models 

to material science [10], considerable research remains to 

understand and evaluate strategies to effectively apply the 

concept of large-scale/master/foundation models to the 

materials and chemistry domains at scale. This research is 

needed in areas including the models themselves and the 

definition of the right input space, as well as the self-

supervised learning methods required to maximize the 

usefulness of unlabeled data. 

There are fundamental challenges to the adoption of any of 

the AI approaches from a validation standpoint. For many 

tasks, there is limited data (e.g., design of materials for 

controlling degradation, or predicting material behavior in 

extreme environments), and we will need to understand how 

we can maximize our ability to transfer broader knowledge 

contained within the representation of the large-scale model 

into these downstream tasks. 

7.2.2 DATASETS 

The widespread adoption of new AI methods in SC research 

and program areas will require high-quality, curated, AI-ready 

datasets; however, today in nearly every area of applied AI 

science, there is a dearth of available datasets for training 

and verification. Additionally, benchmark datasets are vital 

across SC science areas, as summarized in [11] and [12].  

The FAIR (findable, accessible, interoperable, and reusable) 

data principles are directly relevant to these data needs that 

span every AI application area. These must be applied not 

only to training data but also to the training process and the 

models themselves. Moreover, large amounts of data 

generated by experimental facilities will need careful curation, 

provenance tracking, and storage before being used to train 

the AI. Despite DOE’s leadership in traditional modeling and 

simulation resources and expertise, the necessary 

infrastructure for developing and adopting AI methods—both 

in terms of infrastructure and humans trained in data 

science—is currently lacking in the DOE complex. 

The size and complexity of HEP’s, BER’s, and other SC 

programs’ datasets are considerable; however, the migration 

from traditional modeling and simulation to training and 

expanding AI models adds new dimensions. For instance, a 

significant challenge is the availability of the data 

management and computational infrastructure needed to 

support training/inference applications at large scales. Open, 

curated experimental and observational datasets will need to 

be processed (e.g., tokenized) for use in model training and 

to be available for meaningful collaboration with the broader 

applied mathematics and data and computer science 

communities in academia, industry, and national laboratories. 

The data infrastructure requires not only the generation of 

large datasets for quick visibility, but also that the datasets 

encode sufficient meta-data to enable labeling, data 

integration, and provenance tracking for reproducibility. Here, 

open data from surrogates based on high-fidelity simulations 

will be essential for training and validating AI techniques: 

examples include simulations of detailed future detector 

designs and synthetic sky maps based on large-scale 

cosmological simulations. 
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7.2.3 INTEGRATION 

To enable autonomous workflows that can incorporate many 

levels of AI at scientific user facilities, scientific instruments 

will require abstraction layers for functions such as 

operational control, experiment configuration, and data 

routing. The resulting data flows from instruments, as well as 

their inputs (i.e., beams), need to be accessible, with analysis 

carried out in some cases with very low latency (edge 

detection), as well as for use asynchronously, such as to train 

models. 

Nuclear theory, environmental models, and other SC 

programs’ software have advanced significantly under 

programs such as ASCR’s Scientific Discovery through 

Advanced Computing (SciDAC). However, these novel 

software stacks have been developed within the context of 

traditional simulation and modeling, and consequently are 

typically not AI-ready. For example, additional work will be 

needed to ensure that codes are endowed with the automatic 

differentiation and uncertainty quantification capabilities 

necessary to accelerate AI-based development. Many of the 

advanced computing code bases have been developed in 

relative isolation. A focus on software interoperability 

throughout the SC community would significantly benefit AI 

efforts for the creation of surrogates, inverse design, etc. 

Facility operation and control systems, whether for nuclear 

physics, environmental observations, or infrastructure such 

as ESnet, are highly complex. Current optimization and 

control efforts have focused on individual components, 

typically tuning a small number of parameters based on fast 

diagnostics. Coupling multiple components, and tuning their 

interplay, will require greater interoperability throughout a 

facility’s systems. Furthermore, these systems will evolve 

over time, and hence training data will be equally dynamic. 

Advances are needed to provide additional machine-ready 

hooks for AI methods to diagnose changes and react 

accordingly. 

From the theory and computation perspective, many forms of 

computation for autonomous steering of user facilities will 

require developing and deploying rapid decision-making 

algorithms, as well as addressing issues related to task 

scheduling under resource constraints as detailed above (in 

this “Integration” subsection), as well as in Chapter 13. 

In fusion energy, the U.S. is rather “experimental facilities 

poor”; and the facility time and access necessary for AI 

innovation and exploration will exacerbate the need for such 

infrastructure, as well as for AI-ready instrumentation that can 

interface with the broader AI ecosystem. The integration of 

automation with AI/ML computational techniques will also 

require deeper collaborative efforts across domains and 

scales, such as in BER to bring together biological research, 

data science, computer science, and engineering. 

7.2.4 GENERAL 

Traditionally, scientists are trained either in AI-related 

disciplines (math, computer science, etc.) or domain-specific 

disciplines (e.g., biology, chemistry, physics, earth science, 

etc.). SC programs have increasingly encountered the need 

for expertise in both AI-related and domain-specific fields to 

fully leverage AI. Communication and education between AI 

and other domain experts are thus of utmost importance and 

can be encouraged through funding calls requiring co-

participation and workshops aimed at bridging this gap. Here, 

the DOE national laboratories have a long history of 

collaboration among domain-specific disciplines and 

mathematics, computer science, and computational science. 

This unique DOE strength will be instrumental in fostering 

collaborations related to AI and domain-specific disciplines 

and facilities. 

Another significant challenge becomes apparent when 

reviewing the many science programs, where traditionally 

independent vertical approaches come at the expense of 

fragmentation. The magnitude of intellectual and resource 

investment needed to move from traditional modeling and 

simulation to the use of AI models and methods will demand 

new approaches to collaboration, with much larger scientific 

teams spanning SC domain and ASCR programs and user 

facilities. 

7.3 Investment Needed for 
Achievement 

In order to realize the many exciting scientific opportunities 

outlined herein, investments are essential to address the 

challenges described above—effectively representing a 

roadmap for ASCR co-design with other SC offices. We 

organize investment needs around (1) AI methods and 

datasets, (2) self-driving laboratories, and (3) critical 

partnerships. Each subsection contains bulleted descriptions 

of the programs needed to fully harness the potential for AI 

across SC. 

7.3.1 AI METHODS AND DATASETS 

Necessary AI methods and datasets include the following 

examples:  

 Better data acquisition, curation, and utilization. Designing 

and training AI capabilities in FES will require massive 

amounts of data. From large ensemble simulations to AI-

ready instrumentation of facilities, data acquisition and its 

curation require an immediate effort to understand the 

requirements unique to FES, as well as a sustained 

investment in preparing AI-ready instrumentation and 

simulation workflows to acquire, curate, and distribute the 

needed data to the communities most capable of driving AI 

innovation. 
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 Increasing the number and fidelity of digital twins for 

nuclear physics instruments, experiments, and facilities. 

 Advancing current computational software to be AI-ready 

through differentiable and probabilistic programming. 

 Expanding natural language processing efforts to extract 

semantics from documents pertaining to nuclear data.  

 An Environmental AI Data Library: Creating curated and 

easily accessible (application programming interface [API]) 

datasets for training, etc., such as on global storms to 

bacteria and beyond.  

 Coupled with datasets, creating data proximate compute 

and notebook-based workflows that incorporate ways to 

increase the FAIR-ness of AI analyses. 

7.3.2 SELF-DRIVING LABORATORIES 

Necessary components for self-driving laboratories include 

the following:  

 Environmental AI testbeds at the edge. Edge computing 

nodes connected with simple and advanced sensors at 

DOE labs and facilities—such as ARM and EMSL—

allowing AI research with active and configurable sensors 

to test new ideas alongside baseline measurements. Such 

testbeds would be a BER version of self-assembling 

laboratories. Next-level investments could be made in 

mobile autonomous data collection, including an 

unmanned aerial vehicle (UAV) facility for adaptive sensing 

of the atmosphere, Earth system, and biosphere.  

 Self-driving labs that couple robotics for automated 

experiments and data collection [13], with AI systems that 

use these data to recommend follow-up experiments. 

 Digital infrastructure as well as edge computing fabric to 

enable integration, such as to drive interactive, AI-driven 

experiments at facilities and remote locations.  

 Abstractions to enable experimental theory-coupled 

workflows to be fully defined in a coding language. These 

abstractions should enable the automation of specific tasks 

in synthesis and characterization instruments. 

 The need to invest in cross-disciplinary research, including 

the need for facilities (such as autonomous laboratories) to 

explore, validate, and test approaches. 

7.3.3 CRITICAL PARTNERSHIPS 

Necessary critical partnerships include the following:  

 Increased engagement in facilities (U.S. and international). 

As AI methods improve in providing sophisticated control 

and fault prevention, integration of these new methods and 

their validation will require a vibrant ecosystem of pilot 

facilities, and the continued involvement of the FES 

community with international collaborations (e.g., ITER). 

Co-design both with material science efforts and public-

private partners will also be required to establish an AI-

driven U.S. pilot plant and energy dominance in 10 years. 

 Centers for co-design. Institutes where domain scientists 

are partnered with AI experts to attack a distinct and well-

defined science question. Chosen by application (such as 

a user facility), principal investigators (PIs) would begin 

with an intensive three-month (nominally) engagement in 

person and an extended, less intensive engagement for 

over a year. The outcomes should be tools, datasets, and 

publications. In addition, materials studies should focus on 

the how, thus aiding in the reproducibility and reusability of 

techniques. 

 Continued close partnership between SC domain programs 

and ASCR. Investments in theory and computation are vital 

to the continued development of complex validated 

models, from data acquisition and curation to 

improvements to modeling capabilities. A continued close 

partnership is needed between FES and the advanced 

computing community to ensure that new methods in real-

time control, UQ, and AI surrogates are used to improve 

the material, design, and control system of FES facilities 

(including pilot plants). 

 An essential requirement is a data and compute 

infrastructure that has the flexibility to support both large 

individual projects and many exploratory forays. 

Substantial investment will be needed to establish a 

number of joint programs (across ASCR and HEP) to build 

up and maintain curated datasets. These datasets will 

include supporting software that allows for data 

interpretation and reduction and thus ingestion by an AI 

model. An organized investment plan for software 

development and sustainability (Exascale Computing 

Project [ECP]/SciDAC-like focused programs) targeted to 

specific opportunities and challenges mentioned above will 

need to be developed. At least some fraction of this 

investment will need to be made at the facilities to manage 

specific issues for the HEP community, such as the 

diversity of AI platforms. 

 The benefits of diversity, equity, and inclusion (DEI) across 

SC programs are clear in terms of the quality and breadth 

of data, ideas, and strategies. Concurrently, a focus on 

environmental justice recognizes that the brunt of impacts 

from challenges such as climate change and energy 

security is disproportionately borne by these communities. 

The importance of these programs to DOE’s continued 

scientific leadership and service to the nation is detailed in 

Chapter 16. 
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08. ENERGY (EERE, OE, FECM, NE) 

To function, modern society is critically dependent on large, 

networked, engineered, complex energy systems—some of 

which were outlined in Chapter 04. Such systems have 

scales ranging from individual buildings and facilities 

(e.g., power plants) to districts and metropolitan areas, to 

regional and continental (and combinations of these). They 

are designed to support society—for the environments where 

people live and work; for transport of commodities such as 

electric power, natural gas, oil, hydrogen, water, etc.; and for 

transport of goods and people using highways, public transit, 

rail, etc.  

The importance, scale, and complexity of these challenges 

are reflected through the work of multiple U.S. Department of 

Energy (DOE) offices and programs. The Office of Energy 

Efficiency and Renewable Energy (EERE) is working to build 

a clean energy economy that benefits all Americans, with 

programs including energy efficiency, renewable energy, and 

sustainable transportation. The Office of Electricity (OE) 

works with industry and other stakeholders to ensure that the 

Nation’s electricity delivery system is secure and resilient to 

disruptions. The Office of Fossil Energy and Carbon 

Management (FECM) focuses on minimizing the 

environmental impact of fossil fuels while working towards 

net-zero emissions, with programs encompassing carbon 

capture, management, transport, and storage as well a 

critical minerals carbon dioxide removal, carbon conversion, 

and methane mitigation. The Office of Nuclear Energy (NE) 

advances nuclear energy science and technology through 

innovation in continued operation of existing U.S. nuclear 

reactors, deployment of advanced nuclear reactors, 

development of advanced nuclear fuel cycles, and 

maintaining U.S. leadership in nuclear energy technology. 

Unfortunately, disruptions to energy supply are becoming 

more frequent and serious, driven by factors such as: (1) an 

energy system that is becoming more complex, 

interdependent, and less stable with the addition of 

renewable and co-generation sources; (2) more intense and 

more frequent extreme weather events; and (3) inadequacies 

in tools (extensions, monitoring, and control) for managing 

these systems. The status quo has led to poor and costly 

decision making, wasted resources, slow recovery from 

interruptions, suboptimal planning decisions, and 

susceptibility to catastrophic disturbances and cascading 

failures. Indeed, each year yields new cycles of reactive 

reports highlighting challenges and lessons learned—

underscoring the fact that better planning, improved 

predictions, and enhanced response could have significantly 

improved the outcomes that were experienced. Two recent 

and notable examples are Hurricane Sandy in November 

2012 and the February 2021 “arctic blast” that disrupted 

power throughout Texas [1]. Regarding the former, the North 

American Electric Reliability Corporation’s (NERC’s) 

Hurricane Sandy Event Analysis Report remarked that many 

entities had challenges with system control, both during the 

storm and during restoration, balancing loss of load with loss 

of generation, all of which may have contributed to the sizes 

and lengths of power outages that affected populations 

experienced. At the storm’s peak, 8.35 million customers 

were without power, some of whom were without power for a 

month [2]. 

Such situations are exacerbated by the increasing 

interconnectivity within our energy infrastructure (e.g., natural 

gas and electricity systems) as well as with other 

infrastructure systems, such as communication and 

PROJECT SPOTLIGHT 

Project Name: Automated and scalable active ensemble 

machine learning frameworks for rapid optimization of 

product design and manufacturing processes 

PI: Pinaki Pal 

Organizations Involved: Argonne National Laboratory; 

Parallel Works, Inc.; Convergent Science, Inc.; Aramco 

Americas 

Goal: Develop automated and end-to-end workflows 

coupling active machine learning (ML) and simulations 

for rapid optimization of product design and 

manufacturing processes.  

Significant Accomplishment: Argonne National 

Laboratory developed, demonstrated, and 

commercialized (through adoption by industry partner 

Parallel Works, Inc.) a unique ML-genetic algorithm (ML-

GA) software technology that integrates ML-based 

ensemble surrogate models and active learning within an 

adaptive, automated, portable, and scalable framework 

to accelerate virtual design optimization campaigns by 

an order of magnitude (from months to days over current 

industrial state-of-the-art approaches). 

In the News: Awards include the 2021 R&D 100 Award 

(Software/Services category) and 2021 HPCwire 

Readers’ Choice Award for Best Use of High 

Performance Data Analytics & AI. Also: O. Owoyele, 

P. Pal, A. V. Torreira, D. Probst, M. Shaxted, M. Wilde, 

and P. K. Senecal, 2022. “Application of an automated 

machine learning-genetic algorithm (AutoML-GA) to 

engine design optimization based on computational fluid 

dynamics simulations,” International Journal of Engine 

Research, Vol. 23 (9), pp. 1586–1601. 
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transportation, and the expansion of new infrastructure 

systems such as those that support electric vehicles and the 

emerging hydrogen economy to improve the nation’s energy 

independence. These factors point to the need for artificial 

intelligence (AI) systems that proactively predict, mitigate, 

and prevent extreme scenarios that are experienced today, 

and future scenarios that will emerge as the nation’s future 

energy system evolves. For example, as the nation’s 

transportation electrifies, how can AI for the grid plan and 

respond to an increased need for charging during extreme 

events that require evacuation? 

Moving beyond the structure and complexity of integrated 

networked systems, the individual technologies and materials 

that are required to produce, store, and deliver energy each 

present unique challenges as they must meet simultaneous 

requirements for reliability, cost, resilience, and sustainability. 

Examples include new materials to increase efficiencies in 

solar photovoltaics, sensors for monitoring the health of 

energy components, power electronics, new materials for 

energy storage, new fuels, and materials for harsh 

environments such as those inside nuclear reactors. 

Developing new materials and technologies is currently costly 

and time consuming, with limited guarantees that investments 

will yield the desired payoffs. 

Here, advances in biotechnologies would provide alternative, 

sustainable fuels for transportation requirements that are 

difficult to achieve with electricity (aviation, heavy freight, etc.) 

[3]. Advances in storage technologies, such as battery 

materials, would reduce the cost of utility-scale storage to a 

level where these technologies would become an attractive 

alternative to fast-ramping fossil fuel generators required to 

manage variability in renewable energy resources. And 

finally, new advances in manufacturing processes and supply 

chains would support rapid and efficient deployment of 

technologies as they become available. In all these 

examples, the application of new AI methods will enable 

researchers to examine extremely large, complex, and 

multivariate problems in ways not possible today, catalyzing 

new discoveries in materials and manufacturing that are 

necessary for transformational energy technologies. 

Within the U.S. Department of Energy (DOE) applied energy 

offices—its Office of Energy Efficiency and Renewable 

Energy (EERE), Office of Electricity (OE), Office of Fossil 

Energy and Carbon Management (FECM), and Office of 

Nuclear Energy (NE)—there are significant programs that are 

seeking to address each of these factors and dimensions—

both individually and in combination—by leveraging AI and 

related technologies.  

 EERE programs have long sought to utilize AI systems to 

improve predictive models for energy output from variable 

and uncertain renewable energy sources, such as wind 

and solar, to support reliable, resilient, and extensive 

adoption of clean energy solutions. AI approaches have 

also been used to assist in efficient and grid-responsive 

operation of buildings. EERE/Advanced Manufacturing 

Office (AMO) is championing next-generation (“beyond 

CMOS” – that is, complementary metal oxide 

semiconductor) microelectronics to support energy-efficient 

processing and control of energy generation and transport 

systems by exploring AI-enhanced co-design of new 

electronic devices, components, and computing systems. 

Likewise, there is significant emphasis within the DOE-

Vehicle Technologies Office (VTO) and DOE-AMO 

programs to leverage AI/machine learning (ML)-based 

surrogate models and algorithms (see Chapter 01) for 

rapid, high-dimensional design optimization of novel fuel-

engine systems and manufacturing processes, 

respectively. Finally, EERE/Bioenergy Technologies Office 

(BETO) has funded the pioneering use of AI and ML to 

enable biodesign of cells for renewable biomanufacturing 

in the form of the Agile BioFoundry (ABF) [4]. 

 OE initiatives, such as the Smart Grid, Microgrid R&D, 

Advanced Grid Modeling, Transmission Reliability, and 

Energy Storage programs, have sought to leverage AI to 

construct predictive tools that anticipate when extreme 

weather will induce grid disruptions, with the objective of 

utilizing such predictions to improve operator response and 

thus limit the impact of such disruptions. This effort 

involves enhancing grid resilience to enable 

decarbonization while simultaneously enabling resilience to 

extreme events. Here, AI is used to analyze data from 

multi-domain (e.g., gas, electric, and wind) infrastructure to 

understand interdependencies across infrastructure assets 

and to minimize the impact of extreme events on the grid. 

AI is also being used to help improve the observability of 

the electric grid, particularly in the context of limited data 

sources or missing data. OE’s initiatives also depend on 

predictive, high-reliability electronic hardware to improve 

the resiliency of the grid, where AI-enhanced co-design 

has driven developments in next-generation grid hardware 

infrastructure [5]. 

 FECM programs—such as the Science-informed Machine 

Learning for Accelerating Real-Time Decisions in Carbon 

Storage Applications (SMART-CS) project—seek to 

dramatically reduce the climate impact of fossil-fuels-based 

generation by harnessing AI to enable efficient, stable, and 

effective management of subsurface reservoirs for secure 

carbon storage. Within FECM’s Advanced Turbines 

Program, efforts are underway to enable 100% hydrogen-

fueled gas turbine engines for decarbonization of the 

stationary power generation sector. However, these energy 

systems are prone to catastrophic failure from rare 

combustion events (such as flashback, thermoacoustic 

instabilities, etc.). Consequently, the development and 

deployment of AI systems, such as surrogate models 

described in Chapter 01, are sought for automated 

discovery/assessment of causalities behind these rare 



 

08. ENERGY (EERE, OE, FECM, NE) 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY   

81 

events and for developing predictive control strategies to 

prevent their occurrence.  

 NE is seeking to develop new and advanced reactor 

designs; design, selection, and manufacturing of materials 

for nuclear systems; and flexible controls to manage the 

overall lifecycle of nuclear power technologies. AI-based 

capabilities throughout these activities have the potential to 

lower capital costs, reduce ongoing operations and 

maintenance costs, allow nuclear energy to meet 

emergency needs for energy (e.g., electric power after 

extreme events), and balance the requirements of clean 

energy policies. Of particular importance is the 

development of “digital twins” (virtual models of operating 

nuclear power systems, structures, and components), as 

detailed in Chapter 04, that reflect the real-time system 

state and may be applied toward developing solutions for 

the challenges, ranging from real-time controls to long-term 

planning, as discussed elsewhere in this chapter. 

While not exhaustive, these examples spanning DOE’s 

applied energy office programs highlight the complex 

interplay between the nation’s interconnected and 

interdependent energy systems. Figure 8-1 illustrates the 

inherent complexity that crosscuts the applied energy offices. 

The figure highlights how decisions and disruptions within 

any one of these systems have the potential to influence, and 

in the case of disruptions, cascade through other systems, 

causing catastrophic events where recovery can take days or 

weeks and at significant economic cost [1]. 

AI capabilities such as those detailed in Section 01 of this 

report are becoming an increasingly attractive solution for 

managing the complexity in modeling, predicting, operating, 

controlling, and planning these systems [6], both in isolation 

and from a system-of-systems perspective characterized by 

the dynamics of their interconnections and 

interdependencies. Below we identify some of the major open 

challenges in energy that are central to DOE’s applied energy 

missions in the offices of EERE, OE, FE, and NE. We focus 

on those challenges where expected advances in 

foundational and crosscutting AI capabilities—beyond what a 

single office can support—will play a critical role in providing 

solutions to these challenges. 

8.1 Open Opportunities 

One of the core opportunities for AI systems in the energy 

domain is to support the modernization of the nation’s 

integrated energy delivery system to simultaneously achieve 

 

Figure 8-1. The complex interdependencies of the electric power grid, gas, oil, transportation, and communication, and emerging 
energy sources such as hydrogen, that complicate modeling, predicting, and controlling energy systems. 
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affordability, carbon neutrality, reliability, and resilience to 

extreme (both natural and intentional) events beyond what 

today’s system can achieve. A second opportunity is to not 

only maintain but to exceed today’s expectations of energy 

reliability and low energy costs [7]. Moreover, AI can play an 

important role in ensuring energy equity and environmental 

justice through the optimization of new technologies and 

operations. To achieve these opportunities several key AI-

enabled capabilities are required, including: 

 AI-Enabled Design of Control Systems. Control theory 

has a long history of contributing to and impacting the 

operations of energy systems. AI presents new 

opportunities to form the backbone of next-generation 

control for seamlessly integrating heterogenous sensor 

platforms. These platforms would operate at varying 

timescales to ultimately yield self-composing and 

self-healing control that adaptively incorporates new 

devices, reconfigures itself during adverse conditions, and 

can recommend what devices and sensors are needed to 

improve performance. Such an AI control system 

approach, detailed in Chapter 04, also holds the potential 

to improve the reliability and resilience of modern energy 

systems through self-healing, distributed, and potentially 

multiscale control that leverages compute capabilities at 

the edge. 

 Trustworthy Decision-Making under Uncertainty. 

Energy systems represent a high-consequence 

environment where the impacts of failure or inaction are 

potentially significant in terms of economics, loss-of-life, 

etc. AI systems as described in Section 01 have the 

potential to improve our ability to provide fundamentally 

robust and theoretically sound decisions for operating, 

planning, and maintaining energy systems, accounting for 

inherent uncertainties and being resilient to bad, missing, 

and adversarial data. Such AI capabilities, among the 

common requirements for systems described throughout 

Section 01, would allow energy systems to robustly handle 

high penetrations of variable and uncertain renewable 

energy and to secure energy systems from malicious 

actors. 

 Materials to Components Co-design. Achieving 

decarbonization goals will require innovations that scale 

from components to integrated systems. Often, innovations 

in next-generation materials do not translate into functional 

components due to limitations in environmental, 

operational, and other requirements. When exploring the 

space of material designs, AI systems such as property 

inference and inverse design, discussed in Chapter 03, will 

support the discovery and evaluation of novel materials 

through co-design methods that account for system-level 

requirements (such as grid integration, operational 

reliability, lifecycle durability, etc.). Such frameworks will 

accelerate the development of technologies and materials 

for higher-efficiency solar photovoltaics with higher power 

density; component-level, in-situ sensors for monitoring 

operational health and observability; high-efficiency power 

electronics for converters and inverters; hybrid 

manufacturing of conventional and additive approaches for 

components; and harsh-environment electronics [8]. 

 Load Forecasting and State Estimation. An important 

objective of equitable energy infrastructure is its openness: 

the ability for the end user to have significant autonomy in 

how and when they use it. The entities responsible for load 

balancing and stability must be able to forecast the load 

mix and estimate the state of the system at places with low 

visibility. While the steady-state response is quite 

accurately forecasted, the dynamical one is far behind. 

This challenge will be exacerbated by increased 

fluctuations in voltage, amplitude, and frequency 

associated with the growing adoption of renewable 

generation, and by increasing privacy and security 

concerns. AI models—such as foundation models 

discussed in Chapter 02—that are trained using multimodal 

data, including anonymized smart infrastructure data, 

public infrastructure deployment records, existing 

infrastructure signatures, and new sources such as social 

media data, have the potential to provide unprecedented 

fidelity in load estimation. This capability will reduce 

average interruption times, improve situational awareness, 

and significantly improve reliability. 

 Federation and Privacy. In the operation of energy 

infrastructure, data access remains a major concern, 

driven by the multi-stakeholder nature of energy 

infrastructure and data and concerns about security, 

privacy, and market integrity. One promising approach is to 

develop distributed, federated AI-based mechanisms that 

guarantee a high level of privacy and that approach or, 

ideally, exceed the performance of centralized data 

analysis systems.  

Meeting these opportunities will allow the nation to reduce, if 

not eliminate, climate impacts induced by energy production, 

transport, and consumption, while potentially saving billions 

of dollars in outage costs.1  

8.2 Challenges to Overcome 

The adoption of AI capabilities in energy systems to harness 

these opportunities will require addressing the following 

challenges: 

 Scalable Computation. The combinatorial control and 

design space of energy systems is impossible to explore 

with current techniques, and the interconnected systems 

________________________________ 

1 For example, it is estimated that the 2003 power blackout that 

originated in Ohio and spread across much of the Northeast cost 

$10 billion [9]. More recently, the South-Central United States cold 

weather outage in 2021, which had impacts spreading between the 

natural gas and electric power systems, had economic impacts 

estimated to be as high as $130 billion in Texas [10]. 
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result in large-scale coupled systems that are 

computationally intractable and too complex to fit into 

existing combinatorial optimization modeling and solution 

tools. Thus, AI systems will need to overcome these and 

other fundamental scaling challenges for energy control 

and prediction as outlined in Chapter 01 regarding 

surrogate models. 

 Validation and Verification of AI Methods. Because of 

the high consequences of energy systems failure, new AI 

approaches, models, and tools will require formal validation 

and verification (V&V) of correctness throughout the life 

cycle of data and associated model development. These 

challenges are discussed in detail in each of the chapters 

in Section 01 as well as in Chapter 12, Mathematics and 

Foundations. 

 Uncertainty-Aware Robust AI Systems. For AI to provide 

solutions in the energy domain, an AI system is required to 

make provably robust inferences and recommendations 

locally (e.g., at the edge of or within a subsystem of an 

energy system) and globally (e.g., centralized operations), 

with human-understandable explanations for why the AI 

makes the decisions it does. Moreover, the AI must 

account for and characterize the uncertainties in 

measurement data and forecasts when making decisions 

and to certify that it is resilient to interference (natural or 

adversarial). This is a requirement across decision 

applications in energy systems, ranging from control 

systems for power grids with mixes of centrally dispatched 

generators, locally controlled distributed energy resources 

(DERs), as well as control systems for operating pipeline 

systems (natural gas, petroleum, carbon dioxide [CO2], 

hydrogen, etc.), handing uncertainty in renewable 

generation sources, and optimizing the operation of 

sophisticated reactors. As with V&V, uncertainty, 

explainability, robustness, and related requirements are 

discussed throughout Section 01 regarding capabilities and 

in Chapter 12: Mathematics and Foundations. 

 Adaptative and Self-Configuring AI Systems. Integrated 

energy systems are evolving systems with increasingly 

large numbers of sensors and devices being added over 

time. Sensors and other devices have controllable 

phenomenology that occur at the multiple timescales of 

decision-making in energy systems—ranging from sub-

second frequency control to decadal capital investments. 

Thus, for AI systems to provide planning, optimization, and 

control solutions to energy, they must respond quickly 

enough to match the scales of the phenomena, have an 

implicit understanding of the domain (e.g., physics-

informed constraints), and ultimately become self-

composing optimization and control systems that adapt to 

the changing conditions, environment, and configurations 

of an energy system over appropriate timescales. Chapter 

04 discusses these factors at length. 

 Data Sensitivity and Curation. AI methods require large 

amounts of labeled, curated data to be effective. Although 

energy system sensor arrays generate large volumes of 

data, there is misalignment between the input data 

required by typical AI models and the data that energy 

systems can provide. First, energy data are not typically 

well labeled nor centrally collected, requiring that AI 

methods work with partially structured data collected and 

stored in an accessible platform. Research in foundation 

models (Chapter 02) suggests the potential for emergent 

capabilities in large-scale models with respect to self-

supervised learning from large, unstructured, and multi-

model data sources. Second, energy data often have 

protection requirements that limit how widely they can be 

disseminated, presenting AI challenges including 

anonymizing data and developing federated or shareable 

AI models that are non-invertible (e.g., they cannot be used 

to recover the information that was used to develop the 

AI model). Third, energy data includes measurements with 

high degrees of uncertainty and incompleteness, with 

missing data for significant periods. Similarly, these data 

may or may not include low-frequency, high-consequence 

events, increasing the potential for misinterpretation of 

phenomena that are absent in the training data. 

8.3 Investment Needed for 
Achievement 

Investments in AI capabilities applied to energy challenges 

provide long-term as well as immediate benefits. For 

example, AI capabilities such as those in surrogate 

(Chapter 01) and foundation (Chapter 02) models provide the 

opportunity for a paradigm shift away from traditional 

optimization solutions that, while trusted, are inadequate for 

today’s (and certainly future) energy systems. The 

interpretation of simulations on the scale of the electric grid is 

difficult, and even more challenging for integrated energy 

systems with sector coupling, but AI systems such as inverse 

design models (Chapter 03) and digital twins (Chapter 04) 

can provide system designs and operational capabilities that 

improve the ability of decision-makers, policy-makers, and 

stakeholders to identify relationships that are non-intuitive, 

opaque to human observation, or beyond the view of 

traditional solutions such as correlation techniques. 

At present, humans build system models that they can 

intuitively understand, which are thus limited in size, scope, 

and complexity and in the questions that they can address. 

The development of AI surrogates (Chapter 02), in turn 

enabling digital twins (Chapter 04), is one immediate path 

toward accelerating and scaling the modeling and simulation 

development of energy systems, concurrently reducing 

reliance on specialized subject matter experts. Finally, 

investments for AI capabilities to support real-time decision 

and control (Chapter 06) could target replacing more complex 

simulation models. Here, the discussion of surrogates in 
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Chapter 02 is an appealing approach, as it is targeted on 

surrogates for the complex physics and dynamic phenomena 

of energy transport over networks. Further, investments are 

needed to create explainable and interpretable methods and 

surrogates for interconnected energy system that integrate 

streaming, multi-modal, and multi-fidelity data. These AI 

systems can act as closure models that integrate and 

transform the inherently multi-modal data of energy systems 

into new models. 

Over the long term, several investments will be essential. 

First, there is the need for investing in AI for intelligent and 

composable control systems (Chapter 06). Key investment 

areas include in the ability to continuously adapt to changing 

and increasing numbers of sensors that generate information 

at different time intervals as well as in AI to support decision-

making that occurs quickly enough for the temporal scales of 

the phenomenology of the energy system under control. 

Moreover, such control is inherently constrained by legacy 

systems that must be combined with more modern 

technologies. The investments need to leverage the compute 

power emerging at the edge of energy systems (e.g., with 

intelligent sensors that can both process data and actuate 

controls without the hundreds of millisecond data propagation 

and processing delays involved in centralized control 

systems), with the result being AI-enabled, distributed 

monitoring and operations. The long-term goal of this 

investment is self-composing AI control systems. 

Second, there is a need for AI investments in trustworthy 

decision-making under uncertainty. This is inherently critical 

for provably robust decision making, providing both intuitive, 

human-interpretable, investment-grade explanations and 

resilience to adversarial attacks. Associated development of 

metrics for quantifying trust in an AI model, including AI 

explainability, are also centrally important. Together, these 

developments are necessary to provide quantitative and 

qualitative means to certify AI model trustworthiness, as 

necessary for operational adoption. The investments noted 

elsewhere in this report (including Chapters 01, 02, 06, and 

12) for trustworthy and interpretable AI are directly connected 

to this recommendation. 

Third, there is a need for investments in AI for harnessing the 

vast and fragmented landscape of energy-systems-data. 

Efforts of identifying, acquiring, securing, curating, and 

contextualizing (encoding, compressing, and representing) 

the massive, multi-modal, heterogeneous, and rapidly 

growing data from energy systems spanning orders of 

timescales together constitute a computational science 

challenge that requires significant advances in the state of 

the practice. 

Finally, the diversity in terms of timescales for the design, 

implementation, and operation of energy systems confounds 

the development of holistic, integrated design capabilities. 

For example, investments in energy systems are made at the 

scale of decades, whereas geothermal storage needs to be 

charged seasonally and daily, solar and wind energy need to 

account for days of scarce energy harvesting, and grid-

responsive buildings—the consumers and prosumers in such 

integrated energy systems—need to manage loads at 

timescales of hours to minutes and seconds. Simply put, 

investments in developing AI capabilities across multiple 

scales of time and space is a computational and scientific 

challenge that requires focused research investment and 

demands new approaches and capabilities, particularly as 

described throughout Sections 01 and 03 of this report. 

Figure 8-2 illustrates how operational timescales (sub-

second) interact with decadal decisions. 

 

Figure 8-2. Examples of decision-making timescales for electric power systems that is inspired by the report [11]. 
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09. EARTHSHOTS 

The U.S. Department of Energy (DOE) has created Energy 

Earthshots™ initiatives to drive research activities needed to 

achieve its 2050 net-zero carbon goal [1]. As of September 

2022, there are six Energy Earthshots: Hydrogen, Long 

Duration Storage, Carbon Negative, Enhanced Geothermal, 

Floating Offshore Wind, and Industrial Heat (Table 9-1). A 

common thread throughout the Energy Earthshots is that they 

require the development of novel complex engineering 

systems, comprising complex components ranging from 

electrolyzers to flow batteries to gas turbine engines to 

floating wind turbines. General capabilities to design and 

develop complex engineered systems across different 

domain application areas are therefore critical for success of 

each of DOE’s Energy Earthshots. 

New technologies present new challenges for established 

system engineering practices and design tools. When the 

complexity of a new system design exceeds capabilities of 

existing tools, developers need to fall back to excessive 

hardware testing, which leads to massive cost overruns and 

missed deadlines. Perhaps the best-known example is from 

the defense domain, where complex engineered systems are 

also common. The F-35 Joint Strike Fighter, a complex 

mobile weapons system, was delivered three years behind 

schedule and roughly $200 billion (nearly 100%) over budget 

[2]. Similar experiences (albeit at smaller scale) have 

occurred with virtually every new transformative technology 

development. The success of Energy Earthshots will depend 

on the availability of design and rapid prototyping tools that 

can handle designs of such complexity. 

As global competition increases, other nations are improving 

system design capabilities. China, for example, 

commissioned its advanced Shadong aircraft carrier only six 

years after its construction began [3]. In comparison, the 

newest U.S. aircraft carrier, USS Gerald Ford, was 

commissioned 8 years after the start of construction [4]. This 

demonstrates that the Chinese military-industrial complex has 

made significant strides in closing the competitive gap with 

our nation in terms of building capability to develop extremely 

complex systems over the last decades. Capability to design 

complex engineering systems rapidly and at a low cost will be 

critical for meeting DOE carbon targets, as well as for the 

United States to maintain its leadership in new technology 

development. 

Each Energy Earthshot has a well-defined cost target and 

deadline (Table 9-1), and each involves developing new or 

scaling up existing technologies. In order to meet Energy 

Earthshot objectives: 

 new energy systems need to be designed and built within 

the specified Earthshot timelines; 

Table 9-1 Summary of DOE Energy Earthshots and their targets. Source: Energy Earthshots Initiative [1]. 

 

Earthshot Cost Target Target Subject Timeframe

Hydrogen $1 Production of 1kg of H2 10 years

Long Duration Storage Reduce cost by 90% 10+ hours energy storage 10 years

Carbon Negative $100 Sequestration of 1 ton of CO2 10 years

Enhanced Geothermal $45 Production of 1 MWh of electricity By 2035

Floating Offshore Wind $45 Production of 1 MWh of electricity By 2035

Industrial Heat N/A 85% reduction of CO2 emissions By 2035

PROJECT SPOTLIGHT 

Project Name: ExaSGD: Stochastic grid dynamics at 

exascale 

PI: Christopher Oehmen 

Organizations Involved: Pacific Northwest National 

Laboratory, Oak Ridge National Laboratory, Lawrence 

Livermore National Laboratory, Argonne National 

Laboratory, National Renewable Energy Laboratory 

Goal: Deliver capability to optimize transmission grid 

economic dispatch with respect to a large number of 

possible contingencies and different stochastic weather 

scenarios to enable grid planning with large number of 

renewable resources as a critical analysis capability 

needed for grid decarbonization. 

Significant Accomplishment: Developed mathematical 

methods and implemented them in a software stack that 

performs economic dispatch analyses for transmission 

grid planning and operation at unprecedented scales 

(100,000s scenarios for a U.S. size grid), with our 

software stack also serving as a platform for deployment 

of different AI methods to further aid grid planning and 

operation. 

In the News: Maintaining the Nations Power Grid by 

Exascale Computing, by Lawrence Bernard, 25 August 

2022, https://www.exascaleproject.org/maintaining-the-

nations-power-grid-with-exascale-computing/ 

https://www.exascaleproject.org/maintaining-the-nations-power-grid-with-exascale-computing/
https://www.exascaleproject.org/maintaining-the-nations-power-grid-with-exascale-computing/
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 new energy systems need to perform efficiently to help 

meet the Earthshot cost targets; and 

 development costs of new energy systems and 

technologies need to be amortized during the system’s 

lifecycle without exceeding the Earthshot cost targets. 

Effective system design is therefore essential for success of 

all Energy Earthshots and artificial intelligence (AI) 

capabilities such as those detailed in Section 01 of this report 

that represent key enabling technologies. 

The design process for complex energy systems, such as 

electrolyzers or flow batteries, typically follows a V-Model [5] 

(Figure 9-1). This approach begins with a concept design 

from which system requirements are derived, followed by 

design details of specific system controls and components. At 

each design stage, models of increasing fidelities and for 

different types of analyses must be produced. Once all 

system and component requirements are specified and 

verified in simulations, the system prototype is built up 

through several stages, starting from individual components 

and working all the way up to overall system integration. At 

each prototype building stage, physical parts of the system 

are tested through hardware-in-the-loop (HIL) simulations. In 

HIL simulations, physics-based models are connected with 

real-time data streams from the actual hardware. Massive 

amounts of high-quality data are generated during hardware 

testing stages. However, today, that data is typically used 

only for rudimentary model calibration and validation. There is 

a great opportunity to use this data for more advanced 

learning methods to develop, train, and deploy AI models to 

improve the system design workflow. 

Because the vast majority of product development costs are 

in the hardware testing stages, reducing their number and 

duration is critical for meeting Energy Earthshots cost targets. 

This is especially true in later hardware testing stages 

(subsystem- and system-level), which are significantly more 

expensive than the early component-level testing. 

The “digital twin” paradigm (Chapter 04) is closely related to 

the V-Model for system design. Originally the digital twin was 

meant to be a construct that captured/represented the 

performance and degradation of a component or system over 

its service life. Over time, the concept has been extended into 

the design realm where there is not yet a physical system. 

Although the term digital twin is not firmly defined [6], the 

most common use is to describe a hierarchical set of models 

that provides desired system representation at each stage of 

the product design as well as during the product development 

and operational lifecycle. 

The digital twin is designed and constructed concurrently with 

the physical system prototype and is used at each design 

stage of the V-model (Table 9-1). In many instances, a digital 

twin is integrated within the final product (e.g., for automated 

controls, health monitoring, and fault prediction) [7]. A digital 

twin often implies a certain level of automation. It is not 

merely a collection of models but rather a virtual object that 

seamlessly provides the system representation at any 

desired fidelity level and for any analysis. Typically, a digital 

twin also includes learning and adaptation capabilities, 

updating its overall and component models based on test 

data during the HIL simulations or from the system sensor 

data collected as the system operates. 

With increased accessibility and advances in AI capabilities 

such as surrogate (Chapter 01) and foundation (Chapter 02), 

and inverse design (Chapter 03) models, there are more 

opportunities to equip digital twins with advanced AI. 

9.1 Open Opportunities 

9.1.1 FIVE- TO 10-YEAR TIME FRAME 

Several opportunities to take advantage of AI in complex 

system engineering can be leveraged in the short to medium 

term (five to 10 years). These opportunities present 

themselves at different levels, from model and system design 

to AI-human partnership, including the design of control 

systems embedded in the complex systems and their 

operation. Acting upon these opportunities will enable DOE to 

meet Energy Earthshots cost targets. 

Models and Systems Design. Advances in AI, notably 

surrogate, foundation, and inverse design models 

(Chapters 01, 02, and 03), open significant new opportunities 

to fundamentally change how complex engineering systems 

are designed and to take advantage of the massive amounts 

of data generated in the design and operation process. 

Design data is of high quality because it is generated in a 

strictly controlled lab environment and is typically obtained in 

 

Figure 9-1 Typical system design workflow following the V-Model. 
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tests far from the operating point (stress tests) where a 

number of different modes are excited and nonlinear effects 

are dominant. With such a wealth of data, machine learning 

(ML) techniques can be devised to verify accuracy of physics-

based component models within the digital twin and to 

automatically find corrections to those models when needed. 

AI models can be further used to automatically rerun a 

sequence of design computations with the updated digital 

twin to obtain corrected component and system requirements 

feeding back to improvements in hardware tests. This level of 

automation would represent a massive improvement over the 

current state of the art. Presently, re-running virtual system 

design stages requires significant manual intervention and is 

typically expensive and error prone. 

Control Systems Software Design and Robustness. 

Embedded software systems must be developed, tested, and 

optimized alongside the physical systems to control their 

behavior. The same system design opportunities described 

above for the physical components and subsystems apply to 

control systems, along with capabilities such as AI-enabled 

software engineering (Chapter 06). Combined, these 

techniques have the potential to revolutionize the reliability 

and resilience of the complex systems central to the Energy 

Earthshots. Developing, testing, and continuously optimizing 

embedded software in control devices are as critical to these 

complex systems as the hardware and subsystem design 

processes described above. Engineered systems today have 

millions of lines of code embedded in their control devices. AI 

techniques including autonomous discovery (Chapter 05) and 

inverse design (Chapter 03), can be used to generate stress 

tests for software-in-the-loop simulations during the virtual 

testing stages, identify software bugs, and suggest fixes to 

programmers. During hardware/software system testing 

stages, AI models can be used to learn control response 

and communication latencies within and among subsystems. 

These are factors not captured in today’s physics-based 

models. 

Operation and Optimization of Complex Systems. AI 

techniques such as those enabling digital twins can also 

make operational systems more robust and resilient to 

disruptions. The same digital twin used for system design and 

test, deployed on a commissioned product, will provide on-

board health diagnostic, prognostic, and supervisory control. 

Here, the digital twin can be a reduced-order model, e.g., 

obtained using AI/ML techniques guided by physical insights 

into the system. AI models deployed within these systems, 

such as on-board sensors and controllers that include “edge 

AI” (Chapter 15) hardware processing, can adapt to different 

usage patterns or operating environment conditions and 

modify control strategies. This will also allow for prototype 

digital twins that can be used for demonstrations and 

feasibility/cost studies, training of operator and maintenance 

crews, enabling one generation of complex system to “jump 

start” the next. Indeed, the AI capabilities described 

throughout this report, from surrogate models to digital twins 

to edge AI sensors and controllers, represent underlying 

technologies, methods, and systems that can be deployed in 

multiple Energy Earthshots. This will be important to realize 

economies of scale, and will be accelerated through the 

development of a set of tools that can be used by AI/ML 

engineers, ideally with domain expertise. 

Data. Data collected from a fleet of commissioned products 

can be used for a variety of purposes. They can model 

uncertainties in the product’s operating environment and 

update the control logic over the entire fleet accordingly. In 

turn, learning from this data can improve predictions in design 

computations and reveal modifications to make in future 

products. With years of accumulated fleet data, aging effects 

on the product performance could be modeled. Moreover, 

this growing, multi-modal data corpus holds promise for the 

development of foundation models (Chapter 02) that improve 

quality and reduce the development time and costs for new 

complex systems. To that end, AI methods in workflows 

(Chapter 13) and data management (Chapter 14) are 

required to support the capabilities described above and the 

collection, curation, and evaluation of data used for model 

training and optimization. 

Human-AI Partnership. As designers, scientists, and system 

operators interact with AI design and control systems, digital 

twins, and similar capabilities, each human interaction 

provides data representing the opportunity for the AI systems 

to learn the interests and objectives behind human 

interventions in the system. Whether these are operational 

controls or design changes, AI systems can provide 

computational support (e.g., decision support, including 

suggested actions) to aid the human cognition during the 

process. For this cooperative learning loop to function 

optimally, both the human and the AI system need to 

“understand” each other. This will require advances in natural 

language processing, which is already a rapidly improving 

capability (Chapter 02), as well as in explainability. Many 

decisions relating to critical infrastructure require 

explainability and if the AI “box” remains closed to the human, 

the human may not reasonably trust the AI design 

suggestions that they receive. AI and robotics capabilities are 

already showing promise of automating laboratory workflows, 

including those integrating computational models 

(Chapter 05). These emerging capabilities will provide both 

insights and basic building blocks for AI and robotic 

capabilities interacting with system designers and operators. 

9.1.2 10- TO 20-YEAR TIME FRAME 

Automated Design. The long-term objective of AI for Energy 

Earthshots is to have fully automated system design 

processes, which will allow for rapid prototyping of new 

energy technologies and dramatically reduce product 

development costs across different domain areas. This will 

demand AI capabilities and advances, such as those outlined 
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in Sections 01 and 03, to deliver a level of automation where 

domain experts provide a concept design and objectives, with 

all subsequent design stages (including requirements 

propagation) created by the AI system. Such an AI system 

should provide implementation options and associated 

evaluations and recommendations from which domain 

experts could choose. Once the best implementation 

candidate is selected, the AI system would orchestrate the 

hardware tests, collect data, and make design adjustments 

as needed. This process could be integrated with additive 

manufacturing so that component prototypes are 3D-printed 

on site (Chapter 05). This would also enable rapid hardware 

prototype adjustments based on the hardware testing results. 

Such fully automated design and prototyping process will 

strengthen and extend the nation’s global leadership in new 

technology development. 

9.2 Challenges to Overcome 

Models and Systems Design. Data-driven and physics-

based approaches typically have been investigated and 

applied in different contexts, but there has been relatively 

little crosscutting research across the two areas. That has 

hindered the adoption of data-driven methods in system 

design applications. Physics-based approaches have been 

and will likely remain in the foundation of system design, as 

they give predictions that can be interpreted in terms of 

domain science. Furthermore, physics-based methods 

provide a way to verify operational constraints, thereby 

minimizing security and safety design constraints with high 

levels of certainty. On the other hand, data-driven 

approaches are more effective in quantifying design 

variations, such as epistemic uncertainties or stochastic 

processes in the operating environment. Ideal modeling and 

analysis strategy for system design lies at the intersection of 

data-driven and physics-based approaches. Deployment of 

AI at the scale where it will deliver transformational changes 

to system design requires significant new research of novel 

“hybrid” methods that learn and make decisions based on 

acquired data. At the same time, these methods will need to 

strictly enforce laws of physics, security, and safety 

constraints. Advances in the development of AI-based 

surrogate models (Chapter 01), such as physics-informed 

and reduced-order models, will be essential to closing 

this gap. 

Control Systems Software Design and Robustness. The 

state of the art for control system design is limited by 

numerical analysis methods used to model and simulate 

complex engineering systems, which in turn affects the ability 

to deploy more advanced methods, including AI, at scale. A 

typical complex system model consists of three parts: 

(i) differential-algebraic equations (DAEs) describing physical 

components, (ii) a finite state machine (FSM) describing 

control logic (which is implemented in the embedded 

software), and (iii) a Petri net model of communication 

between system components. There are significant numerical 

and computational challenges for scaling up each of these 

computations to the size required for the deployment of 

advanced AI models. Instead of scaling up the computation, a 

typical approach in industry today is to reduce the fidelity of 

systems’ physical components models. By doing so, one is 

able to simulate a more complex system without significantly 

increasing the complexity of the model. This means that the 

simulation does not exceed capabilities of the existing tools. 

However, such models are often too coarse to take 

advantage of and incorporate fine resolution effects that can 

be captured by machine learning. 

Operation and Optimization of Complex Systems. 

Complex systems relevant to Energy Earthshots have strict 

security and safety operational requirements. These 

requirements are challenging to enforce when using deep 

neural network (DNN) surrogate models, which appear as 

black boxes and whose behavior cannot always be 

interpreted in terms of physics. Using DNN surrogate models 

for components typically leads to high-dimensional system 

models with strong nonlinearities [8]. This makes system 

analyses (e.g., uncertainty quantification, adjoint sensitivity 

analysis, and constrained optimization) computationally 

challenging and beyond capabilities of standard system 

design tools and embedded devices used today. In model 

predictive control, for example, computing uncertainty 

propagation through DNN component models may be 

extremely challenging to perform within real time operation 

requirements.  

Lack of physical intuition and computational complexity of 

DNN surrogates also raises questions about how to optimize 

systems, validate controls, and ensure that security and 

safety constraints are enforced. It is particularly challenging 

to understand limits of applicability for DNN models in system 

optimization. Are the models learned for one system 

configuration still valid after system parameters are 

optimized? Significant new research in physics-informed ML 

methods is needed to answer these questions. 

Data. While hardware testing generates large amounts of 

data, many industries have limited capability to take full 

advantage of it due to lack of scalable data acquisition and 

management infrastructure. At present, most of the hardware 

testing data is analyzed directly by engineers. Therefore, the 

amount of data used is limited by how much data a human 

engineering team can process. The supporting infrastructure 

is built accordingly. To be able to deploy AI analysis, one 

needs to build an entire supporting ecosystem (also 

discussed throughout Sections 01 and 03 of this report). 

This will bring new challenges, such as how to label acquired 

data for subsequent processing. There is a large number of 

configuration and environment parameters that specify a 

single hardware test. Furthermore, data entries with different 

labels are connected through laws of physics that need to be 

preserved throughout the analysis. There are also inherent 
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aleatoric (irreducible) uncertainties in hardware testing 

processes that need to be quantified and factored in the 

system design properly. 

Since system design involves multiple stakeholders, including 

multiple suppliers, there are proprietary and intellectual 

property issues associated with data and that need to be 

considered as well. For example, most component suppliers 

explicitly prohibit reverse engineering of their products. There 

is a risk that some learning methods deployed at hardware 

testing stages may be interpreted as a reverse engineering of 

system components provided by suppliers. There needs to be 

an organizational framework for complex systems design 

specifying how the intellectual property of each stakeholder 

will be protected and who has ownership and access to 

which data. 

Human-AI Partnership. While large amounts of data are 

generated during hardware testing, a relatively small fraction 

of that data is collected and used today. The current 

bottleneck is the ability of system designers to process large 

quantities of data in a timely and cost-effective way. How to 

process large amounts of data to give engineers actionable 

information and help them navigate complex design spaces is 

still an open challenge. Here, the interaction among humans 

and AI systems is also critical, requiring research in human 

factors and in AI interaction mechanisms to interpret human 

input with consideration to context and intent.  

Automated Design. Realizing the goal of automated designs 

requires that most, if not all, of the challenges presented (as 

they relate to shorter term opportunities) be addressed. There 

are also further challenges specific to automated designs. 

Currently, the system design process is fragmented, utilizing 

different and often incompatible design tools at different 

stages. The majority of these tools are proprietary, closed 

source, and have limited ability to interface with other tools. 

The lack of interoperability and limited data exchange 

capability with these existing tools poses serious challenges 

when deploying new methods and automating an established 

system design process. Developing AI approaches to 

improve and fully automate system design workflows will also 

require access to suppliers’ databases and the ability to 

process and learn from historical data from various sources. 

Finally, the concept of fully automated complex system 

design can itself be posed as an AI problem with a massive 

number of parameters. What makes this problem particularly 

challenging is that couplings between components are 

extremely complex, with changes to one component 

potentially cascading through the entire system.  

9.3 Investment Needed for 
Achievement 

The main investment needed is in AI methods, frameworks, 

and models that can learn from hardware tests, interpret 

results in terms of physics, and update system design to 

meet (or exceed) Energy Earthshots targets. New methods 

also need to strictly enforce security and safety constraints. 

To support Energy Earthshots, DOE also needs to invest in 

the development of generic components for system design 

relevant to each Energy Earthshot. Such investments will 

help standardize modeling practices across different 

modeling areas, especially since some components 

(e.g., power conversion or thermal management devices) are 

part of almost all energy systems relevant for the Energy 

Earthshots. Below, we describe some key investments that 

will create needed capabilities for multiple Energy Earthshots. 

Models and Systems Design. Development of component 

models for system design computations typically makes up 

most of the modeling and software development costs during 

the system design. Component models are often tailored to 

specific numerical simulation schemes used in the design 

computations. While these models capture correct physics, 

their scope of application in terms of different analyses is 

narrow. In the context of digital twins, system components 

are not modeled by a single model but by a hierarchical set of 

models that capture the same physics, but which are adapted 

for different stages of product design. Modeling data for 

systems such as electrolyzers or flow batteries are neither 

easily accessible nor provided in a form suitable for 

mathematical analysis due to various proprietary and/or 

practical issues. DOE needs to invest in creating libraries of 

hierarchical generic component models for complex energy 

systems (with complete sets of their mathematical equations 

and modeling parameters available) to support and 

incentivize research related to Energy Earthshots. Investment 

by DOE’s Advanced Research Projects Agency–Energy 

(ARPA-E) in creating generic transmission grid models [9] 

has spurred a flurry of research activities related to power 

grids. This success should be replicated for other energy 

systems as well in order for Energy Earthshots to be 

successful. 

Furthermore, component models for digital twins need to 

support updates and modifications from different learning 

techniques. This poses nontrivial mathematical problems that 

have not been addressed completely thus far. There are also 

many challenges with data for creating surrogate models 

required by digital twins. 

Control Systems Software Design and Robustness. To 

harness the power of AI for controls and embedded software 

design, there needs to be scalable modeling and simulation 

infrastructure, which can support multiscale hybrid models 

comprising both continuous and discrete dynamics 

components. Such a framework must allow dynamic analysis, 

obtain analytic derivatives for simulation and optimization, 

and enable code generation for real-time application with 

guaranteed solvability, execution time and memory footprint. 

This class of framework is needed to incorporate surrogate 

models for control systems obtained through ML from 

hardware testing data. Multimethod numerical integration 
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frameworks [10] have been proven effective for multiscale 

problems cast in terms of ordinary and partial differential 

equations. However, the theory is not fully developed for 

DAEs, which are typically used to model complex engineering 

systems. Having hybrid simulations that capture continuous 

dynamics and discrete events and scale to large systems is 

still an open research topic and requires significant new 

investment.  

Operation and Optimization of Complex Systems. Using 

AI to learn from observation data to optimize system 

performance and, at the same time, strictly enforce system 

security and safety operational constraints is of critical 

importance for the success of Energy Earthshots. 

Furthermore, in order for engineers to make sound design 

decisions, it is of utmost importance that AI analysis results 

are explainable. Delivering this capability requires significant 

new investment in physics-informed AI methods. Early results 

in this area combining physics-based modeling with data-

driven learning are very encouraging [11, 12]. Preliminary 

numerical investigation shows that adding physical 

constraints can dramatically increase the data-driven model’s 

accuracy in turbulent flows [13]. 

To address well-known limitations in data-driven modeling 

(e.g., sensitivity to noise in input data or lack of 

explainability), a targeted investment is needed to develop a 

symbiotic physics-data-driven modeling framework in which 

data is parsimoniously used to model only missing 

information in well-tested mathematical methodologies and 

improve their physical fidelity and numerical accuracy. This 

paradigm shift from “data-driven modeling” to “data-driven 

correction” is essential for efficient system design. It will allow 

for both reducing epistemic uncertainties in the digital twin by 

leveraging hardware testing data and for modeling aleatoric 

(irreducible) uncertainties accurately based on field operation 

data. This will provide basis for efficient uncertainty 

propagation models in the digital twin that can be used in real 

time for model predictive control during system operation. 

More importantly, accurately modeling deterministic and 

stochastic processes in the system enables engineers to 

strictly enforce security and safety constraints within the 

context of stochastic optimization.  

Data. The precondition for deployment of AI at scale to 

system design processes is the development of appropriate 

data acquisition, management, and storage infrastructure 

(Chapter 14). This work requires additional, new research 

into optimal approaches and mechanisms to label data 

samples from inherently multi-modal and multi-scale sources, 

ranging from sensors to AI models to operational settings and 

outputs. Moreover, the development of AI models that can 

evaluate and analyze these data streams is critical for 

establishing (and discovering) proper correlations between 

them, given that each sample is associated with a large 

number of configuration parameters and environment sensor 

readings. In addition to data science research, significant new 

investment is needed to create an adequate software 

ecosystem, develop open-source middleware, standardize 

application programming interfaces, and specify data transfer 

protocols (Chapters 11 and 13). 

Human-AI Partnership. Integrating AI into existing human-

centric processes requires the development of new AI 

methods that will enable deeper interactions than those 

associated with a purely assistive role. The AI methods must 

understand the goals as well as the processes. Therefore, 

investment is needed in AI algorithms that embrace human 

incremental formalism. This will enable the human to absorb 

the AI into their cognitive process and allow for gradual 

construction of the product design stages, beginning with the 

initial concept design supplied by the human. The AI models 

should consult the human for expert feedback and the human 

should consult the AI for suggestions or assistance. 

Eventually, AI methods should be able to design simple 

processes with input from humans; then, humans would 

score the performance of the AI. Such an AI system would 

demonstrate the co-learning relationship between the human 

and the AI and gradually build more robust human-robot 

interactions. These human-AI partnership methods can 

ultimately help to achieve the concept of self-driving facilities.  

Automated Design. Following the concept design, the 

subsequent design stages involve a lot of routine work, such 

as requirements propagation or model updates, that can be 

automated. Each subsequent design stage also generates 

large amounts of new data that need to be processed and fed 

back to prior design stages for design reevaluation. The 

decision-making process when moving from one design 

stage to the next is often influenced by the ability of human 

actors to process newly generated and often quite 

heterogeneous data, as well as ability to re-run prior design 

stages with the new data fed back in. Investment is needed in 

AI methods that automate this iterative system design 

workflow, starting from a concept design as the input and 

then automatically generating subsequent design stages 

while giving engineers several options to choose from at each 

stage. The automated design should be integrated with 

databases of different materials, components, and system 

designs to automatically identify best matches for the concept 

at hand and optimize its implementation for cost and 

performance. Further investment should be made in 

algorithms that can make more aggressive departures from 

previous designs in order to explore broader segments of the 

design space. The AI models also need to incorporate 

learning from hardware tests, interpret results in terms of 

physics, and update system design to meet (or exceed) 

Energy Earthshots targets. New methods must also ensure 

that security and safety constraints in each proposed design 

are satisfied and verifiable. Finally, investment is needed to 

support an effort to create AI models capable of orchestrating 

co-dependent activities in the design process and interfacing 
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with additive manufacturing facilities to create component 

model prototypes on site. 
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10. NATIONAL NUCLEAR SECURITY ADMINISTRATION (NNSA) 

The goal of bringing artificial intelligence (AI) systems into the 

National Nuclear Security Administration (NNSA) mission 

space is to dramatically reduce the time to execute across 

multiple mission programs, including stockpile stewardship, 

production and modernization, and nuclear nonproliferation.  

Prior to this report and the 2022 DOE AI for Science, Energy, 

and Security workshops, there have been strategic planning 

meetings within the NNSA Office of Defense Programs (DP)’s 

Advanced Simulation and Computing (ASC) program, which 

provided a significant baseline informing this report. With the 

potential for AI and machine learning (ML) to create 

efficiencies in the nuclear deterrence (ND) lifecycle, the ASC 

program launched its tri-lab1 Advanced Machine Learning 

(AML) initiative in FY 2019 with the objective of accelerating 

the ND design cycle and improving stockpile surveillance 

through advanced data analytics and by using AI/ML 

techniques. 

This chapter presents five exemplar problems that are drawn 

from stockpile stewardship and nonproliferation mission 

spaces, with connections to some NNSA experimental 

facilities as well. These exemplars align with the goals 

outlined in the forthcoming ASC AI for Nuclear Deterrence 

(AI4ND) Strategy Plan, which will address AI technology 

needs for full weapon lifecycle - spanning discovery, design 

optimization, manufacturing and certification, and deployment 

and surveillance (DDMD) lifecycle phases, as well the 

detection, location, and characterization of proliferation 

activities.  

Within this chapter, sections 10.2.1 through 10.2.4 provide 

grand challenges and goals for the role of AI within the ASC 

AI4ND strategy, and section 10.2.5 illustrates a grand 

challenge related to the nonproliferation work. Within the 

stockpile stewardship examples, there are multiple thrusts of 

the AI4ND strategy that seek to accelerate the time to deliver 

on lifecycle management. As a most aggressive goal, AI 

systems could potentially help to support reducing the time to 

manufacture a first production unit (FPU) from more than a 

decade to a much shorter timeframe. 

10.1 Open Opportunities 

Building upon AML, the ASC program aims to advance high-

performance simulation capabilities with AI/ML-enabled tools 

to solve current and emerging national security challenges. 

 
1  The three participating laboratories are Lawrence Livermore 

National Laboratory, Los Alamos National Laboratory, and Sandia 

National Laboratories. 

 

 

Integration of AI/ML techniques offers the promise of: 

(1) bringing simulations in line with experimental reality; 

(2) gleaning insight from the vast troves of multimodal data 

across the NNSA mission space; (3) identifying rare or 

anomalous events; and (4) helping to identify, model, and 

characterize systematic uncertainty. Because of these 

opportunities and current NNSA investments in AML and 

exascale computing, NNSA DP is formulating a strategy that 

makes use of AI/ML across the entire nuclear weapons 

lifecycle. The ASC AI4ND strategy is an opportunity for 

NNSA to enhance scientific and technology leadership 

globally and execute dramatic and sweeping changes in the 

stewardship mission that aim to drastically reduce the time-

to-solution across the full DDMD weapon lifecycle.  

Enabled through the new AI approaches detailed in 

Section 01 of this report by the ASC AML initiative and by 

exascale computing, the strategy consists of new capabilities 

in the following lifecycle areas (Figure 10-1): 

 Discovery: Discover new materials that are vital to 

national security priorities such as stockpile modernization. 

This effort would involve, for example, development of new 

 

 

 

 

 

PROJECT SPOTLIGHT 

Project Name: Machine learning of interatomic potentials 

with applications to materials aging 

PI: Kipton Barros and Benjamin Nebgen 

Organizations Involved: Los Alamos National 

Laboratory 

Goal: Use an ensemble of neural networks to learn 

interatomic potentials from fine-scale simulations to 

accelerate larger simulations of shock and aging in 

mission-relevant materials, where the AI system 

continuously improves itself by testing its ability to make 

predictions in order to learn which new training 

simulations to run. 

Significant Accomplishment: We have developed 

several interatomic potentials for bulk metals and have 

made significant progress on modeling, where our large-

scale active learning framework runs effectively on the 

Sierra HPC system and uses GPU resources to perform 

DFT-based quantum calculations, perform ML-driven 

molecular dynamics simulations, and retrain the neural 

network potentials. 

In the News: Our flagship publication that describes our 

Sierra workflow (an active learning framework that 

couples machine learning, quantum calculations, and 

molecular dynamics) appeared in Nature. 

Communications, 12, 1257 (2021). 
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polymers with designed physical properties, or high 

explosives with improved safety performance. 

 Design Exploration and Optimization: Explore major 

efficiencies in a complex design parameter space and 

optimize weapons parts and system designs for 

requirements such as manufacturability, reliability, or cost 

efficiency.  

 Manufacturing and Certification: Advance manufacturing 

efficiency and quality, comprising AI-enabled adaptive 

manufacturing controls, inspection, and qualification 

optimized in a tight loop with design and production. 

 Deployment and Surveillance: Characterize behavior 

over the full weapons system lifecycle, including the use of 

digital twins (Chapter 04) with aging effects, analysis of 

data from embedded sensors, and awareness of potential 

problems before they occur. 

10.2 Challenges to Overcome 

This section describes five foundational research and 

proposed grand challenge problems whose solution will be 

required in the next 10 years to successfully harness the 

advantages of AI/ML to transform and accelerate the pace of 

discovery and development in high-consequence NNSA 

missions. The first four, in order, map to the DDMD lifecycle, 

and the fifth maps to the non-proliferation mission: 

 10.2.1 Scientific Discovery for Areas such as: Fission, 

Fusion, and High-Energy Physics 

 10.2.2 Design Exploration and Optimization using 

Multiscale and Multiphysics Simulations 

 10.2.3 Manufacturing and Certification of Parts and System 

Parts 

 10.2.4 Deployment and Surveillance for Stewardship 

Management and Global Security 

 10.2.5 Non-Proliferation 

We note that Infrastructure grand challenges crosscut these 

grand challenges and are particularly prominent in the third 

grand challenge. 

10.2.1 SCIENTIFIC DISCOVERY: FISSION, FUSION, 

AND HIGH-ENERGY PHYSICS  

Grand Challenge: Develop an AI system that can identify 

new materials synthesis that couple unique NNSA 

requirements and enhance both performance and safety in 

extreme environments. 

Introduction. High-energy density physics (HEDP) and 

fusion physics calculations are based on various multiphysics 

codes that include, but are not limited to, radiation-

magnetohydrodynamics (radMHD) density functional theory 

(DFT) and molecular dynamics calculations. These are 

computationally expensive calculations that display low-

dimensional emergent behavior. HEDP research is also 

associated with costly experimental modalities utilizing 

multiple diagnostic measurements that are designed to test 

and calibrate existing and novel physical models. To test and 

calibrate the model, researchers have a critical need for 

methods that can construct high-fidelity, efficient surrogate 

models (Chapter 01) of the physics, identify the low-

dimensional sub-manifold structure of the modeled physics 

and the data, and finally assimilate the data with the model to 

refine and extend the estimate of the sub-manifold structure. 

 
Figure 10-1. Future investments in research, development, test, and evaluation of AI/ML within the NNSA Advanced Simulation and 
Computing (ASC) program will enable significant improvements and enhancements of discovery, design exploration, manufacturing, 
and deployment (DDMD) processes. 
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While good-quality surrogates for DFT calculations and 

ML-informed interatomic potentials are starting to emerge 

[4, 5], combining these with diagnostic data in near real time 

is a beyond-exascale challenge. 

Opportunities. Solving this grand challenge problem will 

have a major impact on our understanding of uncertainty 

quantification (UQ) as well as validation and verification of 

HEDP, inertial confinement fusion, magneto-inertial fusion, 

magnetic confined fusion, and the factors affecting stockpile 

safety and readiness. This approach could also be applied to 

a broad range of other physical problems such as climate 

physics, geophysics, and astrophysics. In particular, the use 

of AI/ML methods for magneto-inertial fusion would enable 

new designs and reduce the risk of any proposed design not 

performing, both at current scale and at future scales. Such 

methods would also enable significant improvement in 

experimental design leading to greater understanding of 

HEDP physics (hypothesis test) and reduced risk of 

experiment failure. Success in this area could lead to 

commercial fusion energy and a more reliable stockpile. 

There are numerous multiphysics codes of different fidelities 

that have been optimized to run on the exascale 

computational platforms, so that ensembles of many 

simulations (100s to 100,000s, depending on the fidelity) can 

be produced, generating sufficient training data to create AI 

surrogates (Chapter 01), inverse design (Chapter 03), and 

control system (Chapter 04) models necessary to support 

new experiment design and optimization opportunities. 

Additionally, large databases of experiments are available 

from experimental facilities with multiple high-quality 

diagnostic measurements for each experiment, spanning a 

broad range of physical regimes. Physics-informed ML 

methods that can be trained on different materials with 

generalization capabilities for different temperatures also 

show promise [1]. Finally, this grand challenge could leverage 

tools and capabilities developed for the domain areas within 

the Office of Science (Chapter 07). 

Risks. Without realizing the improvements from AI-based 

methods, the fidelity that is required for HEDP use cases 

remains beyond the reach even of exascale-class HPC 

systems. This gap means that the pace of our science 

discovery will not match that of other actors, affecting our 

national security and scientific competitiveness. Moreover, 

the continued aging of the stockpile will increase the demand 

for modeling and simulation, which is challenging even with 

exascale systems. The number of different materials, as well 

as the different physics and scenarios that need to be 

studied, represent a grand challenge that is beyond the reach 

of current conventional methods due to limitations in compute 

and the scaling of some first-principles methods. Without AI-

enabled approaches, we run the risk of critical gaps in our 

understanding all of the physical properties, at all scales of 

interest, for all materials.  

Advances in this area would enable us to use current and 

future exascale systems to solve hundreds of problems by 

harnessing the speedups of surrogates, property inference, 

etc.  

Challenges. An AI grand challenge problem is to focus on 

near-real-time workflows that enable discovery of new 

materials vital to national security priorities (Section 03: 

Technological Crosscuts discusses workflows, software 

frameworks, data infrastructure, and other factors). The AI-

assisted workflow will use data generated from sensors, 

images from cameras, and other diagnostic sources to 

enable edge analytics near the accelerators/experimental 

facilities or in the field (e.g., detecting radiological sources in 

urban areas or major ports of entry). This workflow will also 

enable inference using surrogate models at device scale or 

online learning approaches deployed in computational 

resources physically near accelerators or other experimental 

facilities. These new AI/ML-enabled workflows would not only 

improve an individual experiment but would evaluate results 

for the purposes of designing the next set of experiments and 

for retraining the surrogate models on capability-class 

computational systems using carefully chosen diagnostic 

data and generated configurations from the experimental 

data. Ensembles of 100s to 100,000s of multiphysics 

simulation runs would be performed based on AI-specified 

configurations to generate new training data, which can be 

combined with experimental data, such as from the 

Z-machine, the National Ignition Facility, DIII-D, and the 

Tokamak Fusion Test Reactor, to train surrogate 

models offline. 

10.2.2 DESIGN EXPLORATION AND 

OPTIMIZATION USING MULTISCALE AND 

MULTIPHYSICS SIMULATIONS 

Grand Challenge: Develop a master model—i.e., a 

foundation model (Chapter 02) specifically trained for a range 

of related downstream tasks—for material design or 

multiscale physics to enable weapons designs that are 

optimized for performance, ease of manufacturing, short 

qualification times, and/or specialized mission needs. 

Introduction. Enabled by increases in available computing 

power and driven by rapid developments in applied 

mathematics and computer science, the ASC program has 

demonstrated positive impact across many areas of the 

NNSA. Many aspects of the NNSA mission, including 

weapons design, production modernization, and qualification 

and certification, rely heavily on our ability to simulate 

everything from fundamental physics and material response 

under a wide range of physics regimes to full-system 

performance calculations for complex engineered systems. 

Simulation can significantly accelerate the design cycle, limit 

the need for costly or prohibited experiments, and are key to 

stockpile assessment. However, because the computational 

requirements of first-principles modeling approaches exceed 
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available HPC resources—even in the exascale regime—for 

all but the most fundamental sciences, computational models 

grapple with a trade-off between accuracy and performance. 

That is, scientists must choose the least approximate solution 

that is feasible to compute with the available resources. Fully 

resolving many important problems remains out of reach due 

to either lack of computational resources, lack of physical 

models, or lack of sufficient data to parameterize more 

accurate models. Many of the core phenomena of interest in 

weapons science span many scales in space and time, and 

often entire subfields are dedicated to understanding and 

approximating just a single scale. The corresponding 

simulations represent all smaller scales in the aggregate 

while all larger ones are effectively ignored. Consequently, 

the utility of such models is limited to exploring very specific 

questions and always carries the risk that some unresolved 

effects at scales below the resolution of the relevant 

simulation may lead to significant errors in the answers. 

One common approach is multiscale models that couple 

simulations at different scales; fine-scale, expensive models 

are restricted to the most important parts of a problem and 

other models cover larger scales with more approximate 

solutions. This type of coupling also extends to different types 

of physics, that is, connecting hydrodynamics with radiation 

transport, for example. Many of the most impactful 

simulations are assembled as a collection of different physics 

models at different scales and are carefully chosen to provide 

the most accurate overall solution given the available 

computing resources. Nevertheless, even the most 

sophisticated multiscale, multiphysics simulations remain 

many decades away from explicitly resolving all known 

physics effects, even assuming an unabated increase in 

computational power. AI-based techniques such as AI 

surrogates, foundation models, and property inference (as 

outlined in Section 01 of this report) have the potential to 

fundamentally alter this trajectory, leading to unprecedented 

capabilities in the next five years and a radical restructuring 

of computational science in general within the next decade. 

Moreover, this initiative could leverage models and 

capabilities developed in the broader context of energy 

science (Chapter 08) or as part of the effort to address the 

U.S. Department of Energy’s (DOE) Energy Earthshots 

initiative (Chapter 09). 

Opportunities. As discussed in Section 01, recent advances 

in AI/ML have given rise to scalable and efficient AI-based 

surrogate models that—once calibrated from sufficient 

training data—can replace a broad range of physics modules 

with surrogates that accelerate the computation by factors of 

1000s and beyond. Consequently, given an existing 

assembly of multiscale and/or multiphysics components, one 

can iteratively replace the most computationally expensive 

parts with AI surrogates, leading to unprecedented speedups. 

A master model could be developed that addresses the 

needs for multiple material design needs under different 

conditions. This capability would allow for the composition of 

a hybrid system based on AI using a master model (see 

Chapter 02) and multiphysics calculations, creating a 

simulation that is truly greater than the sum of its individual 

parts. This hybrid system will enable the design and 

development of true scale-bridging simulations in which even 

the largest scales are informed not only by bulk physics at the 

respective scale but via trained models that directly 

incorporate information from all finer scales. 

An AI-empowered multiscale/multiphysics framework in its 

fully developed form will enable an autonomous approach to 

accelerate any existing simulation capability in a transparent 

and easy-to-adopt manner. Given an existing modeling 

system, the new framework will target the most expensive 

components of the system and replace them with AI 

surrogates. Subsequently, a new decision point is introduced 

that, at each invocation of the submodule in question, uses 

UQ techniques to determine the trustworthiness of the trained 

model. If the inference requirements are deemed to be within 

acceptable limits based on the uncertainty calculations, an 

accelerated AI-surrogate for that model is used in place of the 

traditional (and more computationally expensive) component. 

Whenever challenging data (“out of domain” or high 

uncertainty data) are encountered, the system reverts to the 

original physics module instead of the AI surrogate. This 

challenging data augments the training dataset to iteratively 

improve the model. This approach could be applied 

continuously and recursively at all scales. Ultimately, DOE 

will be able to assemble a master model for key constituent 

physics modules that collectively enable simulation at 

unprecedented speeds with ultrafast, trusted AI models and 

thereby replace traditional strategic computing components. 

Consequently, AI-driven multiscale simulations will enable 

design, exploration, and optimization using massive 

simulation ensembles at exceptional fidelities with the 

potential to drastically accelerate the entire DDMD lifecycle.  

Risks. Much of the nation’s success in, for example, 

stockpile stewardship and the corresponding technological 

advantages, has relied on superior simulation capabilities that 

both substitute for extensive nuclear tests and enable rapid 

design. AI-based surrogates have already been 

demonstrated in key application areas such as radiation-

hardened microelectronics design and fabrication, HEDP, 

additive manufacturing, and high-energy materials. 

Consequently, it is virtually certain that capabilities like those 

described above are being developed by other actors, 

eroding the advantages of superior simulation capabilities. 

Realizing this grand challenge will cause a disruptive 

advance in simulation capabilities for whoever achieves 

operational status first. In contrast to the current state of the 

art, in which high-fidelity simulations can require months to 

complete and yet disagree with experiments in critical details, 

these new AI/ML approaches will support massive parameter 

sweeps of highly predictive simulations with enormous design 
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potential (Chapter 03). Such capabilities have potential to 

leap-frog decades of prior advantages, creating tremendous 

security and industrial benefits. It is, therefore, imperative for 

DOE to secure its leadership in this field, both to boost the 

nation’s competitiveness and to adequately judge the 

capabilities of other actors. Simply maintaining the status quo 

is a significant risk. 

A critical risk associated with surrogate-based frameworks is 

rooted in the fact that they represent a fundamentally different 

technology than existing simulations, and thus past 

performance may not predict future success. That is, 

significant advances toward any of the remaining technical 

challenges discussed below might come from otherwise 

unrelated research such as in computer vision, natural 

language processing, or any number of other application 

areas employing AI/ML. This orthogonal nature of AI 

advances in one area allowing profound impact in entirely 

different science domains opens the possibility for 

adversaries to potentially assemble a working system without 

a large lead time and, with the exponential increase in 

predictive capability provided by AI, quickly erase prior 

deficits in physics capabilities and could quickly gain an 

advantage.  

Challenges. While AI-based surrogates for some critical 

applications have been demonstrated, a full master model 

and an AI system working within or in a composable fashion 

with multiphysics simulations as described above will require 

several fundamental advances. Here, we focus on the 

specific technology needs for AI-enabled 

multiscale/multiphysics modeling identified during the 

workshops organized according to the technology crosscuts 

in Section 03 of this report. 

The first set of needs relates to the underlying theory of 

machine learning. To achieve a master model for material 

design implies the ability for reliable UQ to answer such 

questions as, “Is the current model trustworthy or does it 

require retraining?” Additionally, in order to build confidence, 

verify outputs, and explain unexpected results, the full master 

model will need to meet the requirement that researchers can 

interpret any of the models being deployed as well as their 

complex interactions. Finally, the efficiency and effectiveness 

of the approach can be significantly improved by integrating 

active learning algorithms that proactively improve models 

instead of waiting for answers to be deemed unreliable.  

The second set of needs address the changing nature of 

the overall software and system design and combines 

challenges in software, workflows, and data management. 

The AI system as outlined above implies a shift from the 

complex, modular applications used today to a more flexible, 

dynamic, and unpredictable mixture of simulations, model 

inferences, and training. We will need new software 

frameworks that can seamlessly integrate into the current 

computational ecosystem. Additionally, the composable use 

of traditional components and AI models recast otherwise 

monolithic applications as complex workflows that manage a 

variety of different components.  

Another important consequence of deeply integrating AI-

based surrogates is the need to manage the training data, 

models, and their provenance as necessary to ensure 

accountability and repeatability. There will exist a set of 

persistent and ever-evolving master models that represent 

significant investments and capabilities akin to current 

experimental databases. Maintaining a detailed record of 

what data was used to build such models, which fidelity was 

used, and which algorithms were used for training will require 

sophisticated data management across DOE sites 

and programs. This critical concept is detailed in 

Chapters 14 and 19. 

The final technical challenge will come from the changing 

need for computational hardware as the training of 

massive master models asynchronously, fast inference, and 

fast asynchronous training might become substantial 

bottlenecks. Furthermore, some theoretical advances, such 

as UQ or automatic differentiation, will benefit from and, in 

some cases, require new hardware developments 

(Chapter 15). 

10.2.3 MANUFACTURING AND CERTIFICATION 

Grand Challenge: Significantly reduce the time required to 

field new weapons systems with adaptive manufacturing and 

automated qualification and testing. 

Introduction. AI-enabled autonomous control for additive 

and advanced manufacturing would be a revolutionary 

capability for the DOE national laboratories and 

U.S. manufacturing industries. It would accelerate the design, 

build, and test phases of large-scale DOE science 

experiments (e.g., National Ignition Facility, Z-machine, Fermi 

National Accelerator, Advanced Photon Source). 

Simultaneously, production capabilities for the NNSA nuclear 

stockpile program would be accelerated, enabling 

fundamental national security objectives. Traditional custom 

design, fabrication, testing, and qualification of components 

and integration in systems often take a decade or longer. AI-

enabled digital engineering holds the promise of reducing 

these production lifecycle times by one-half or more through 

greater use of virtual design/simulate cycles on HPC 

systems, identifying the most promising candidates to reduce 

the number of build/test cycles, which are costly and time 

consuming [3].  

Challenges. We describe here a grand challenge problem 

that demonstrates key benefits of applying AI capabilities, 

including autonomy and robotics (Chapter 05), to advanced 

manufacturing from the early conceptual stages through 

deployment in certified systems. Achieving this 

transformation will significantly accelerate facility or system 

deployment, enabling associated programs to compete with 
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agility in an environment that is rapidly evolving 

technologically. This grand challenge has four components. 

The first component is the development of AI-enhanced 

manufacturing technologies where ML techniques enable 

unprecedented improvement in the timescales required for 

developing parts and components. ML would be used to 

create fast surrogate models from high-fidelity physics 

simulations (Chapter 01, and previously in section 10.2.1). 

These fast surrogate models would be incorporated into the 

manufacturing process monitoring and control system. 

Multimodal data observations of Non-Destructive Test and 

Evaluation (NDTE) sensors would produce data to 

continuously train ML models that would be used to monitor 

manufacturing of components and to certify that they already 

meet all qualification requirements—without the need for 

further time-consuming inspection (i.e., the components are 

said to be “born qualified”). 

Manufacturing processes would then be scaled up using AI 

techniques through data-driven “digital twins” (Chapter 04) 

for manufacturing entire components, assemblies, and 

ultimately the manufacturing facilities themselves. This effort 

could also leverage new AI programs in energy and 

advanced manufacturing initiatives (Chapter 08). ML models 

generated from data collected during the manufacturing 

processes will be used to understand and optimize 

performance, as well as to train surrogate models or generate 

new configurations for training data generation for surrogate 

models. An ML framework could optimize a specific design 

for functionality, performance, or a consistent and reliable 

manufacturing yield, or any combinations of these.  

Third, manufacturing technologies in this grand challenge 

would take into account NNSA needs to optimize 

components containing hazardous materials. ML would 

be used to create surrogate models from high-fidelity physics 

simulations of the materials and the manufacturing 

processes. These surrogate models would enable broad 

exploration of the design space for chemical, radiological, 

mechanical, thermal, and constitutive properties. ML methods 

would also be used to fuse these surrogate models with the 

limited experimental data from facilities such as the 

Z-machine, Lawrence Livermore National Laboratory’s 

National Ignition Facility, and the Los Alamos Neutron 

Science Center (LANSC).  

These new AI/ML technologies must span the complete 

range of NNSA manufacturing needs. The fourth component 

of this grand challenge problem is AI-enabled 

manufacturing and co-design. NNSA has unique 

manufacturing facilities that differ from industry and, as such, 

require specialized development and application of AI 

techniques. For instance, the NNSA has the only remaining 

trusted microelectronics fab for producing the NNSA’s 

strategically rad-hardened microelectronics, and this facility is 

used to create custom integrated circuits (ICs) for nuclear 

deterrence electrical systems (NDESs). A challenge for 

domains such as AI-enhanced microelectronic co-design is 

the coordination with the highly developed electronic design 

automation (EDA) industry. This ~$30 billion/year industry is 

also deploying AI/ML within its tools, though its focus is not 

necessarily on the trusted strategically rad-hard (TSRH) 

microelectronics critical to the NNSA mission. NNSA-critical 

microelectronic products are currently designed using 

commercial tools supplemented by custom NNSA 

multiphysics codes. Supporting and complementing the 

industry ecosystem progress, while furthering our unique 

needs, will necessitate deep scientific understanding of the 

foundations and vulnerabilities of this AI-enhanced approach 

as well as continued coordination with, and evaluation of, 

commercial EDA software. 

Semiconductor design and manufacturing is perhaps the 

penultimate example of process optimization: fabrication of 

CMOS chips with 100 million to more than 10 billion 

transistors of nanometer dimensions typically requires more 

than 700 individual process steps (lithography, pattern 

transfer etching, thin film deposition, planarization, cleaning, 

etc.). Each of these steps uses multiple $10 million tools 

guided via advanced metrology and statistical process 

monitoring and control. A modern fabrication may accumulate 

more than one terabyte (TB) of process data associated with 

a single wafer lot progressing through the full CMOS process 

flow (700+ steps), where this data may track minute 

variations of metal line widths, etch depths and roughness, 

film thicknesses and planarity, nanometer particulates and 

lithographic blurring. The ultra-high-volume throughputs 

(100–150 wafers/hour through each step) in modern 

fabrications can drive a rapid descent of the experience curve 

for most new products. This drives up wafer yields (fewer 

defects/errors) and enables the shipment of hundreds of 

millions of parts annually, as required to justify facility costs 

that are often in excess of $20 billion. The challenge here for 

NNSA is that the volumes required for its unique TSRH chips 

are ~100,000x smaller. Consequently, the descent of the 

experience curve is much slower and prone to setbacks due 

to manufacturing yield and qualification performance 

variability, leading to a much slower product realization than 

for commercial consumer chips. The solution here is to 

develop and employ AI/ML techniques that exploit the TBs of 

design and manufacturing data gathered during even low-

volume fabrications to “virtualize” the rapid learning cycles 

otherwise achieved in ultra high-volume consumer device 

manufacturing. This will provide game-changing benefits to 

NNSA and other low-volume national security 

microelectronics customers (e.g., U.S. Department of 

Defense), with additional potential benefit to small U.S. 

companies in the microelectronics industry that have not yet 

achieved high volume deliveries. 

Microelectronic design relies on models at multiple length and 

time scales to capture not only the theoretical performance of 

a given circuit design, but also the impact of minute variations 
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in the fabrication of the transistors, wiring, and power 

delivery, especially in the presence of extreme environments 

(e.g., temperature, radiation, and high voltage). ML may be 

used to create compact device models at multiple levels of 

fidelity, which can be used to accelerate the co-design of 

microelectronic components in NDESs. AI methods may also 

be used to model and alter integrated circuit fabrication 

parameters to meet evolving design specifications, including 

the extreme environment performance not covered in 

commercial electronics. Design and fabrication of new, 

cognitively aware, and cyber-secure microelectronic devices 

could be enabled using ML techniques that evolve 

microelectronic design with anticipated hostile environments. 

Similarly, AI methods may be used to enhance acceptance 

criteria, the inspection process, and material use at PF-4 or 

additive manufacturing tooling at the production agencies. 

In-situ monitoring with AI-aided analysis is expected to 

enable detection of anomalous builds in real time and aid in 

non-destructive testing and evaluation for increased certainty 

in as-built parts. This analysis phase will then be used to 

inform and aid designers in designs that are easier to 

manufacture (increased acceptance rates) while still meeting 

demanding constraints. 

Risks. The risks associated with not investing in this area are 

two-fold. First, the U.S. could not keep up with emerging 

threats to national security. Second, the time and cost to 

design and build our nuclear stockpile could become 

unsustainable. Without AI-driven manufacturing and 

certification, each step in the manufacturing process is a 

costly and time-consuming near-custom job. Neither of these 

risks is acceptable. Therefore, we believe that the U.S. must 

embrace and build upon the AI/ML capabilities being 

developed not only at DOE national laboratories but also in 

universities and throughout U.S. industry. The national 

laboratories will provide mathematical rigor, verification and 

validation, and UQ to AI/ML techniques; commercial AI 

applications and systems have more relaxed, or no, 

requirements in these areas. This will enable these 

techniques to be applied to higher-consequence applications. 

Working together, the national laboratories, universities, and 

U.S. industry will advance the state-of-the-art in AI/ML to 

improve small-lot manufacturing capabilities within the U.S., 

which in turn will reduce reliance on foreign manufacturing 

and improve national security. 

10.2.4 DEPLOYMENT AND SURVEILLANCE  

Grand Challenge: Develop a digital twin for every deployed 

system in the stockpile to assess health and aging under 

field conditions. 

Introduction. The NNSA laboratories annually assess the 

safety and performance of the nuclear weapons stockpile and 

report the stockpile assessment to the President of the United 

States in an annual assessment report (AAR). The collection 

of new surveillance data is often limited by the availability of 

funding, support, and hardware for testing. In addition, the 

AAR is conducted on testers typically different from the 

testers that were used for original product acceptance due to 

rebuilds and upgrades driven by obsolescence or other 

requirements changes. New AI methods are needed to 

evaluate and predict component and system performance in 

the face of these challenges. Such methods may include: 

 The development of new ways to apply advanced data 

analytics to existing data and/or generate synthetic data for 

minority classes of defects having insufficient, naturally 

occurring data for predictive analysis (rare defects). 

 The ability to classify defects or signs of aging using data 

from measurements including microstructures, CT scans, 

images, and other available measurement modalities and 

the development of methods to verify and validate 

datasets, tester performance, and modeling validity. 

 The development of the ability to forecast and predict 

manufacturing defects from incomplete production data 

(causal models).  

 The creation of a more open data environment and 

analytics environment for widespread adoption of data 

science. 

The NNSA surveillance mission would greatly benefit from 

new measurement capabilities and methods of manufacturing 

process control using physics-informed advanced data 

analytics and ML to support existing manufacturing 

capabilities and anticipated life extension programs (LEPs). 

Opportunities. Although surveillance data collected annually 

may be sparse for some components, sufficient surveillance 

data have been collected over time to enable the present-day 

application of AI data analytics. In addition, high-fidelity, 

physics-based models have achieved a level of maturity 

sufficient to generate synthetic data that may be needed to 

predict rare defects and to reach critical mass with respect to 

sufficient data to train large models using HPC systems. 

Tools for advanced data analytics have also matured and are 

widely available to mine existing surveillance data and 

develop new capabilities for ensuring confidence in data 

quality. Finally, there is a sufficiently large and skilled 

workforce available to execute the data science for 

surveillance mission. These factors provide a starting point. 

Risks. Adoption of more advanced, AI/ML-enabled data 

science methods such as those described in Section 01 to 

support the DOE’s surveillance mission would lead to faster 

data-driven decision-making, repeatable and reliable 

decision-making with archived pedigree, and a reduction in 

the time and resources needed for stockpile evaluation 

(i.e., in the AAR). At the same time, operational systems 

require a level of confidence that underscores the 

requirements outlined throughout Section 01 and in 

mathematics and foundations (Chapter 12). If new AI 

methods are not explored and implemented, the surveillance 
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of the nuclear stockpile could become prohibitively expensive 

and unsustainable. 

Challenges. Many HPC codes and existing AI methods are 

available to make rapid progress on this problem. Existing 

and in-development ASC models of various components 

(Aleph, Aria, etc.), data analytical software (TensorFlow, 

Unscrambler X, MATLAB, R, Python, etc.), computing 

hardware (high-performance data analytics platforms with 

graphics processing unit [GPU] acceleration and distributed 

file systems), and experimental apparatuses are available on 

the restricted or classified network to verify and validate the 

component, system, or manufacturing processes and 

products. Beyond current systems, there is also a rapidly 

growing need for physics models for aging processes, ideally 

harnessing scientific progress within NNSA and in the Office 

of Science (Chapter 07). 

The biggest challenge is related to performing big data 

analysis on multivariate sparse data and performing a causal 

analysis that links signs of defects and aging to the root 

cause. Natural language processing techniques, including 

foundation models (Chapter 02), could be used to 

automatically scan through hundreds of reports of significant 

findings to make fine correlations between symptoms and 

possible causes. 

Another challenge is to create an AI-powered resilient 

knowledge ecosystem (RKE), as knowledge management 

continues to be a significant issue. We discuss this at length 

in Data Ecosystem (Chapter 14), based on requirements 

related to assembly, curation, evaluation, and encoding of 

training data (Section 01). The human ability to generate 

tremendous amounts of information is rivaled only by the 

complementary limit on any human’s ability to digest that 

information, exponentially increasing the problem of not 

knowing what information is available and relevant to a given 

task at hand. This confluence requires that we intentionally 

manage our knowledge, data, and analytics. Through the use 

of various ML techniques (e.g., natural language processing, 

text analytics, various forms of ML) and other AI approaches 

(e.g., induction, reasoning by analogy), the RKE will enable 

easy preservation, curation, and dissemination of critical 

artisanal knowledge as our workforce, workflows, and work 

products continue to evolve. The DOE workforce (e.g., 

scientists, engineers, managers) will not only have access to 

but will rely on the RKE for recommendations, knowledge and 

resources (at whatever classification level) appropriate to the 

tasks they are performing as they perform them. Likewise, 

staff knowledge and decision provenance will be captured by 

the RKE as a function of the staff interacting inside the RKE 

without adding extra burdens to the NNSA workforce. 

Last, we need to instrument deployed systems and their 

environments with sensors to vastly increase the amount of 

data collected for surveillance. This need not be standard 

surveillance data but can include a host of new measurement 

modalities that can be used to train and continuously optimize 

digital twins and simulations (Chapter 04) to predict aging 

and other effects. An added challenge addressable with the 

tools of AI is sensor signal discernment/inference that 

minimizes and quantifies anomalous information. Part of this 

capability will include the use of AI capabilities within edge 

computing devices to process observational data in situ for 

rapid onsite assessment. 

The last grand challenge with the related theme is to develop 

digital twins of aging devices. Components of (critical) 

complex engineered systems often fail due to aging, as 

material microstructures evolve, material properties change, 

and material response to thermal, mechanical and radiation 

stimuli deviate from design specifications. Naively, it should 

be possible to design classifiers that detect outliers or 

anomalous behaviors via continuous monitoring and/or non-

destructive testing. However, many of these complex 

systems are few in numbers and examples of failed behavior 

are few. Consequently, empirically collected datasets are 

insufficient to serve as training datasets for classifiers. It 

should be possible, in principle, to construct and train 

classifiers on synthetic datasets, assembled out of 

simulations of devices with aged material models (with further 

“tuning,” e.g., via transfer learning, using scarce empirical 

measurements), but such material models (also known as 

“subgrid models,” constitutive models, or closures) and digital 

twins of aging devices do not yet exist.  

There are high-fidelity models, such as crystal plasticity 

models, that can be used to construct the training datasets 

for (aged) materials. However, challenges lie in the 

architecture of the material models, their “tuning” with 

multimodal data (images of microstructure, spatiotemporal 

measurements of macroscale responses to stimuli, field 

measurements of stresses and strains from load tests), and 

the incorporation of uncertainties in the trained models and 

their qualification (they are data-driven and can suffer from 

out-of-distribution errors). In addition, these data-driven 

closures must satisfy physical constraints (e.g., Galilean and 

rotational invariance). In addition, the incorporation of these 

new closures into device models (i.e., the digital twin of the 

aged device) may introduce numerical issues (e.g., stiffness) 

in current models. This use-case poses some of the 

requirements for surrogate models (Chapter 01) as closures 

and devices’ digital twins will rely on surrogates, as well as 

material property estimation (Chapter 03).  

If successful, these closures for aged materials can be used 

to develop training datasets for aging classifiers. A digital twin 

of the aged device could in turn be used to predict device 

lifetimes, which are fundamental for predictive maintenance. 

10.2.5 NONPROLIFERATION 

Grand Challenge: Develop an AI system to rapidly detect, 

locate, and characterize foreign activities related to fuel cycle 

and weapons development, movement of nuclear materials, 

and nuclear explosions across the globe. 
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Introduction. The NNSA Office of Defense Nuclear 

Nonproliferation (DNN) works to prevent state and non-state 

actors from developing nuclear weapons or acquiring 

weapons-usable nuclear or radiological materials, equipment, 

technology, and expertise [6]. The long-term effectiveness of 

U.S. methodology is confounded by advances in nuclear 

technology and adversary efforts to hide illicit activity, making 

it feasible for a nation to produce significant quantities of 

special nuclear materials, specialized explosives, rad-hard 

electronics, and other critical technologies with a minimal 

facility and personnel footprint. Despite the unparalleled 

amount of data being collected by ever-increasing and 

evolving sensing capabilities, it is doubtful that we will be able 

to collect significantly more actionable data than we have 

now, especially against a sophisticated low-profile 

proliferator. This situation highlights the need for even more 

sophisticated means of sifting and correlating the flood of 

data to extract the unique signatures associated with nuclear 

proliferation activities. 

Data analytics and signature extraction processing needs 

include: 

 Patterns of life: processing of open data (social media, 

industry supply chain data, scientific publications) [7].  

 Centralized/Ground station data processing of sensor data. 

 Distributed sensor (“edge”) onboard processing (satellites, 

terrestrial, seismic). 

AI techniques such as those described in Section 01 offer 

dramatic improvements in signature extraction in all of these 

areas independently, and perhaps even more impact by 

correlating across all three datasets. 

The DNN R&D program advances the nonproliferation 

mission through leveraging investments in unique subject 

matter expertise and facility testbeds. These testbeds 

represent critical pieces in the nuclear fuel cycle and are ideal 

targets for exquisite remote sensing data collection to help in 

research and development efforts to detect and monitor 

foreign nuclear fuel cycle and weapons development 

activities, special nuclear material movement or diversion, 

and nuclear explosions.  

Over the last decade, DNN R&D has made significant 

investment across multiple AI-enhanced programs with the 

goal of accelerating analysis timelines to detect, localize and 

characterize foreign nuclear proliferation activity. These same 

capabilities support nuclear arms control treaty monitoring 

and verification, operational interdiction and other nuclear 

security efforts across NNSA and government.  

Key programs include: 

 Multi-Informatics for Nuclear Operations Scenarios 

(MINOS): use of diverse physical measurements for high-

fidelity detection, location, and characterization of 

proliferation activities. 

 Advanced Data Analytics for Proliferation Detection 

(ADAPD): combination of data and physics models to 

enable early detection of low-profile proliferation. 

 Persistent Dynamics: real-time optimization of proliferation 

detection. 

 Steel Thread: use of foundation models to address 

proliferation challenges. 

 Low Yield Nuclear Monitoring (LYNM): use of multiple 

sensing phenomenologies to increase detection sensitivity. 

Ranging from large, coordinated multi-modal data collects at 

testbeds to robust multi-modal data analysis to establish 

patterns of life for event prediction to building large-scale 

foundation models for unique sensing approaches and 

phenomenologies, these AI-enhanced methods offer the 

promise of enabling nuclear proliferation analysts to perform 

deeper, more timely, and more comprehensive assessment 

of a foreign state’s nuclear enterprise. Furthermore, these 

investments aim to enhance the teamwork effectiveness 

between nuclear proliferation analysts and AI systems to 

produce next-generation AI-augmented experts for global 

nuclear assessment. 

Opportunities. To date, much of the DNN mission space has 

relied on subject matter experts and trained analysts to comb 

through ever-larger troves of data, searching for key “tells” 

that an adversary is working toward nuclear proliferation. As 

we shift from monitoring known large nuclear-capable states 

to include global detection of small-scale nuclear proliferation 

activities, this approach will be increasingly unsustainable. 

Enhanced sensing capabilities (direct) and other closed-

source and open-source (indirect) data (Figure 10-2), such as 

publications, bills of lading, and social media, produce 

exquisite data at larger volume and velocity (and with more 

diversity) than humans can ingest. Concurrently, nuclear 

technologies have advanced to a degree that makes it easier 

for potential proliferators to hide their activity even among this 

deluge of data.  

 
Figure 10-2. Indirect and direct sources of proliferation- 
related data. 
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The breakthrough insights that the AI community has 

developed in pattern matching, anomaly detection, natural 

language interfaces to query-answer tools, and the ability for 

sophisticated AI foundation models (Chapter 02) to 

synthesize cogent responses are unprecedented. 

Commercial applications—with limited application to DOE 

mission requirements, much less non-proliferation needs—

often have access to millions of events of interest, and the AI 

methods they use rely on that volume to ensure reliable 

performance. By contrast, in nonproliferation there are 

typically very few events of interest even within the enormous 

amounts of data collected against those few events. Thus, to 

achieve parity with industry breakthroughs in AI, novel 

methods must be developed that combine the knowledge of 

highly skilled NNSA subject matter experts with sparse data 

across three axes: sparse observables, volume and variety of 

training data, and missing data modalities for inference. 

There is little opportunity (or incentive) for the AI industry to 

invest heavily in the domain-specific adaptation that will be 

necessary to make these techniques successful on our 

mission data. However, DNN has invested in larger and 

larger measurement campaigns, presenting an opportunity 

for development of rich collections of data for algorithm 

development. In addition, DNN has invested in academic 

collaborations through multiple university consortia, 

presenting an opportunity and motivation for methodological 

breakthroughs that support reliable detection, location, and 

characterization of proliferation even when the number of 

events is limited. Going forward, strategic investments in AI 

have the opportunity to extract critical puzzle pieces from the 

nearly infinite streams of data being collected on a daily basis 

to accelerate time to insight. 

One area that may be able to leverage AI industry progress is 

in onboard sensor AI engines for event detection and point-

of-sensing data reduction (e.g.- for satellite or unattended 

terrestrial sensors). For example, the size, weight, and power 

(SWaP) constraints on the AI hardware in these applications 

share many requirements with hardware developed for the 

autonomous vehicle market, though the unique non-

proliferation algorithm and application software development 

will require close multiscale co-design with the evolving AI 

hardware ecosystem to ensure reliability, auditability, etc. for 

this high-consequence application.  

Risks. Without increased and sustained investment in this 

area, we will be left behind by foreign actors, and our 

analysts will continue to be overwhelmed by the data deluge 

that they face. The ultimate result will be unmetered global 

nuclear proliferation by unknown and unstable foreign actors. 

Challenges. Cross-modal search and retrieval—between 

images, video, and text, for example—are among the 

bedrocks of advancements in this field. Large-language 

models and emerging foundation models (Chapter 02) that 

can demonstrate emergent properties on new tasks provide 

another key innovation supporting this mission space. These 

technologies demand substantial computing resources for 

both training and inference (Chapter 18). Truly enabling these 

technologies on the unique data sources within the 

nonproliferation mission space will place unprecedented 

demand on existing and planned computational resources for 

the myriad of missions and models that will be developed. 

Meeting this demand will itself require new advances in AI 

hardware architectures, software tools, and frameworks, as 

well as in fundamental mathematical techniques 

(Chapter 12). Furthermore, critical algorithmic challenges 

include the trustworthiness and auditability of a model’s 

predictions, as well as the imminent threat posed by an 

adversarial AI system. In order for the output of these models 

to support actionable decision-making, new approaches and 

methods for auditability of the model’s construction, training, 

and predictions are required. Lack of persistent data 

collection over facilities or other places of interest, including 

oversubscribed or paucity of sensors, inability to place 

sensors, and other denial of data streams, present additional 

challenges that may require new or additional sensors, new 

techniques to support AI at the edge, or novel methods to do 

better “tip and cue” to increase persistence. 

10.3 Investment Needed for 
Achievement 

To leverage the methods and techniques laid out in 

Section 01 of this report, it is paramount to prepare the 

necessary training datasets from simulations and 

experiments within the DP and DNN mission spaces. For 

example, some of the tasks that are required for developing 

foundation models (Chapter 02) are enumerated below. 

These tasks are required for each dataset, guided by a 

subject matter expert from within the DOE laboratory 

complex. This cannot be delegated to any other organization. 

 Identify self-supervised learning tasks on broad categories 

of multi-modal data relevant to DDMD weapons lifecycle. 

 Understand the nature of each modality within a dataset 

and create tokenization schemes that are required for 

ingestion into foundation or surrogate models. 

 Articulate fundamental physical constraints and 

correlations between a sample’s data fields that provide 

key conservation properties and provide models with 

elements of physics-informed deep learning. 

 Curate labeled datasets for specific downstream learning 

tasks and model adaptation / transfer learning. 

Systematic investments in software to develop AI systems, 

master models, and composable systems of AI systems with 

physics models are all needed. The grand challenges 

identified here all require use of hardware acceleration for 

training and inference (Chapter 15). Investments in co-design 

efforts in algorithm and architectures—and ultimately 

in materials and chips that comprise processor 
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architectures—will be needed to be successful. Finally, 

investments in AI-empowered data collection from the 

experimental facilities will be key steps to realize solutions to 

the grand challenges identified here. 

10.4  References 

[1] U.S. Department of Energy, 2021. U.S. Department of 

Energy FY 2022 Congressional Budget Request, 

National Nuclear Security Administration, Office of Chief 

Financial Officer, Vol. 1, DOE/CF-0171, May. 

[2] National Nuclear Security Administration, undated. 

National Nuclear Security Administration FY 2023 

Congressional Budget Justification. 

https://www.energy.gov/sites/default/files/2022-04/doe-

fy2023-budget-volume-1-nnsa.pdf, accessed 

October 18, 2022.  

[3]  National Nuclear Security Administration, 2022. 

Accelerating Product Realization: Aligning the NNSA 

Nuclear Security Enterprise with Industry Best Practices, 

Office of Defense Programs, Science Council, April.  

[4] Ellis, J.A., Fiedler, L., Popoola, G.A., Modine, N.A., 

Stephens, J.A., Thompson, A.P., Cangi, A., and 

Rajamanickam, S., 2021. Accelerating finite-temperature 

Kohn-Sham density functional theory with deep neural 

networks. Physical Review B 104(3): 035120. 

[5] Zuo, Y., Chen, C., Li, X., Deng, Z., Chen, Y., Behler, J., 

Csányi, G., et al.,2020. Performance and cost 

assessment of machine learning interatomic potentials. 

The Journal of Physical Chemistry A 124 (4), pp. 731–

745. 

[6] National Nuclear Security Administration, 2022. 

https://www.energy.gov/nnsa/nonproliferation, accessed 

Nov. 22, 2022. 

[7] CNBC Technology Executive Council, 2022. How using 

analytics and AI can help companies manage the 

semiconductor supply chain. 

https://www.cnbc.com/2022/10/19/how-ai-can-help-

companies-manage-the-semiconductor-supply-

chain.html, accessed Oct. 19, 2022. 

https://www.energy.gov/sites/default/files/2022-04/doe-fy2023-budget-volume-1-nnsa.pdf
https://www.energy.gov/sites/default/files/2022-04/doe-fy2023-budget-volume-1-nnsa.pdf
file://///anl.gov/files/users/00057475/Manning/2022%20AI4SES%20Workshop%20Report/Round%202_Formatted%20Files%20for%20QA/%5b6%5d
https://www.energy.gov/nnsa/nonproliferation
https://www.cnbc.com/2022/10/19/how-ai-can-help-companies-manage-the-semiconductor-supply-chain.html
https://www.cnbc.com/2022/10/19/how-ai-can-help-companies-manage-the-semiconductor-supply-chain.html
https://www.cnbc.com/2022/10/19/how-ai-can-help-companies-manage-the-semiconductor-supply-chain.html


 

 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY   

104 

SECTION 03: TECHNOLOGICAL CROSSCUTS 

 

Critical crosscutting technology challenge areas must be addressed to harness the 

promise of new AI methods (Section 01) accelerate progress across the diverse domain 

areas detailed in Section 02. This effort will require bridging the gap between traditional 

domain-driven methods and new, AI-based data-driven methods; developing the 

underlying mathematical and foundations of scientific machine learning (ML); and creating 

new integrative systems. These systems are crosscutting, comprising workflows, software 

and frameworks, data, and new types of hardware. In each of these areas, we detail 

Advanced Research Directions (ARDs), their importance, the gaps that prevent forward 

progress today, the urgency and timeliness of addressing those gaps, and what is needed 

to start now. 

 
 
Chapter 11: SOFTWARE AND FRAMEWORKS 

Chapter 12: MATHEMATICS AND FOUNDATIONS 

Chapter 13: AI WORKFLOWS (EDGE, CENTER, CLOUD) 

Chapter 14: DATA ECOSYSTEM 

Chapter 15: AI-ORIENTED HARDWARE ARCHITECTURE 
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11. SOFTWARE AND FRAMEWORKS

Scientific software encompasses not only modeling and 

simulation applications but also analysis codes and system 

software (see also Chapter 13, Workflows). These software 

systems play an increasingly vital role in all areas of science, 

energy, and security. To date, production and research 

scientific software has followed a path independent of 

mainline artificial intelligence (AI) and machine learning (ML) 

frameworks such as PyTorch [1] and TensorFlow [2]. 

Advancing the complex approaches described in Section 01 

will require significant progress in software, frameworks, and 

their integration. Tighter integration between scientific 

software and frameworks will not only facilitate such 

integration but will also improve the productivity of scientists 

and software/framework developers. 

An effective software stack is needed to bridge the chasms 

between mathematical foundations, data, workflows, and 

hardware. Different science, energy, and security domain 

applications entail different constraints, such as assurance 

requirements, compute/data latency, energy consumption, 

inference time, resource availability, and knowledge 

distillation. Under any combination of constraints, software 

and frameworks should be high performing. The goal is thus 

to ensure that AI and domain capabilities, efficiency of 

computational and data resources, and domain and 

developer expertise are not sacrificed.  

11.1 Advanced Research Directions 
in Software and Frameworks 

Harnessing the new approaches described in Section 01 will 

require highly advanced and modular software ecosystems. 

Here, we amplify five Advanced Research Directions (ARDs) 

along which key innovations are needed for software and 

frameworks to enable diverse breakthroughs in science, 

energy, and security on high-performance computing (HPC) 

systems. These ARDs apply to the full software stack and 

also involve computational science domains ranging from 

advanced simulation to programming languages. These 

ARDs exemplify what is needed so that AI capabilities can be 

quickly and easily built, tested, deployed, continuously 

optimized, and trusted for applications critical to the U.S. 

Department of Energy (DOE). Moreover, they position the 

DOE enterprise to adapt to and harness the continued 

evolution of diverse AI workflows as AI capabilities. 

11.1.1 ARD 1: COMPOSABILITY OF SCIENTIFIC 

SOFTWARE, HARDWARE, AND AI FRAMEWORKS 

We will need an infrastructure that provides unified, 

interoperable, efficient organization and communication 

among multiple AI and physics-based models and 

simulations across scales, control systems, and sensors. It 

must be agnostic to changing hardware needs for 

autonomous systems and to changing ML software, and it 

must allow us to leverage new community- and vendor-

provided tools as they emerge. Composable hardware 

(e.g., discussed in Chapter 15) will enable the underlying 

system architecture to be optimized at runtime, enabling 

massive-scale AI applications to map fine-grained 

computations to the most efficient microarchitecture. We 

must develop new software and frameworks that facilitate a 

wide range of AI models for the edge-to-HPC computing 

continuum (supercomputers, near edge clusters, and edge 

devices; see also Chapter 13: AI Workflows). The 

frameworks that enable efficient processing of large-scale 

datasets and continual learning for real-time control will also 

be required for scientific instruments and facilities, as 

discussed in Chapters 04 and 05 of this report. Software 

frameworks that integrate large language models for 

integrating domain-specific scientific knowledge from 

scientific literature into AI models will enable the creation of 

more accurate and robust models for scientific research. 

11.1.2 ARD 2: UBIQUITOUS DIFFERENTIABILITY 

OF SCIENTIFIC SOFTWARE 

End-to-end differentiability for composing simulation and 

inference in a virtuous loop is required to integrate first-

principles calculations and advanced AI training and 

inference, as discussed in the context of HPC surrogate 

models in Chapter 01. Continuous integration of differentiable 

programming capabilities will ensure that computational 

domain capabilities are AI-ready for the future. AI-optimized 

hardware that supports differentiability as discussed in 

Chapter 15 will require deep co-design across algorithms, the 

software stack, and the underlying hardware. We need 

differentiability in the scientific software to enable verification 

and validation (V&V) of scientific software (simulation and AI) 

and to provide capabilities for analyzing their correctness and 

reliability—as discussed also in Chapter 12, Mathematics and 

Foundations. We must develop software frameworks that 

enable robust and reliable differentiability of large parallel and 

distributed applications in the presence of noisy experimental 

data or complex systems. 

11.1.3 ARD 3: PORTABLE USABILITY OF DOE 

SOFTWARE ON EXASCALE AND POST-EXASCALE 

HETEROGENEOUS AI HARDWARE 

Production HPC systems are complex engineered systems 

comprising many software layers that need to be tuned for 

each new hardware configuration and workload and for which 

optimization choices must be revisited as the hardware, 
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software, and/or workloads evolve. For new platforms, as 

developed in ECP and anticipated with quantum computing 

architectures or new AI-oriented hardware (Chapter 15), 

portability is essential. The development of AI-enabled 

software frameworks and programming models to 

automatically provide these capabilities across this complex 

landscape—with a software framework that enables quick 

and easy sharing, deploying, diagnosing, and testing across 

systems and models—will significantly improve development 

and execution time, as well as allow predictable resource 

forecasts (execution time and memory) to inform real-time 

control. We must develop intelligent software tools with 

proactive and reactive capabilities to optimally distribute 

workloads across various hardware components with 

different hardware characteristics. The software frameworks 

will provide functionalities to manage and mitigate the 

complexity of using exascale and post-exascale systems, 

employing intelligent automation and predictive analytics. We 

must develop interfaces to enable users to easily access the 

full capabilities of exascale and post-exascale systems using 

natural language processing and visualizations. 

11.1.4 ARD 4: REPRESENTATION FLEXIBILITY 

AND EXTENSIBILITY FOR MULTIMODAL 

SCIENTIFIC DATA 

Science, energy, and security data take many forms and 

modalities, and these data are central to the creation and 

training of fundamental new AI capabilities described 

throughout Section 01 of this report. We will need software 

and frameworks that readily address concurrent forms of data 

(including graphs, grids, point clouds, and unstructured data), 

enable fast computation with native representations, facilitate 

expressive features and outputs, and allow for certain data to 

be protected (e.g., due to privacy concerns or to protect 

intellectual property [IP]). Considering the deluge of data 

(discussed in Chapters 14 and 19), the integration of data 

from different sources and with diverse formats (multi-modal) 

will open a new front on the problem of data reduction: what 

data is critical to keep considering whole multi-modal data 

sets to keep opportunities for scientific discoveries? This 

problem is beyond classic reduction techniques and must 

consider semantic aspects of the data (which is not the case 

with current data reduction methods). We must develop 

advanced data integration tools with semantic technologies to 

facilitate new methods such as foundation models (Chapter 

02) that build on large language models, as these tools will 

enable multimodal scientific data to be integrated and 

combined across different domains and applications. These 

also require support so dynamic and adaptive 

representations of multimodal scientific data can be 

developed. New scalable software frameworks are also 

needed for the exploration and visualization of multimodal 

scientific data with interactive, easy-to-use interfaces, 

enabling insight as well as evaluation of the efficacy of 

various representation schemes. Furthermore, we need 

service-oriented software frameworks and tools to enable 

seamless exchange and sharing of multimodal scientific data. 

These frameworks must support ever-larger teams working 

across different research teams, organizations, and 

communities using scalable, open-data platforms and 

repositories. 

11.1.5 ARD 5: TRUSTWORTHY AND 

SCIENTIFICALLY RIGOROUS AI SYSTEMS 

Complex problems in discovery science and high-

consequence applications demand ready availability of 

advanced uncertainty quantification (UQ) and V&V 

capabilities (further discussed in Chapter 12). Such 

capabilities include the end-to-end propagation of probability 

distributions throughout a software stack, the quantification 

and attribution of errors and approximations, and V&V in 

settings where hardware, operating system, or algorithms are 

nondeterministic. Advances in hardware technology such as 

UQ-optimized microarchitectures necessitate deep co-design 

with these architectures and will enable orders-of-magnitude 

improvements in these AI applications. Trustworthy AI 

systems are needed for near-real-time evaluation of 

correctness and accuracy at an experimental facility. We 

must develop AI software and frameworks that enable users 

to easily understand how AI algorithms make decisions and 

predictions and explain them in an easy way through 

interactive language models. Software frameworks that hide 

the complexities of reproducible research practices and 

robust experimental design will improve trustworthiness of AI 

systems. Concurrently, as discussed in more detail in 

Chapters 14: Data Ecosystem and Chapter 19: Data 

Infrastructure, these capabilities must be integrated into the 

entire data lifecycle, given the intimate interdependence 

between training data and trustworthiness. 

11.2 Why Is It Important? 

Advances in AI-enabling software and frameworks are critical 

for meeting the needs of grand challenges in science, energy, 

and security such as those highlighted in Section 02 of this 

report. These advances are also critical for ensuring that 

DOE’s excellence in computational and mathematical science 

is fully leveraged to realize the long-term, AI-based 

breakthroughs (see Section 01) necessary to achieve these 

grand challenges. 

For software and frameworks to catalyze advances on grand 

challenges, there must be a virtually seamless integration 

across model authoring, simulation, data, and compute 

infrastructure. When advances are focused on any 

component in isolation, the limitations of all AI-enabling 

components multiply and propagate throughout. For example, 

coupling multiple systems on heterogeneous, emerging 

architectures where multiple AI models are being trained and 

used for inference on multiple tasks requires a level and 
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complexity of composition to span a large number of types of 

simulations, problems, and software systems. We will need a 

modular, standardized, and readily extensible application 

programming interface (API) for resilient, plug-and-play 

interaction with legacy and emerging technologies. The 

composability enables more efficient and effective analysis of 

large and complex datasets tailored to specific science 

domains. Without such composability, we risk duplicative and 

costly piecemeal integration of ML models and AI workflows 

that will impede fast progress on grand challenges. 

A primary feature of existing ML frameworks is built-in 

differentiation capabilities (see 11.1.3). The availability of 

derivatives for training, through automatic differentiation 

(autodiff) techniques such as backpropagation, has been vital 

to the success of deep learning and beyond [3]. Differentiable 

programming capabilities can especially impact relevant 

domains that have benefited from forward simulation 

advancements but have seen fewer developments for 

inverse design, control, and other derivative-heavy outer 

processes [4]. 

In a typical scientific software development cycle, the rate at 

which the first-principles science, energy, and security 

models change is often slow. Consequently, scientific 

software requirements and specifications remain constant 

over a longer period, and the steps involved in the 

development cycle—such as testing, validation, verification, 

and scaling—remain relatively stable. In contrast, the rapid 

iterative nature of AI/ML model training and inference, 

combined with continual learning, pose a number of unique 

challenges. Specifically, not all of the data required for 

training the model are available in advance; instead, the data 

may be acquired over time. As new data become available, 

models must be retrained, validated, verified, and rapidly 

deployed in production. The development of software 

frameworks to enable such rapid model iteration is critical to 

improving the usage and effectiveness of overall AI-enabled 

approaches. 

The diversity and constant evolution of hardware 

architectures and compute and data environments also 

require that software and framework solutions must perform 

across platforms and use cases. Such portability is 

fundamental to building user trust in the capabilities and 

reliability of AI-enabled processes in science, energy, and 

security. However, there is a natural tension between 

software portability and performance, and future hardware 

architectures that are highly optimized for specific tasks will 

require major advances to achieve performance, such as 

just-in-time compilation coupled with dynamic hardware 

reconfiguration. AI software and frameworks that are 

developed for science, energy, and security can be 

customized to the specific data and goals of a domain, 

leading to improved accuracy and performance of AI models. 

DOE mission domain-driven AI models often have unique 

requirements and challenges that are not well served by 

generic AI solutions. For example, scientific software 

frameworks in use today were not designed to contemplate 

distributed, federated data injection and collaborative and 

interactive model development at scale (using DOE 

supercomputers with AI accelerators). Significant advances in 

the scale of frameworks have been demonstrated in industry, 

but these have been predominantly focused on very different 

applications, such as involving text and image data. This 

significantly affects the AI development cycle and overall 

scientific productivity. We must develop software tools and 

frameworks with enhanced collaboration and interoperability. 

Reproducibility of the AI models requires software tools and 

frameworks with improved data and model management 

capabilities for large and complex datasets that are frequently 

encountered in the domains outlined throughout Section 02 of 

this report. This reproducibility is today nascent with the 

generic AI frameworks; addressing this will be important for 

assuring scientific integrity and correctness. It is crucial that 

these frameworks support but hide the complexities 

associated with large-scale data and model provenance. 

Science, energy, and security applications are rarely 

concerned with a single prediction or decision in isolation. 

Instead, we test multiple hypotheses, confront multiple 

scenarios, and account for sources of uncertainty. Efficiently 

performing ensembles of computational tasks and producing 

probabilistic outputs are key to building confidence in AI-

enabled advances.  

11.3 Why Can’t It Be Realized Now? 

Traditionally, scientific software efforts have been focused 

primarily on forward simulation, that is, being able to develop 

digital twins of phenomena and systems encountered in 

science, energy, and security. To this end, various research 

sectors and industry domains converged on standards for 

model representation, simulator exchange, and distributed 

co-simulation [5, 6]. Development efforts have focused on 

achieving performance and scalability at ever higher levels of 

fidelity and for ever larger, more complex systems. In many 

areas, however, the focus on fidelity in such forward models 

has come at the expense of consideration for high-level tasks 

such as inverse design and autonomous discovery. The 

complex performance and fidelity optimizations of mission-

driven software stacks will need to be reexamined in the 

context of new drivers and approaches like those noted in 

Section 01 of this report. Similarly, the requirements of 

existing frameworks have been driven by data, hardware, and 

uses that necessitate more than simple adoption of the 

advanced approaches envisioned here. 

Current composition strategies often come at the expense 

of limiting capabilities to the weakest link in the composition. 

For example, straightforward composition in a software stack 

will often come at a significant overall performance expense, 

because we are limited to employing particular instantiations 
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of the various components, and these components are often 

optimized for inputs, data flows, and hardware resources 

outside of the environments in which a fully composed stack 

is deployed. The complexity of assembling different 

components is a bottleneck even in current approaches to 

compose software with respect to correctness, validation, and 

verification (as well as safety and security for many 

applications). These factors prevent the community from 

achieving composable software for science. 

Another major bottleneck in the broader adoption of AI 

technology is the lack of AI/ML frameworks that enable 

findable, accessible, interoperable, and reusable (FAIR) data 

and model artifacts (discussed further in Chapters 14 

and 19). FAIR AI/ML frameworks have the potential to drive 

rapid adoption of AI technologies within DOE mission domain 

areas and to enable synergies and partnerships across 

diverse areas. Currently, there is no science-centric AI/ML 

framework that adopts a systematic approach to relate data, 

models, and tasks within any particular scientific domain. The 

resulting discord between the data and the model increase 

inefficiency in applications involving large volume of data. 

Software stacks used in industry do not reflect scale, 

diversity, and unique characteristics of the DOE mission 

domain areas. A particularly acute issue is the significant 

knowledge and technological gap with respect to the 

emerging AI-driven software development lifecycle because 

no related prior research exists within DOE or elsewhere 

(Chapter 16 provides further assessment of DOE’s 

workforce). 

Increasingly, there are efforts to employ popular ML 

frameworks for simulations to realize differentiable 

programming capabilities. However, for many science, 

energy, and security applications, this approach tends to 

come with significant costs. First, simplifications tend to be 

made to the forward models so they can be expressible in 

the existing framework syntax. Second, accuracy and 

performance compromises are often made in such 

implementations. These include substituting smooth 

approximations for known regime changes and fixing the 

mode of automatic differentiation (e.g., backpropagation) 

independent of the output and input dimensions. 

Furthermore, differentiation throughout a production scientific 

software stack today is often enabled by one-off efforts, such 

as differentiation through a single LAPACK routine. In 

addition, current frameworks struggle to retain valuable 

information when confronted with multiple data modalities. 

When a differentiation or representation limit is reached, it is 

rarely the case that such a change in control flow or 

knowledge is propagated up the software stack, which would 

otherwise facilitate exploitation in higher-level operations.  

Usability in DOE mission-related, grand challenge 

computational problems, usability tends to be limited to 

intersectional (hardware-software-framework-data-algorithm-

problem) specialists (see also Chapter 16, Workforce). There 

are many limitations on higher-level software, frameworks, 

and applications due to hardware and low-level software 

constraints. Current strategies for adapting software to new 

systems tend to rely on applying heuristics for each piece of 

software individually—and typically only once. For instance, 

the memory performance experienced by a computational 

workload can be affected by multiple layers of memory 

management policies, from the operating system kernel to 

runtimes. Systems are becoming increasingly energy-

constrained and cannot supply full power to every hardware 

component at all times. The question of which components to 

prioritize—and at the expense of which other components—

can have significant performance implications, yet it is 

frequently workload-dependent. Furthermore, while HPC 

systems have complex job schedulers, individual nodes also 

have task schedulers, input/output schedulers, and network 

schedulers, each of which is highly capable and configurable 

yet rarely adjusted to changing workloads. Floating-point 

implementations have also evolved, creating an additional 

knob and an additional source of complexity as domain 

specialists port scientific applications from one hardware–

software stack to another. Current programming models and 

language choices are also largely incompatible with the 

emerging AI hardware technologies. 

Today, UQV&V tasks such as formal verification tend to be 

limited to narrow classes of operations and implementations. 

Although the predominant use of ML frameworks is in 

building models through empirical risk minimization, making 

use of distributional knowledge, whether from data or first 

principles, is difficult in general. Furthermore, most scientific 

software is still devoted to outputting point estimates: At best, 

simplistic uncertainty indicators such as individual error bars 

are obtained. Examples of where richer distributional 

information or end-to-end error and uncertainty propagation 

are employed in software and frameworks are typically found 

in niche fields or problems lacking the full complexity 

envisioned here. 

11.4 Why Is It Reasonable to Start 
Now? 

Despite software and framework-related challenges 

associated with realizing the promise of the approaches in 

Section 01, an environment is emerging in which dedicated 

focus on the identified ARDs could enable the sea change 

needed for transformational advances in AI-driven scientific 

discovery. This is critically important, as developing and 

advancing the building blocks described in Section 01—from 

surrogate and foundation models to digital twins, inverse 

design, autonomous laboratories, or automated coding— will 

rely on the software and framework ARDs described here. 

Below we take the pulse of this emerging environment in 

other crosscuts and ecosystems detailed in this report. 
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An increasing number of science, energy, and security 

domains are employing AI/ML techniques, in some cases 

through popular ML frameworks. As noted in Chapter 12, the 

theory underlying ML and its foundations is advancing to 

make some capabilities provided by today’s frameworks 

increasingly ready for adoption into select high-consequence 

science applications and settings. A growing understanding 

of AI/ML techniques’ domains of applicability and limitations 

is emerging. This understanding is allowing practitioners to 

move beyond the full factorial combination of methods and 

problems to a reduced, more principled set that better 

facilitates performant execution.  

Vendors and hardware are significantly addressing data-

driven settings that facilitate computational performance for 

AI-enabling technologies. As noted in Chapter 15, these 

developments are advancing both on general-purpose and 

highly specialized emerging architectures. Although floating-

point conventions will continue to evolve, standards are 

emerging along with a better understanding of the 

implications, both in accuracy and performance, for different 

levels of precision. Algorithms and software for mixed and 

variable levels of precision have also seen significant 

development.  

Recent improvements in the integration and dynamic nature 

of the HPC software stack show great potential for quickly 

delivering and testing more configurable software layers. 

Concurrently, the application of reinforcement learning and 

control theory for computer systems has made significant 

progress.  

DOE’s Exascale Computing Project (ECP) has hardened a 

software technology infrastructure [7] that increasingly 

represents a bridge between the emerging computer 

hardware and the science, energy, and security specialists 

tackling large-scale, complex problems (Figure 11-1). These 

efforts have enabled increased composability across the 

software stack and are addressing new challenges 

associated with massive scale and heterogeneity of data. 

Composability is a critical driver in the research and 

development of new ML frameworks [8].  

In some domains, forward simulation fidelity has improved to 

the point where leading errors are now associated with 

unknown parameters, uncertain states, and the like. In 

others, fidelity levels have improved to the point where 

control, robotic automation, and targeted design can take 

advantage of AI/ML. Endowing such applications with 

UQV&V capabilities and pursuing the approaches in Section 

01 are high-potential opportunities.  

Probabilistic programming languages (PPLs) are also 

increasingly mature and provide proofs of concept for 

propagating probability distributions across a software and 

programming hierarchy [9–12]. Differentiable programming is 

also seeing adoption beyond ML frameworks to new classes 

of applications [13]. 

There is also an increasing appreciation and understanding 

of the science of team-based software and frameworks—with 

many important lessons and success stories from the ECP 

itself, which has more than 1,000 participants. DOE near-

term priorities include the following [14]: understanding 

practices, processes, and tools that can help improve the 

development, sustainment, evolution, and use of scientific 

software by teams; developing next-generation tools to 

enhance developer productivity and software sustainability; 

and developing methodologies, tools, and infrastructure for 

trustworthy software-intensive science.  

FAIR AI/ML frameworks are crucial to overcoming the 

challenges of developing AI/ML models for DOE applications. 

The DOE Advanced Scientific Computing Research 

community is in a unique position to develop these 

frameworks by leveraging past successes in developing 

 

Figure 11-1. An example build tree for ECP's math library, SDK, which illustrates the complex interdependencies among different libraries. 
Source: Satish Balay, Argonne National Laboratory.  
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scalable and efficient data and workflow management 

software tools. These tools enabled researchers from various 

DOE programs to handle massive amounts of data from 

simulations, experimental facilities, and observational 

instruments.  

The nature of current and future AI-enabled DOE applications 

also demands a high degree of autonomy in data generation 

and model development. AI/ML models require continuous 

adaptation; and manually doing so will slow AI-enabled 

scientific discovery. We are at the cusp of access to 

tremendous exascale computing power capable of designing 

self-driving AI systems (e.g., as discussed in Chapter 04), 

which can be scaled to zettascale systems and beyond. 

Automating critical functions in building and refining AI 

systems will be critical given the expected diversity of AI-

enabled DOE applications that require extreme customization 

and continuous adaptation. Simply put, accelerating DOE’s 

discovery processes in science, energy, and security will rely 

upon the availability of robust software tools and frameworks 

that enable a wide range of AI/ML models across different 

applications. 

11.5 What Is Needed to Start Now? 

The ARDs cut across the grand challenges and approaches 

identified and are an indication of the broad needs for critical 

advances. Key efforts needed in the near term include the 

following: 

 Develop extensible, large-scale evaluation suites for 

science, energy, and security: 

 Create open abstractions and pipelines for grand-

challenge problems to spur community engagement and 

advances across the software stack. 

 Engage multiple frameworks and ecosystems to 

understand trade-offs and to accelerate future advances. 

 Create testing and validation suites, standards, and 

APIs. 

 Develop standards and APIs to enhance greater 

composability across scientific software and ML 

frameworks: 

 Increase the modularity and ease-of-use of sub-

monolithic framework blocks into an ecosystem of 

interoperable and composable microservices. 

 Facilitate the communication of requirements and AI-

ready capabilities as technologies evolve. 

 Sustain efforts to automate capability discovery and 

composition of software blocks by AI technologies. 

 Expand differentiable programming in scientific software 

so that it is endowed with properties similar to those of an 

artificial neural network: 

 Propagate known switches/conditionals up the stack to 

enable differentiation. 

 Express known dependence structures to be exploitable 

by the rest of the software–hardware stack. 

 Enable seamless interoperation of autodiff for scientific 

simulation and differentiable programming for AI that 

accounts for resource constraints for complex workflows. 

 Further the degree of performance portability and 

interoperability: 

 Expose additional hardware-software-workflow 

configurations. 

 Provide performance models and simulation capabilities 

for virtual testbeds of emergent hardware architectures 

and environments. 

 Facilitate performant re-use of energy-intensive, 

leadership-class ML capabilities: 

 Train and store large-scale AI models.  

 Enable the ability to recommend a base model and 

retrain for downstream application and software–

hardware instantiation.  

 Establish “born qualified” trustworthiness for software 

and framework artifacts: 

 Increase PPL adoption and development. 

 Accelerate adoption of UQV&V-ready capabilities.  

 Escalate extensibility and representability beyond what 

consumes current development: 

 Enable software-generating environments.  

 Facilitate computational resources (measured in 

“Machine Learning Operations,” or MLOps) for 

continuous deployment on and refinement of new 

problems and environments. 

 Sustain interaction among the scientific software 

development community; ML framework developers; 

computational facilities; and emerging science, energy, and 

security opportunities. 

 Enable the rapid design, development, and training of 

fast-learning and reusable AI/ML models for DOE 

scientific data and to make the reusable models FAIR by 

leveraging recent advances in the open-source data and 

model management tools. 

These ARDs are crosscutting and should not be viewed in 

isolation. We have illustrated key steps for acceleration in 

compact activities, and advancements along multiple ARDs 

have the potential for multiplicative effects when realized in 

concert. 
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12. MATHEMATICS AND FOUNDATIONS 

The current science and engineering paradigm is rooted in 

mathematical models that are validated against experimental 

data. These mathematical models are derived by scientists 

and engineers based on first principles understanding and 

well-defined unifying concepts. Importantly, this is very 

different than modern machine learning, in which 

mathematical model forms are highly flexible and applicable 

to many domains [1]. First-principles models are naturally 

predictive beyond the datasets used to learn and validate the 

theories, because they are designed to be consistent with 

established science. In contrast, artificial intelligence (AI) and 

machine learning (ML) models may have challenges 

generalizing beyond their training data because they are 

much less constrained. However, first principles often are too 

complex to work with directly, necessitating approximations 

derived for certain domains of applicability and to fit various 

constraints. As scientists and engineers, we can use well-

established, domain-driven methodologies to evaluate the 

validity of these models, recognize inconsistencies, and 

identify improvements. Additionally, we have rigorous 

statistical and mathematical tools to work with domain-driven 

models and infer conclusions [2, 3]. Through the scientific 

process, these models evolve to fit new data and better 

reflect reality. 

The promise of AI/ML approaches, as detailed in Section 01 

of this report, is that they offer a pathway to develop 

principled, data-driven models to extract insight with data-

driven methodologies. These methods will complement 

domain-driven methodologies, and they will do so at the 

unprecedented scales of data generation we see today. 

Further, AI/ML models can be used to create systems that 

make decisions and perform inference with limited human 

input and involvement. These models complement traditional 

first-principles scientific models, as their flexible mathematical 

structures and learning methods enable the development of 

building models where first principles understanding does not 

exist or is too complex to practically leverage. Therefore, to 

deliver on the promise of AI/ML, methods are needed to 

bridge, in a fundamental way, domain-driven methods and 

data-driven methods.  

Among other advantages, AI/ML methods can automate the 

learning process while reducing dependence on scientists 

and engineers—humans with limited availability and capacity 

for scale and computation—to specify constraining 

assumptions. The more we can relax these constraints, the 

more we can harness AI systems to learn from highly diverse 

data sources—including those that scientists have not 

thought to leverage and those at scales beyond human 

capacity to leverage.  

In addition, the rapid advances in scale, capabilities, and 

applications of AI models in recent years have created new 

systems, many with emergent properties. However, the inner 

workings of these models are opaque—raising challenges in 

explainability, trust, and uncertainty quantification (UQ). 

Harnessing the opportunities possible with AI to advance the 

U.S. Department of Energy’s (DOE’s) scientific and 

engineering mission (Section 02 of this report) will require 

developing the mathematical foundations of scientific AI/ML, 

combining traditional domain-driven methods with newer 

data-driven methods in principled ways. This will build on and 

complement the foundations of AI/ML more generally, 

enabling us to ground new developments with the same 

mathematical rigor as has undergirded traditional scientific 

and engineering exploration, design, and operation. We want 

AI/ML that can predictably generalize, have understandable 

approximations with clear domains of applicability, integrate 

with other sources of knowledge, and propose improvements 

to the models when theory and/or data are inconsistent.  

12.1 Advanced Research Directions 
in Mathematics and Foundations 

Our understanding of mathematics and foundations for AI/ML 

ranges from the philosophy of science and epistemological 

foundations of AI/ML designing AI models and algorithms for 

efficient training. We have identified four Advanced Research 

Directions (ARDs) where current mathematics and 

foundations are not yet prepared to meet the needs for future 

AI necessary to support DOE science, energy, and security 

mission areas. We structure the balance of this chapter 

around these four ARDs, here describing them at a high level 

and in subsequent sections addressing their collective 

importance, the challenges that must be overcome, why it is 

urgent to begin now, and what steps are needed. 

12.1.1 ARD 1: DEVELOP FOUNDATIONAL 

PRINCIPLES AND ALGORITHMS FOR SELF-

GUIDED LEARNING OF AI SYSTEM WORKFLOWS 

AI must be more self-guided. These systems must be able to 

tune and optimize themselves to meet abstract specified 

goals by adjusting the AI implementation (e.g., learning 

methods, structure, models, hardware), select informative 

data, recognize/adapt to changing environments, and provide 

self-certified notions of trust. Progress in this direction will 

result in gradually relaxing the specifics of design constraints 

users must provide for the model, data, and task. 
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12.1.2 ARD 2: DEVELOP INFORMATION 

THEORETIC MECHANISMS TO INTEGRATE 

SCIENTIFIC PRIOR KNOWLEDGE, THEORIES, AND 

MULTIMODAL DATA 

Scientific AI systems must be able to synthesize existing 

scientific knowledge (e.g., physics or mathematics 

properties), heterogenous big data (e.g., multi-fidelity, 

multiscale, multi-phenomenology), and limited small data 

(e.g., rare events, expensive simulations/experiments) (see 

[4] and Chapter 04 for the case of digital twins). Integrating 

solutions for these challenges is critical for robust and 

trustworthy inference using AI. Further, new AI systems must 

be able to build on existing AI systems much as new scientific 

theories build upon the existing science. 

12.1.3 ARD 3: DERIVE FOUNDATIONAL 

PRINCIPLES AND THEORY FOR DECISION-MAKER 

TRUST IN AI 

DOE has been at the frontier of UQ and verification and 

validation (V&V) research for science and engineering 

modeling; adapting these methods to AI/ML and associated 

workflows will be central to addressing explainability, 

correctness, and trust. Together, UQ and V&V broadly 

include three sets of capabilities. First, UQV&V entails theory, 

methods, and algorithms that learn with uncertainties 

(e.g., Bayesian inference and ensemble methods). Second, 

they assess sensitivities to inputs, data, assumptions, model 

forms, and approximations (e.g., global sensitivity analysis). 

Finally, UQV&V methods validate against other sources of 

data (e.g., cross-validation), evaluating the correctness of 

algorithm (e.g., formal methods), or integrate human 

knowledge as an additional layer of validation 

(e.g., explainable/interpretable AI). If AI/ML models cannot 

improve, quantify, and communicate their robustness, they 

will lack the fundamental underpinnings necessary to be 

embedded in systems involving mission-critical decisions and 

processes (see specific examples in Section 02: Scientific 

Domains). Because AI systems will interact with humans, 

they must provide suitable evidence, as judged by the 

decision-maker, to establish confidence in the AI’s assertions. 

This demands new UQ, V&V, and explainable/interpretable 

methods [5] to communicate reliability and uncertainty, 

perform predictably (importantly, over multiple scales, 

different domains, and compositions with other models), 

adapt to changing environments, and operate securely. 

12.1.4 ARD 4: DEVELOP THEORY AND 

ALGORITHMS TO QUANTIFY AND OPTIMIZE 

TRADE-OFFS IN THE IMPLEMENTATION OF AI 

SYSTEMS UNDER RESOURCE, PERFORMANCE, 

AND ROBUSTNESS CONSTRAINTS 

New AI systems required by DOE missions must also scale in 

complexity to meet resource and robustness constraints. This 

ranges from scaling AI down—to operate within individual 

components of an experiment or instrument—to scaling AI up 

to support distributed learning in systems harnessing multiple 

DOE computing and other user facilities. Constraints force 

trade-offs within multiple dimensions including resources 

(e.g., cost, computation time, power, bandwidth, and data), 

performance (e.g., learning metrics, Quantities of Interest 

(QoI), accuracy, and rewards), and robustness 

(generalizability out-of-domain, stability, adaptability, 

representations of uncertainty, and integration of knowledge). 

The trade-offs among these dimensions—resources, 

performance, and robustness—must also be quantified. This 

will require new mathematical principles to explicitly translate 

resource, performance, and robustness specifications into 

metrics for the AI model. In turn, novel algorithms that can 

efficiently explore the Pareto front defined by these trade-offs 

will be required to support the design of AI systems to meet 

design criteria. 

12.2 Why Is It Important? 

Research in the mathematical foundations of AI/ML has been 

active in topics ranging from foundational questions of 

epistemology and statistical learning theory to theories of 

representation complexity of different learning models, to 

theories of optimization algorithms. This theoretical basis 

shares some foundations with existing domain-driven 

scientific learning methodologies (e.g., Bayesian 

epistemology), but in some respects differs significantly 

(e.g., domain-agnostic models and extreme over-

parameterization). It is thus of central importance to develop 

a foundation for scientific ML, integrating both domain-driven 

and data-driven approaches. This is necessary to develop 

and apply the science and engineering discoveries of a scale 

and complexity that is demanded by the DOE science, 

energy, and security missions. Because these scales and 

complexities exceed the limitations of human domain 

knowledge and expert judgment, AI/ML methods are not only 

critical to the scientific computations but also to their 

evaluation and certification. 

DOE mission challenges involve incredibly complex systems 

applied in high-consequence domains, involving a wide range 

of challenges stemming from either a paucity or deluge of 

data, integrating existing knowledge, computational and 

experimental resource constraints, and robustness and 

trustworthiness. For example, AI deployed for problems like 

climate prediction, nonproliferation, power grid operations, 

and complex system operations in inhospitable environments 

will present unique challenges. 

In contrast, AI research today is largely dominated by social 

media and internet industries, such as those dealing with 

scale in terms of millions of consumer devices or aggregate 

workloads comprising relatively small, and independent, 

applications and which focus on a very different set of 

challenges. These different downstream goals lead to 



 

12. MATHEMATICS AND FOUNDATIONS 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY   

114 

different problem formulations, different notions of model 

quality, and different technical requirements, often in 

important but subtle ways. For example, driven by goals of 

high-quality predictive models, industry has developed highly 

impactful but opaque AI methods that significantly outpace 

our ability to rigorously understand them. For many intended 

industry applications—for example, consumer services such 

as facial recognition in photo libraries or interpreting voice 

commands—UQ, V&V, or explainability are not required. 

Consequently, in order to adapt and leverage the rapid pace 

of industry AI innovation for advancing the DOE mission 

areas—which demand quantified robustness and 

explainability—we must develop the requisite mathematics 

and foundations. This requires substantial investments in the 

foundations of scientific AI/ML to complement the applied 

mathematics foundations underlying scientific computing, 

where DOE has a large body of expertise. Absent such 

investments, AI/ML methods will likely fail to support the 

robustness and complexity required for DOE mission areas of 

science, energy, and security. 

Finally, as complex AI systems demonstrate robustness and 

correctness, they will become integral to many processes that 

will inform designs of materials, components, or critical 

engineered systems, including complex systems and 

infrastructure operations. Here, robustness and correctness 

certifications that are not grounded in solid mathematical 

foundations and derived from theory-based tools (e.g., for 

UQV&V) would create false confidence. This would render 

them vulnerable to unanticipated failure modes, such as 

those associated with errors, overfitting, or even data 

poisoning by adversaries. In a real sense, this would be 

worse than having no certifications. Beyond the mission 

impact, AI/ML model failure in such cases would erode 

confidence in the use of AI/ML in the future and result in lost 

opportunities to fully realize the benefits such as outlined 

throughout this report. 

12.3 Why Can’t It Be Realized Now? 

Here, we discuss the current barriers in context of the four 

ARDs outlined above. 

ARD 1. The promise of autonomous discovery (Chapter 05) 

and complex systems and infrastructure control (Chapter 04) 

through ubiquitous AI requires tackling the challenges of self-

guided learning. We require AI to rapidly adapt and respond 

to large amounts of streaming heterogenous data from highly 

dynamic and nonstationary systems. One example of such a 

system is the future smart grid composed of millions of 

autonomous AI actors (e.g., systems within components or 

control infrastructure) making decisions for control through 

demand response, at different time and geographical space 

scales, from appliances to electrical distribution networks 

(Chapter 08). These AI systems need the ability to learn 

autonomously from partial information and to adapt and 

evolve in response to rapidly changing conditions. Self-

guided learning will enable AI actors to make (or recommend) 

decisions to the degree that they can develop full situational 

awareness and evaluate multiple potential responses and 

outcomes (Chapter 04). In the worst-case, a poorly self-

guided AI system will be highly confident but wrong because 

it is acting on an outdated and/or inadequate understanding 

of the system, which can cause unreasonable and potentially 

catastrophic decisions. Therefore, we need to be able to 

apply physical constraints on the operation of self-guided AI 

for safety (e.g., closed-loop stability in control). 

Active learning, optimal experimental design, control theory, 

and reinforcement learning (RL) provide a strong foundation 

for self-guided AI. One critical challenge, however, is learning 

subject to multiple objectives or with poorly defined objective 

functions [6]. Specifically in autonomous discovery, it 

becomes difficult to define the task and cost functions that 

guide these algorithms. Therefore, research is needed to 

identify new, goal-oriented, and information theoretic learning 

paradigms for self-supervised learning that can learn, in 

effect, everything interesting that can be learned from the 

available data. A second challenge centers around the data 

and computational complexity of existing self-guided 

methods. RL training is often computationally expensive, 

requiring large volumes of training data and many training 

iterations to effectively navigate in the high dimensional 

optimization space [6]. This is particularly true in online 

settings where the algorithms must balance exploration and 

exploitation and where learning must be done sequentially. 

We must develop new algorithms for training, more compute- 

and data-efficient RL, hierarchical models that learn at 

different levels of abstraction and spatial-temporal scales [7], 

and methods to leverage prior information (e.g., physical 

constraints, ARD 2). 

ARD 2. We must learn how to incorporate prior knowledge 

from science and engineering theory into AI systems. This 

will entail work in areas including first principles theory 

(e.g., physics), mathematical models, structure preservation, 

and models of uncertainty [8]. This encompasses developing 

useful data representations for common science and 

engineering data, like those that exist for natural language 

processing (NLP), that can be used to integrate scientific data 

into common models. This is particularly critical for foundation 

models (Chapter 02) that often rely on transformers that, in 

turn, rely on tokenizers, embeddings, and positional 

encodings [9, 10]. This means defining notions of concepts 

and context for scientific data, as tokenizers and embeddings 

for scientific data would segment the data into concepts with 

defined relationships while the positional encoding retains 

important contextual information about how and where those 

concepts occur in the data. We also must learn how to 

reduce scientific datasets to be efficiently ingested by AI. 

Scientific experiments and simulations often have very large 

output (e.g., snapshots from decadal climate simulations for 
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many different choices of parameters). Current training 

methods and models such as transformers scale poorly with 

the dimension of the input space, making it essential to 

develop algorithms for reducing datasets and scalable 

training. 

Conversely, we must also learn how to extract interpretable 

knowledge from AI and translate it into scientific theories. A 

good example of this is when AI is used for autonomous 

discovery of novel physics (Chapter 05). Similarly, we need to 

develop a more robust theory of transfer- and multi-task 

learning that identifies commonalities between data, models, 

and tasks to enable robust information fusion. Self-

supervised learning frameworks (ARD 1) should improve 

learning by using AI capabilities to autonomously seek out 

and utilize extant data and other models. Data reduction also 

plays a role as AI will learn to optimally reduce past datasets 

into salient summaries to train future models when new data 

is available. Reconstructing past datasets from the models 

and data summaries is also needed when the original data is 

lost. Data summaries will impact models, particularly 

foundation models, derived from data that is too large to store 

in totality but will need to be periodically updated. Therefore, 

foundation models that are designed for efficient sequential 

updating both in terms of adding new data and prototyping 

new model structures for improved performance will be 

necessary. 

ARD 3. We need to extend and adapt current V&V 

frameworks for application to AI/ML models. Throughout this 

report, particularly in Sections 01 (AI Approaches) and 02 

(Scientific Domains), large-scale and/or complex AI systems 

are discussed. V&V will be critical to underpinning trust in 

every step of the ML pipeline by certifying the performance of 

each step in the pipeline and identifying those that are 

problematic. Such V&V frameworks would, for instance, 

isolate the providence of poor performance to identify a faulty 

training algorithm, an inappropriate ML model, or an issue 

with data [11]. This will require not only developing methods 

that test a given AI algorithm for generalizability and 

prediction accuracy but also assess the reliability of data, 

modeling assumptions, and even implementations of the AI 

algorithms themselves on novel hardware/software 

environments. Ultimately, we need rigorous mathematical 

theories that can provide quantifiable assessments of the 

suitability of various AI methods to address a specific 

problem, quantify sensitivities to errors and adversaries, and 

provide certifiable performance bounds. Additionally, theory 

must be developed to quantify the utility of a dataset 

(particularly for any that are small) and determine if it is 

sufficient for the intended learning objective. V&V-like 

methods must also be developed to quantify the operational 

envelope of a given AI system, which is a critical aspect in 

creating composable AI systems for tasks like control of 

cyber-physical systems (Chapter 04). Rigorously addressing 

these AI and V&V concerns using current algorithms such as 

Bayesian UQ requires many assumptions and 

approximations in how we represent information such as 

priors (ARD 2) and how we solve the UQ problem tractably 

[12] where addressing resource demands has significant 

impact on quality [13]. Research is needed to better 

understand these and similar trade-offs (ARD 4). Additionally, 

algorithms and approaches that provide UQ for cutting edge 

architectures must be explored because it is unclear to what 

extent UQ methods developed for one architecture translate 

to new architectures. For example, introducing Bayesian UQ 

for attention-based deep learning models is a nascent area of 

research. Existing approaches must be adapted in order to 

best fit our conceptual understanding of the self-attention 

mechanism, and they must also still be efficiently trainable 

with back-propagation [13, 14]. 

In order to facilitate adoption, stakeholders require not only 

UQV&V capabilities, but also methods for effectively 

integrating them into decision-making processes. This will 

mean addressing questions such as how to present UQ in a 

way that is actionable and understandable in specific 

operational contexts from the standpoint of decision-makers. 

Explainability and interpretability will be critical ingredients to 

trust, particularly as AI models become increasingly complex 

and otherwise opaque. New methods must be developed that 

can identify the type of information (e.g., modalities, datasets, 

task similarities) that is being used to inform decisions, 

particularly in the adoption of AI foundation models 

(Chapter 02). Finally, it will be important to explore 

connections with advances in self-guided learning 

(e.g., optimal experimental design) to identify new ways that 

AI system users can identify potential weaknesses and 

suggest improvements in AI systems. This will both mitigate 

concerns and provide stakeholders with the information 

necessary to support operational use. This will require theory-

based tools for parsing stakeholder needs and translating 

them into criteria for the AI to present evidence of trust and 

improve itself. 

ARD 4. DOE science, energy, and security missions face 

particularly challenging operational requirements, such as 

those associated with very short timescales, high-

consequence decisions, or inhospitable operational 

environments. These resource constraints force trade-offs 

that must be understood between resources (e.g., cost, 

compute time, power, bandwidth, data), performance 

(e.g., learning metrics, QoI accuracy, rewards), and 

robustness (generalizability out-of-domain, stability, 

adaptability, representations of uncertainty, and integration of 

knowledge). Quantifying these trade-offs–and developing 

solvers for designing AI in the face of these constraints–is a 

grand challenge that will uniquely impact DOE missions. One 

specific need that we foresee is simplifying large foundation 

models. These models often have billions of parameters, 

making them too large for hardware constrained problems. 

One strategy would be to tune them for specific tasks. 
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12.4 Why Is It Reasonable to Start 
Now? 

ARD 1. As we move to increasingly complex and automated 

systems for discovery and control, AI must be more self-

guided. The success of large industry models (e.g., as 

discussed in Section 01 of this report, ranging from 

foundation models to property inference and inverse design) 

suggests that we embrace even greater expectations for how 

AI will affect science and engineering. This means 

broadening our expectations for what AI can tune via 

exploring and identifying meaningful prior knowledge, data 

modalities, model structures, learning algorithms, training 

hardware, and UQV&V methods. This ultimately will make all 

steps in the AI pipeline self-guided. 

ARD 2. Without tackling problems of information fusion, our 

AI/ML methods will be limited to standard, supervised, and 

often data-intensive learning approaches where AI learns 

only from data gathered from the target task. Many problems 

of interest cannot provide these datasets due to limitations 

such as that the data is too expensive, does not exist for the 

exact target process, or is too unstructured with poorly 

understood relationships between observables. Recent 

advances in AI/ML have illustrated the power of going beyond 

the standard view of learning (supervised, single-task, data-

centric) to facilitate learning particularly in limited data 

settings [15, 16, 17]. These advances increasingly replicate 

the critical human capability of leveraging prior and disparate 

knowledge sources to draw inferences. 

The possibility of integrating prior knowledge either encoded 

by scientists (e.g., physics-informed neural networks [18, 19]) 

or captured by prior AI tasks (e.g., transfer learning, 

foundation models) is a significant opportunity and necessary 

for three reasons [12]. First, prior knowledge, when 

appropriately applied, fills in gaps in the data, providing much 

better generalizability in AI. Second, prior knowledge can 

constrain (e.g., with physical laws, multi-fidelity models [20]) 

AI systems to make them more trustworthy and predictable, 

as we know they will behave in certain desired ways. Third, 

building upon prior knowledge allows for the scaffolding of 

knowledge that is central to science and engineering. 

Another profound opportunity is the integration of 

heterogenous data from a variety of tasks. Multi-task learning 

methods, like those foundation models, demonstrate the 

single models that learn many different tasks by leveraging 

latent commonalities in tasks [15, 21]. This even allows them 

to perform tasks for which they have not been trained 

(e.g., zero-shot learning). This integration of diverse data 

sources is exactly what we are looking for in autonomous 

discovery to identify novel processes and relationships in 

complex science and engineering data (see Chapter 04). 

While individual task-specific data may be limited, DOE 

facilities are generating exponentially more data from a 

diversity of tasks, and these can be integrated and leveraged 

to train such multi-task learning models. 

ARD 3. DOE has a long history of leadership in UQV&V for 

science and engineering. Leveraging this expertise and 

integrating it into state-of-the-art AI provides a significant 

opportunity to uniquely contribute to AI and harness its 

potential to support ever-increasing demands spanning DOE 

mission areas (see Section 02). We have identified three 

specific directions where the DOE can contribute in the near 

term to maximize opportunities: identifying principled UQ and 

V&V, quantifying and communicating trust for stakeholders, 

and certifying composability. 

First, principled and certifiable UQV&V are central to using AI 

on challenging problems, particularly those in DOE mission 

spaces that involve limited data, out-of-domain predictions, 

and high consequence decisions. Secondly, the lack of 

adequate basis for trust limits the adoption of and ultimately 

investment in AI capabilities by stakeholders. By 

understanding the components of trust necessary to enable 

stakeholders to rely on AI systems (i.e., to quantify and 

minimize risk), we will be able to increasingly integrate it in 

DOE mission spaces. Finally, we see specific opportunities in 

providing robust and certifiable composability of AI systems 

to enable the systems-level thinking that is a central part of 

many DOE mission spaces, ranging from the certification of 

the nuclear stockpile (Chapter 10) to the design of future 

power grids (Chapter 08) to the control of complex systems 

using digital twins assembled from individual component 

models [4] (Chapter 04). 

ARD 4. Resource-constrained problems are common in 

many DOE challenge areas where AI is being applied or 

considered, including control and optimization of complex 

engineered systems, autonomous discovery, AI-at-the-edge 

[22], large-scale foundation models, federated learning [23], 

and surrogate models in high-performance computing (HPC). 

If we do not tackle foundational challenges in understanding 

and navigating trade-offs, DOE will find it increasingly difficult 

to leverage private industry’s rapid advancements in AI due 

to differences in operational requirements. For example, large 

AI models, which have become popular in industry, will 

require significant optimization to fit DOE mission constraints 

like robust operation to adversarial attacks or operating on 

limited computing hardware. Additionally, as AI becomes 

increasing intensive, resources required to train models could 

become unsustainable [15] in terms of data collection, 

computational resources, and efforts needed for V&V. 

12.5 What Is Needed to Start Now? 

12.5.1 GOALS FOR 1–3 YEARS 

Goals include creating AI algorithms, especially for federated 

learning and foundation models, with defined performance 

and computing (e.g., bandwidth, memory, and computation 
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time) constraints at scales spanning from embedded systems 

to HPC.  

 Theory and methods to assess data requirements for an AI 

task. 

 Foundational studies on key aspects of stakeholder trust 

through both AI/ML and cognitive science [24]. 

 Empirical research into scientific data representations and 

multi-task learning for foundation models in science and 

engineering to guide future theories. 

 Algorithms and model forms that allow sequential updating 

of foundation models with new datasets and prototyping of 

new model structures. 

12.5.2 GOALS FOR 3–5 YEARS 

Goals include creating theory and methods to translate 

requirements (e.g., V&V, resource constraints, and 

explainability) from natural human descriptions for self-guided 

and resource-constrained AI. 

 Theory and methods to translate human descriptions of 

prior knowledge into AI models and cost functions. 

 Domain-specific representation of scientific data for 

science and engineering foundation models. 

 Theory and methods to predict transfer learning/multi-task 

learning success. 

 Theory of robust AI that can quantify expectations of 

composability, operational envelopes, out-of-domain 

performance, etc. 

 V&V for the AI/ML pipeline. 

12.5.3 GOALS FOR 5–10+ YEARS 

Goals include creating a common representation of scientific 

data for science and engineering foundation model. 

 Framework for end-to-end self-guided AI for autonomous 

discovery/control that can adaptively tune itself to fit 

different high-level design requirements and resource 

constraints. 
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13. AI WORKFLOWS (EDGE, CENTER, CLOUD)

Any substantial artificial intelligence (AI)-enabled application 

requires many distinct interconnected components, including 

software and systems to collect, process, and prepare data 

needed to train AI models; and processes to update those 

models and make them available to operate on diverse 

platforms, from HPC systems and edge devices [1]. AI 

“workflows” comprise many different programs on multiple 

computing platforms: not just “AI” programs but also 

computational simulations; data discovery, preparation, and 

curation systems; and others. Effectively harnessing the 

advances outlined in Section 01—from surrogate and 

foundation models to inverse design or automated 

laboratories—will not only entail much larger and diverse data 

flows and sources relative to traditional modeling and 

simulation, but will also introduce opportunities for the use of 

AI to optimize, automate, and accelerate the workflows 

themselves. To develop and train such workflows effectively 

will require the creation of digital twins (discussed in Chapter 

04) of the workflows and the underlying scientific 

infrastructure—which is itself a complex engineered system—

with AI-based control systems to design, optimize, and 

operate end-to-end scientific experiments, and innovations in 

workflow system software. 

AI workflows facilitate monitoring and control of experimental 

apparatus (computational and observational), software 

(including AI models), and data sources and flows. A 

particular scientific “campaign” will involve many iterations 

and experiments using these resources in various 

combinations and sequences. The realization of an AI-

enabled campaign thus typically involves a collection of 

workflows, each responsible for the orchestration of elements 

of the campaign’s data and control flow—engaging a variety 

of computers, storage systems, scientific instruments, and 

other devices, from the edge to the exascale. A workflow 

supporting such a campaign is an encoding of the scientific 

method and may ultimately be instantiated in an AI 

foundation model (Chapter 02). A workflow may also be 

considered the broad realization of “programming in the 

large.” It provides the connective tissue to coordinate and 

manage computing and data resources and is the integrative 

glue for the software infrastructure. AI systems for discovery 

will require novel ways to compose workflows, capabilities to 

coordinate computational and data resources, and software 

services, with the ability to support new and diverse 

components, such as post-exascale system architectures or 

quantum computing systems. These novel workflows can in 

turn enable new breakthroughs by automating the lifecycle of 

AI-driven discovery. In this chapter, we identify the 

requirements, capabilities, and challenges as well as a 

conceptualization of a path to accelerate development. 

Workflows and AI are inextricably linked. Workflows directly 

enable AI campaigns in their execution during the inference 

phase (using trained models), but they are also critical in 

setting up training phases to develop AI models and to collect 

the raw material (such as programming language traces) to 

instantiate the AI harnesses needed to develop new models. 

Workflows can include crucial functions such as those 

necessary to determine when AI models drift outside of their 

trained regime and need to be retrained, including generating 

or collecting training data on demand in active learning. 

Concurrently, the AI models themselves can be used to 

optimize future workflows. In addition to fine-grain resource 

tuning, an AI-enabled workflow can include models that 

evaluate and inform coarse-grained resource allocation and 

job placement, determining an appropriate mix of edge, high-

performance computing (HPC) center, and cloud resources to 

complete a federated science campaign. These components, 

and workflows, may in turn use AI models to be automated, 

or “self-driving,” and eventually autonomous [2] as detailed in 

Chapter 05. Moreover, AI models that orchestrate workflows 

and learn failure patterns will enable the workflow to be self-

adapting and self-healing, providing resilience to changing 

conditions in both the computing and communication systems 

and in the science domain. 

Critical research directions in AI workflows from edge to HPC 

center to cloud are discussed below. We expand on why 

PROJECT SPOTLIGHT 

Project Name: Autonomous workflow for single crystal 

neutron diffraction 

PI: Junqi Yin 

Organizations Involved: Oak Ridge National 

Laboratory, National Center for Computational Sciences, 

Computer Science and Mathematics and Neutron 

Scattering Divisions 

Goal: Create an AI-based autonomous workflow at the 

SNS DEMAND instrument for single-crystal neutron 

diffraction studies. 

Significant Accomplishment: Combines an edge-

inference capability with continuous integration to update 

AI models on the Summit supercomputer and present 

them in a user dashboard to control the workflow. 

In the News: Junqi Yin, J., Zhang, G., Cao, H., Dash, S., 

Chakoumakos, B. C., Wang, F., 2022, Toward an 

autonomous workflow for single crystal neutron 

diffraction, presented at the Smoky Mountains 

Computational Sciences and Engineering Conference, 

Kingsport, TN, August 23–25. 
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AI-enabled and AI-driven workflows are important for the 

U.S. Department of Energy (DOE) mission, what is needed to 

bring developments in this field into full realization, and why 

this is the ideal time to accelerate the work. 

13.1 Advanced Research Directions 
in AI Workflows 

The science of workflows—enabling applications with 

functions distributed among multiple networked resources—

has been an active research topic for over three decades. 

The maturity of workflow systems provides insight into how AI 

innovations can address emerging challenges and 

opportunities, such as those arising from unprecedented 

complexity and/or scale or those associated with new 

approaches to AI (Section 01 of this report). 

13.1.1 ARD 1: ESTABLISH DIGITAL TWINS FOR 

DOE APPLICATIONS AND FACILITIES 

WORKFLOWS 

Digital twins (Chapter 04) for workflows will enable AI models 

to be developed to represent, analyze, and optimize the 

operation of facilities and system workflows across the DOE 

complex. Digital twins comprise models for subsystems and 

their interactions within complex engineered systems—such 

as the power grid, an HPC center, an experimental 

instrument—or the resources making up a scientific workflow. 

Establishing digital twins as frameworks for workflow 

development will enable the design, testing, and adoption 

underpinning AI workflow systems with tools, methods, and 

policy parameters to connect facilities more efficiently. 

13.1.2 ARD 2: INSTANTIATE AI SYSTEMS OF 

WORKFLOW CONTROLLERS 

The potential to create foundation models (Chapter 02) 

trained by workflow execution data suggests the potential for 

general-purpose foundation models that can be used to 

create new workflows—that is, a master model that will 

provide control and optimization while using operational data 

from workflows as training data for continuous refinement. 

The workflow master model will include AI-reasoners 

(predictor, classifier, optimizer) for various categories of 

workflow campaigns, including optimization of workflows such 

as control, domain-dependent semantics, resilience to 

disruptions, and resource-constrained operations. Reasoners 

will also monitor science exploration, detect outlier results, 

classify new phenomena, and respond with appropriate 

actions such as launching new tasks for analysis. 

13.1.3 ARD 3: DEVELOP AND DEPLOY AI 

BUILDING-BLOCKS AND WORKFLOW CODE 

GENERATORS 

The DOE complex will need AI-driven cross-facility workflow 

code generators, leveraging the emerging approaches 

described in Chapter 06. We formulate in this activity an 

approach and methodology for science-based AI-driven code 

generators. These will establish specific activities such as 

data collection and reduction at a facility, time-dependent and 

data-dependent processing, and support for autonomous 

feedback loops. The scientific intent of a campaign is in this 

way realized in an instantiated workflow. 

13.1.4 ARD 4: CAPTURE DOE COMPLEX-WIDE 

WORKFLOWS SYSTEM STATE 

Data repositories for edge-to-center operations are critical to 

capturing the programming environment and runtime 

monitoring information of workflow data, and they allow 

expansion to science-driven domain-specific modalities and 

their influence on data. This is vital to improving digital twins 

and setting up training environments for automatic 

instrumentation as well as to the ability to gather information 

for programmatic (workflow-driven) control. 

The broader workflows area of research depends on but also 

drives the realization of approaches described throughout 

Section 01. For instance, collected data will help inform how 

we might construct a workflow to train a surrogate model, 

create a foundation model, or adapt a workflow developed 

within one domain to be applied in a different domain. 

13.1.5 ARD 5: INNOVATE TRUSTWORTHY 

WORKFLOW TECHNOLOGY FOR AI-

ACCELERATED SCIENCE 

Modern science campaigns are iterative, nonlinear 

ensembles of thousands of activities in a complex search 

space that cannot be realized without commensurate 

breakthroughs in workflow science itself. Workflows must 

self-describe, self-drive, self-adapt, and self-heal with minimal 

human effort, thereby providing dynamic initialization, 

execution, switching, and termination of tasks in support of 

active, continual, reinforcement, and foundational learning. 

Workflows of the future will drive the multimodal exploration 

of a problem space, federating foundation models, surrogate 

models, computational models, physical experiments, and 

observational data across multiple sites. Perhaps most 

importantly, workflows must enable trust in their outcomes by 

validating models, flagging uncertain results, and retraining 

models before potential errors are propagated downstream. 

13.2 Why Is It Important? 

Workflows and workflow frameworks capture optimized 

practices for creating, executing, and optimizing scientific 

experiments, enabling campaigns involving many 

experiments. Without explicit workflow support, these 

practices manifest as bespoke systems for individual 

scientific teams. Thus, absent an intentional, comprehensive 

workflow development initiative, DOE’s investments in the 

application of AI systems will involve many redundant efforts 
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producing an inefficient collection of custom software and 

tools to support the immediate needs of each individual 

science campaign. The availability of systematic, domain-

agnostic workflows that are easy to deploy will give scientists 

a straightforward path to designing experiments and 

executing campaigns, accelerating and effectively reinventing 

DOE science and engineering practices using AI tools and 

techniques. 

Building new, world-leading AI systems entails more than 

simply training a single AI model. Every innovation outlined in 

Section 01 of this report and every application detailed in 

Section 02 require a broad range of tasks, from data 

acquisition, aggregation, and curation; to model design, 

development, hyperparameter studies, large-scale training 

and validation studies; and model comparisons, deployment, 

and continuous learning. For the many campaigns that 

require observational data from user facilities, field 

laboratories, and other instruments, AI workflows also include 

integrating the AI models running in edge systems 

(e.g., providing in situ data analysis and real-time control)—

potentially involving the orchestration of hundreds or 

thousands of such components and their data flows. 

Many and varied needs are converging on not only optimizing 

workflows for AI but also using AI to optimize the workflows 

themselves: 

 Domain communities must compose dynamically updated 

AI models for systems control and surrogate model 

development. 

 Workflows are needed to couple multiple spatial and 

temporal scales, from real-time control of observational 

sensors (beamlines, scopes, radars, etc.) in experiments, 

to scheduling computing facilities, to responding to 

disruptions and load demands in nationwide energy grids. 

 AI is making it possible—indeed, necessary —to mix and 

match hybrid models that require auto-selecting control 

set-points and appropriate surrogates, forward simulations, 

data proxies, hyperparameter optimizers, and so on. 

Campaigns will be optimized on the fly, requiring a deep 

understanding and improvement of the state of the art in 

workflows. 

 For data protection in edge-to-multi-exascale campaigns, 

federated learning models are required, and these will be 

implemented as workflows in and among protected and 

sensitive data facilities. 

 In many instances, scientific communities will collaborate 

on building, training, and using foundation models 

(Chapter 02), which will require workflows for training from 

diverse, multimodal data sources, with tasks ranging from 

data provenance to evaluation and training for specific 

downstream tasks (see Chapter 19: Data Infrastructure 

and the concept of active collective memory). 

There are significant data and model management 

challenges for workflows [3] as they orchestrate the data, 

system, middleware, and applications, functioning in a real 

sense as the operating system of a set of related complex, 

distributed AI functions and resources. These functions of AI 

workflows can be illustrated by considering a sample of the 

capabilities described in Section 01 for the new AI 

approaches, requiring workflow technology that can: 

Create and deploy surrogate models. Training and 

incorporating surrogates [4] in forward simulations or data—

integral to digital twins—requires effective workflows to 

incorporate multimodal training data and AI models for 

inference, updating them systematically with on-line training. 

Deliver foundation models and move toward general 

applicability. To create and refine foundation models that 

are generally applicable across domains will require adapting 

the end-to-end workflow with training data from a diversity of 

experiments within a particular domain or set of domains. 

Here, general-purpose workflow frameworks are essential to 

support the equally diverse community of scientists and 

teams collaborating to build and use shared foundation 

models. 

Address questions of inverse design. Inverse design 

models capture data representing prior experience to improve 

system processes and rules–effectively playing a generative 

workflow in reverse. This is an unexplored area with 

transformative potential detailed in Chapter 03. 

Design, engineer, and execute complex experiments and 

manage complex engineered systems. Timescales of 

workflow control and execution may vary from minutes to 

weeks. Operating with diverse data types and modalities, 

geographically distributed facilities from edge to center 

require AI models that are continuously trained by data from 

experiment iterations incorporating deep “understanding” of 

the dynamics of various classes of experiments as necessary 

to optimize, respond to disruptions, and ultimately make 

structural and procedural improvements to the workflow. 

Develop autonomous laboratories. The use of AI to 

automate laboratory experiment campaigns will entail AI 

workflows involving not only traditional components such as 

data collection, analysis, and operation but also the operation 

of traditionally stand-alone laboratory equipment. This will 

require incorporating new application programming interfaces 

and even instrument operating systems into the control, 

monitoring, and adaptation workflow functions. 

Create AI for (and through) programming automation. 

Creating AI models that can assist with, or carry out, software 

engineering and programming tasks will also require 

workflows that manage and prepare training data. The critical 

nature of software throughout every layer of infrastructure 

and experiment also underscores the importance of workflow 

functions that evaluate correctness, robustness, and security 

vulnerabilities. 
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13.3 Why Can’t It Be Realized Now? 

Workflows are currently static in definition. We do not yet 

have the methodology to respond to changing science needs, 

the AI models to inform the workflow, or mechanisms to 

harness data about experiments for training the AI model 

responsible for optimizing the workflow. These building 

blocks, in turn, are needed to fully realize the potential for AI 

models that can design new workflows, predict or detect 

flaws, and optimize workflows over time. Consequently, the 

use of AI in workflows would require individual domains to 

create their own bespoke systems, resulting in a number of 

challenges, including: 

 Surrogate generation and construction are tied closely to 

the particulars of the domain and need deeper 

generalization research to apply to other domains. 

 Complex systems are diverse in resource use and 

heterogeneity; their control through workflows driven by AI 

needs a further systematized definition of workflows and 

their operations. 

 Foundation models are only beginning to be used for 

particular functional tasks; how we might have foundation 

models support multiple functional domains is an unsolved 

problem. 

 Large-scale AI for workflows is a field hampered by the 

manner in which traditional AI currently operates for 

simulation campaigns and well-known datasets. Edge-to-

center workflows will need a training-to-inference loop, and 

this is still an area of active research. 

 Autonomous systems and their control workflows are 

unable to generate training data because most systems—

both software and hardware—are not sufficiently 

instrumented. 

 Code generation with AI is in its infancy, and development 

of programs for heterogeneous resource-constrained 

platforms is as yet a nascent area of research. 

13.4 Why Is It Reasonable to Start 
Now? 

AI models outperform humans on tasks that range from the 

mundane to those that were only recently regarded as 

uniquely achievable by humans—such as on-the-fly language 

translation or prompt-based image generation. The stunning 

pace of these advances surprises even researchers familiar 

with the underlying mathematics and recent history. Applying 

these principles to scientific systems—which differ 

significantly from natural language processing—could enable 

DOE to create AI models with the goal of outperforming 

humans in efficiently programming supercomputers, 

analyzing results, and even in formulating promising scientific 

hypotheses, thereby automating workflows for a significant 

fraction of the process of computational scientific discovery. 

These advances, and others described in Sections 01 and 02 

of this report, are decadal in nature.  

The AI models described throughout this report will require 

extensive computational resources for training and execution, 

with the potential for inverse design capabilities that could 

themselves be used to propose both improvements in 

resource use and new designs for resources—from 

instruments to supercomputers. These designs could, in turn, 

drive AI-enabled automated design and manufacturing to 

orchestrate their construction, operation, and use. 

For the scale and uniqueness of DOE mission areas, the 

realization of these advances will require building 

infrastructure to support the embedding of AI in workflow 

systems, incorporating performance and results data to 

continuously self-train, and advancing workflow technology to 

enable further breakthroughs in the use of AI for DOE 

mission areas. Ultimately, an AI model for adapting, or 

creating new, workflows for a scientific campaign will 

incorporate the coding of its subsystems as well as execution 

provenance and workflow descriptions. We may imagine an 

AI-driven workflow controlling scientific exploration of a single 

problem on a single supercomputer. This trajectory might 

begin with a scientific seed prompt (SSP), from which AI 

identifies three component classes to satisfy the prompt: 

(1) the known—parts of the problem that have been solved 

and can be reused, (2) the discoverable—the parts of the 

problem known to be solvable but for which the answer must 

be sought by generating code and running it on a 

supercomputer, and (3) the unknown—the parts of the 

problem that cannot currently be solved and in the immediate 

term require human intuition. As much as possible, AI would 

operate this workflow independently and generate discovery 

artifacts for review by scientists. Human-machine 

collaboration will be required to explore the unknown and 

advance beyond it. 

We are at the start of a decade in which we find workflows 

proliferating across the DOE complex, while at the same time 

pockets of AI-driven work are appearing at specific steps 

within these workflows. We must create research and 

development activities that connect workflows and AI 

(Figure 13-1). The workflows community has matured and is 

converging on an action plan [5, 6, 7, 8]. Integrated research 

infrastructure (IRI) needs across DOE’s Advanced Scientific 

Computing Research (ASCR) community are driving the 

expanded deployment of workflows. The need for AI-driving 

and AI-driven interfaces, encapsulators, and descriptors to be 

composed flexibly—to be tracked and trained for prediction 

and altering of campaign trajectories—will grow significantly. 

It is most fruitful to start now to guide the tools and 

technologies as they emerge.  
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Figure13-1. Resource-optimal AI workflow. 

13.5 What Is Needed to Start Now? 

Workflows will be the glue to connect facilities and systems 

across the DOE complex. These workflows will be operated 

by large-scale AI foundation models that will be continuously 

trained by data from the execution and results of workflows. 

This transformation will require the following immediate steps. 

 Establish digital twins and virtual environments for a set of 

several specific scientific workflows that are characteristic 

of experiments already operating in distributed fashion 

today. The digital twin will emulate the various parts of 

each pilot system, including both edge-to-center and cross-

facility campaigns. The objective of these pilots will be to 

create an initial set of AI models that execute and learn 

from experiment iterations, and in turn can be evaluated for 

use in other campaigns with similar characteristics. In 

addition, it will drive the development of descriptors and 

operators specifying operations and characteristics of the 

workflow’s constituent computing and experimental as well 

as the operations associated with data sources, flows, and 

curation. This will enable experiments to evaluate the 

mechanisms for defining workflows, including languages 

used, methods for expressing science goals, performance 

evaluation methods, and composition frameworks to 

identify and capture opportunities for autonomy. 

 Design and deploy the first AI-based workflow controllers 

for DOE facilities. This effort will create several initial 

foundation models and associated systems for various 

categories of workflow campaigns. This would include 

optimization of workflows to include control, domain-

dependent semantics, and resource-constrained 

operations.  

 Research and develop next-generation workflow software 

systems capable of dynamic control and the dynamic data 

services needed to support data generation, model 

generation, model training, inference, and analysis with a 

maximum of autonomy and resilience. 

 Instantiate a data repository of edge-to-center operations 

to capture programming environments and runtime 

monitoring information for workflow data and allow 

expansion to science-driven domain-specific modalities 

and their influence on data (Figure 13-2). This will address 

data collection, curation, and generalization challenges and 

shed light on the closed-loop need for datasets for AI, 

which will in turn modify and control workflows.  

 

Figure13-2. Edge-to-center operation (image courtesy of R. Churchill et al. 
2021 [9]). 

These initial experimental digital twins of intra-facility 

workflows (e.g., to create an associated foundation model) 

and inter-facility workflows connecting DOE facilities will help 

create the smart workflow systems required for the DOE 

community to achieve the potential breakthroughs fueled by 

the approaches described in Section 01. The resulting 

workflow systems will free the scientist from committing to 

hard choices early in the campaign (guiding the campaign 

with data/compute/surrogate choices) and create the 

capability to traverse resource-limited and sensitive 

(e.g., national security) environments (restricted data, edges, 

low-power). 

The advances in workflow definition methodologies will also 

be essential to accelerating progress in AI-generated code 

(Chapter 06). 

In five to ten years, we will need to establish ways for data 

from workflows in the field to be collected in a repository to 

feed AI models. Foundation models will be able to operate in 

a test environment to explore their applicability. We will move 

to a deeper specification of complex workflows that can be 

explored and analyzed to bridge data-driven insights with the 

physics-driven observations (Figure 13-3). This richer 

understanding will allow new developments in the domain 

and in AI that both enable workflows to adapt to emerging 

needs (dynamically as well as in their design) and allow them 

to become a seamless part of the scientific discovery 

process.  
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Figure 13-3. Bridging physics principles and observations with 
workflows. Image courtesy of Rama Vasudevan [10]. 
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14. DATA ECOSYSTEM 

Fully realizing the potential of artificial intelligence (AI) for 

U.S. Department of Energy (DOE) missions requires mission-

relevant data in forms and formats that can enable the next 

generation of AI systems. This is challenging, as DOE data 

are complex, combining simulations, observations, and 

experiments across a vast array of facilities, disciplines, and 

security requirements, and in many cases spanning decades 

of experiments, observations, and multiple generations of 

instruments. This heterogeneity of sources, disciplines, 

scales, and data types limits our ability to fully use DOE data 

for the development of present and future AI systems. 

Moreover, the high volume of data produced by DOE facilities 

is already too large to fully analyze. This dilemma will only 

intensify as future facilities come online, producing mission-

relevant data that will be too large, too complex, and too 

fragmented to use effectively.  

Consequently, there is urgent need for DOE to develop an AI-

driven data ecosystem as a comprehensive solution for the 

many aspects of managing and using this critical data to fully 

exploit the potential of AI and drive advances in strategic 

areas of research and economic competitiveness. This data 

ecosystem must be structured around using AI to manage the 

complete lifecycle of data, comprising: 

 A DOE complex-wide and accessible data universe with 

open standards, intelligent archiving, and built-in 

safeguards for security and privacy. 

 AI-enabled data librarians that assimilate new data while 

identifying gaps in the completeness of that data. 

 The use of AI for curating, annotating, and maintaining 

these data and their provenance to help ensure their 

longevity and usefulness. 

 AI-enabled methods for data navigation, visualization, 

transport, integration, and delivery that enable these data 

to be easily utilized and leveraged. 

 AI-enabled data search to find the data relevant to training 

or driving an AI model. 

 Machine readable interfaces to enable automated access 

to interpretation of, and use of the data. 

This comprehensive, AI-driven data ecosystem would have 

profound impact on the DOE as it is requisite for the 

development of AI systems harnessing any and every 

capability detailed in Section 01 of this report. Acquiring the 

ability to automatically manage and intelligently stage 

federated and distributed data will enable groundbreaking 

results in both scale and impact. The breakdown in barriers to 

data will democratize data and fully engage the DOE 

workforce, enabling a strong sense of mission and 

engagement. Novel methods for AI-driven maintenance, 

curation, and modernization of the data will drastically reduce 

data wrangling costs, thereby enabling a more efficient AI 

model development cycle. The use of a data-historian and AI-

driven search will enable both legacy and currently generated 

data to be used and visualized more effectively. The DOE 

scientific community, empowered by an AI-driven data 

ecosystem, will make, keep, and find the right data at the 

right time for the right problem. 

14.1 Advanced Research Directions 
in Data Ecosystem 

Developing an AI-driven data ecosystem to manage critical 

scientific and economic data presents considerable scientific 

and technical challenges. The role of AI is fundamental to the 

success of this ecosystem due to the ability of AI models to 

perform tasks at a scale that is well beyond what manual data 

librarians can achieve. The information that must be 

managed has already scaled to exabytes in magnitude, 

creating the need for a holistic data strategy that enables 

capturing the potential that this data represents. The 
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programming models. 
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Advanced Research Directions (ARDs) that follow focus on 

key areas necessary to create, optimize, and leverage such a 

data ecosystem. 

14.1.1 ARD 1: THE DOE DATA ECOSYSTEM 

The primary need is for a complex-wide data universe, built 

upon open-standard hardware and software, that brings the 

profusion of DOE data to the AI researcher’s fingertips. Such 

an exabyte-scale data universe requires novel global data 

management and data infrastructure that can locate and 

deliver relevant data in usable forms for modern workflows. 

As detailed in Chapter 13, these workflows often couple 

multiple independent analysis codes, experiments, or 

simulation models. They are often distributed across multiple 

platforms from supercomputers to edge processors and must 

adhere to strict security and privacy concerns. These 

requirements greatly increase the complexity of creating this 

universe, which means that AI systems are necessary for 

optimizing the layout and management of the ecosystem. 

Simply put, the data ecosystem is a “complex engineered 

system” with the properties, and AI approaches, described in 

Chapter 04. 

14.1.2 ARD 2: AI DATA LIBRARIANS THAT 

IDENTIFY GAPS AND COLLECT DATA 

Given a comprehensive data universe, research is needed to 

develop an AI system that will locate existing data across 

multiple sources, assess its relevance for a given task, and in 

the process identify (and help to fill) any gaps in coverage. 

Prior to running an experiment, a DOE researcher should be 

able to know whether it has been carried out before and if the 

data exist already. 

14.1.3 ARD 3: AI DATA LIBRARIANS THAT 

CURATE, MANAGE, AND ANNOTATE DATA 

Data in the DOE ecosystem will also require annotation with 

metadata to enable rapid AI-driven searches. When data are 

incomplete, the AI librarian will generate complementing data 

and construct a data production workflow that integrates 

experiments and simulations through code composition. The 

data ecosystem must also support workflows that 

automatically and intelligently move data to where it is 

needed, for instance, from a user facility at one laboratory to 

a computational facility at another, and from there into a DOE 

data ecosystem storage cache that may be at a third location. 

14.1.4 ARD 4: AI FOR DATA NAVIGATION AND 

MEANING 

AI approaches such as those described in Section 01 will 

greatly facilitate the requirement that data are searchable and 

visualizable, thus bringing meaning/importance to the 

researcher. These data will have open standards, while 

safeguarding both proprietary and security concerns. 

Workflows will prioritize the ability to bring in wide varieties of 

data to develop a comprehensive view of the research 

direction. An AI-powered data navigator should automatically 

highlight important features and help the researcher make the 

most of the data. 

These ARDs will require the use of every approach outlined 

in Section 01 and will, in turn, be critical to the scientific and 

engineering mission objectives laid out in Section 02. 

14.2 Why Is It Important? 

The lack of a comprehensive AI-driven data ecosystem is 

already weakening national competitiveness in several ways. 

Currently, high-performance computing (HPC) systems do 

not support the data usage patterns needed for AI at scale, 

for instance, to train surrogate (Chapter 01) or foundation 

(Chapter 02) models. This gap prevents basic capabilities 

such as controlling and optimizing complex systems 

(Chapter 04), or developing inverse design methods 

(Chapter 03), all of which require high volumes of multi-modal 

data for model training. Absent a data ecosystem as 

described above, our capacity to harness multiple datasets 

into a comprehensive and more accurate view of the 

problems of interest is limited.  

The lack of a common data ecosystem infrastructure creates 

structural barriers that impede research. A unified ecosystem 

with a built-in transferability and portability will streamline the 

process of managing data and workflows. This ecosystem, to 

be built on commonly accepted standards, will enable code 

development (required for the application of AI methods to 

programming and software engineering, described in 

Chapter 06) and workflow. This ecosystem will, in turn, 

improve reusability, ultimately increasing efficiency and 

accelerating scientific discovery. Given the rich datasets that 

are currently managed by DOE, investments will be needed 

to ingest the wide variety of existing formats and thus make 

them more widely accessible to broader research 

communities. 

The scale and velocity by which data are being generated 

compounds these structural problems. With the data 

ecosystem infrastructure described above, the data 

generated will be fed directly into surrogate models to 

evaluate and modify experiments, optimize the operation of 

user facilities, or even to improve the efficiency of an 

autonomous production plant. Directly coupling data creation 

and evaluation and use through AI models will provide new 

opportunities, as well as challenges that differ from the 

traditional approach of archiving data before its use. 

Supporting a move to this new paradigm will require new 

methods to facilitate tighter integration between the 

computational and experimental instruments that produce 

data, the AI models that perform analysis, and the AI-enabled 

data storage and management systems comprising the data 

ecosystem. Lacking these integrated capabilities, the AI-

based tools and platforms that are currently being developed 
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will be limited in scale and application, at best addressing 

narrow problems or those that are of limited relevance to 

DOE’s science, energy, or security mission needs. 

Data curation is the most resource-intensive component of AI 

research, requiring many experts, as selecting the right data 

requires considerable knowledge of science goals and AI 

techniques. For many research domains, wrangling data into 

useful forms can dominate the timeline of work required to 

create, optimize, and train an AI model. As detailed in the 

context of software development in Chapter 06, the use of AI 

systems for these labor-intensive tasks will not only improve 

productivity and reduce timelines, but will also reduce errors 

and ultimately result in models that can create new and more 

effective methods (as described in Chapter 02 with respect to 

foundation models). 

The use of AI systems to resolve research or production 

questions more quickly will create agility in several areas. 

Often, experiments (whether with laboratory instruments or 

computational models) are duplicated or employ sub-optimal 

methods due to the inaccessibility of data and optimization 

insights from similar experiments. Realizing efficiencies in 

these areas will help remove barriers to accessing AI-based 

knowledge creation—barriers that DOE and its researchers 

face in rolling out technology developments to industry and 

other partners. 

Below are examples of the benefits of a comprehensive data 

ecosystem. 

Pervasive data collaboration and increased 

transparency. Projects with smaller databases need data 

improvement to use AI effectively. Activation barriers will be 

reduced by making more effective use of effort and expertise. 

Better utilization of archival experience across the DOE 

complex will enable DOE to parlay this expertise to yield 

benefits years after initially applied. 

Low latency between data and decisions. Active learning, 

as required for nearly every AI approach discussed in Section 

01, requires responsive, intelligent data sources. The 

amount, size, and rates of data will vary between challenges, 

making one-size-fits-all solutions unrealistic. The AI-enabled 

data ecosystem will enable the mixing of multiple sources 

and allow the level of effort required to be more easily 

recognized to realize a research goal. The mixing of data 

from many sources requires coherent interfaces for quality 

assurance. The data ecosystem must also track provenance 

and detect potential vulnerabilities such as the accidental 

inclusion of bad or intentional insertion of “poison” data [1]. 

The data management systems must acquire the ability to 

learn when and how to trust the data as a filter. 

Reduced data wrangling for surrogate modeling. The 

ecosystem will significantly reduce the time it currently takes 

to prepare data for model training and improvement. Steps 

that need to be optimized include: 

 Gathering the data needed across disparate sources. 

 Transforming the data. 

 Evaluating the data/building validation datasets. 

 Connecting to active learning data. 

 Dealing with data of different scales and modalities. 

 Building persistent databases and data movement in 

surrogate computational infrastructure 

Hardware and software capable of handling massive 

datasets. The infrastructure needed to handle massive 

datasets has several requirements. The data ecosystem will 

provide hardware and software that enables:  

 Filesystems capable of massive and random-access reads. 

 In-transit processing capabilities. 

 Smart storage: that is, computing that is devoted to 

managing the data. 

 Autonomous learning that makes the data subsystems 

work better. 

 Anticipation of data needs for new applications. 

 Intelligent search capabilities and automatic metadata 

inference. 

Foundation models for DOE experimental facilities. A 

potential benefit of AI foundation models (detailed in 

Chapter 02) is the ability, once trained to critical mass, to 

capture, maintain, and preserve all of the experimental data 

from user facilities. Establishing this element eliminates the 

loss of usable information, in that it preserves the entire 

storage of generated experimental data at today’s production 

rates. This effort will require: 

 Development of good, heterogenous data production 

test beds that assimilate the results from multiple 

complementary experimental facilities and domains.  

 Foundation models that operate on heterogenous and 

distributed computing and storage infrastructure. 

 Comprehensive data policy that preserves privacy and 

security concerns. 

 Resiliency and consistency for data storage across the 

facilities. 

 The leveraging of industry innovations where possible. 

 Reproducibility and validation capabilities. 

 Clear definitions of what constitutes a self-supervision 

learning task for each modality of multi-modal data. 

 Invariants between data fields—rules for physics 

constraints within multi-modal data. 

14.3 Why Can’t It Be Realized Now? 

There are several barriers to developing this comprehensive 

data ecosystem. Much of this challenge arises due to the 
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wide variety of DOE research and production efforts. This 

diversity creates several requirements that must be 

managed. Security considerations involving classified, 

proprietary, and scientific results further complicate data 

usage. These considerations and others have resulted in 

individual facilities developing their own methods of 

collecting, curating, and archiving data. DOE currently lags 

behind industry standards and best practices; however, with 

significant investments, the opportunity exists to leapfrog 

industry. One common concern with respect to promoting 

data access across multiple fields is that domain scientists 

are not accustomed to sharing data due to a lack of protocols 

and standardized tools. This state of the practice is 

complicated by current solutions, which are typically ad-hoc 

and domain specific.  

Current repositories do not enable real-time access to data, 

do not capture the dynamic nature of data that changes over 

time, and cannot access data in different granularities. In 

addition, there is no current way to query data repositories 

efficiently to bring relevant data to the forefront that can help 

researchers with novel situations. Another major concern is 

data sparsity, where many surrogate models train on 

incomplete datasets. This is the case when there are only a 

few data points measured. The lack of access to large 

datasets is of particular concern to developing foundational 

models. Uptake of findable, accessible, interoperable, and 

reusable (FAIR) data standards has been slow, in large part 

due to the large investment in resources needed to modify 

current data and data collection pipelines [2–5].  

Because metadata and data standards are not uniform 

across the DOE complex, an AI-enabled data ecosystem (if it 

existed today) would suffer from data sparsity. The current 

repository systems do not capture enough information to 

enable users to determine whether a dataset has been 

generated by experiments or is a synthetic dataset, with 

many lacking even basic information like authorship, origin, 

and data types and limitations. Solutions need to integrate a 

multilayer metadata approach to enable users to handle 

sparsity in training data. 

14.4 Why Is It Reasonable to Start 
Now? 

The need for developing a DOE-wide, comprehensive, AI-

enabled data ecosystem has become acute. Across the DOE 

complex, there is a push for DOE assets (whether from 

microscopy to HPC assets or from neutrons/light sources to 

HPC assets) to become more interconnected [6, 7]. 

Expanding integration with other federal agencies and 

partners is also driving the need. The great strength of DOE 

is its ability to create large interdisciplinary teams and pair 

them with cutting edge infrastructure to solve problems that 

span the needs of the federal government. The 

comprehensive data ecosystem will greatly facilitate the 

ability of DOE to help our federal partners. 

DOE expertise with HPC is one such asset. DOE 

computational facilities at the Office of Science (SC) and 

Office of Defense Programs (DP) are widely used in scientific 

and national security areas for addressing a wide range of 

problems. Their experience with high-end computing enables 

them to manage exascale and similar large data flows. By 

lowering the data barriers to helping our partners, we enable 

utilization of larger datasets from more sources. This 

expansion will provide unique solutions to the data needs, of 

which foundation models are an important example. These 

facilities offer performant HPC for achieving faster training, 

higher-accuracy models. This capability enables training with 

enough speed that these surrogate models can be used in 

ongoing simulations/experiments. 

DOE is well poised to construct an AI-enabled data 

ecosystem through success in multiple avenues of data 

science. It already has preliminary success applying its 

expertise in areas of national impact. Following are areas 

where DOE is making impacts through the use of AI and 

machine learning (ML). All of these grand challenge areas 

require advances in this data ecosystem to realize success. 

 Optimization of manufactured/synthesized material 

microstructure and properties [8].  

 Nuclear deterrent systems that are survivable in radiation 

environments.  

 Optimization of electrical grid operation under evolving 

demand environments. Grid storage field data are fed back 

to design efforts at DOE labs. 

 National Institutes of Health (NIH) interactions, particularly 

in response to infectious diseases, such as Covid-19. 

 Climate solutions such as carbon sequestration and better 

understanding of climate processes. 

DOE’s current involvement in these foundational areas is 

strong motivation for beginning immediately on developing an 

agile and robust AI-driven data ecosystem. This data 

ecosystem will greatly assist current DOE mission areas. 

14.5 What Is Needed to Start Now? 

Following is a roadmap of near-, medium-, and long-term 

goals that need to be realized to accomplish the objectives 

outlined in this chapter. 

14.5.1 GOALS FOR 1–3 YEARS 

Short-term goals include efforts to: 

 Establish policy involving data standards and privacy, 

proprietary, and security concerns for both experimental 

and simulation data. 
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 Begin creating a database and training a data curation 

engine by leveraging existing standardized databases in 

select vanguard fields, such as astronomy and high-energy 

physics. 

 Research low-latency data retrieval and movement 

systems, including advanced data compression algorithms. 

 Begin building AI-based query models for scientific data 

that can locate and assess data relevance from new user 

queries on select, curated databases.  

 Create a data validation framework and capabilities that 

can detect faulty and/or incomplete data and perform 

testing on curated databases. 

14.5.2 GOALS FOR 3–5 YEARS 

Medium-term goals include efforts to: 

 Extend curated databases and engines to account for 

multimodal data, including published data. 

 Develop automated pipelines and infrastructure for 

continual data imputation and augmentation.  

 Develop interfaces for enabling scientific data search using 

context-aware natural language queries. 

 Develop visualization tools for exploring the available data. 

 Establish common data interchange formats. 

14.5.3 GOALS FOR 5–10 YEARS 

Longer-term goals include efforts to: 

 Test and validate data retention policies as facilities 

upgrade. 

 Couple data infrastructure and AI librarians to enable self-

improving search models. 

 Incorporate data across the DOE complex and across 

classification levels. 

 Build configurable data preparation and augmentation 

pipelines, including a recommender model that can 

interrogate the available data for data 

selection/recommendation/classification/labeling [9]. 

 Complete the DOE data ecosystem, searchable via natural 

language queries. 
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15. AI-ORIENTED HARDWARE ARCHITECTURES 

Over the past several years, artificial intelligence (AI) has 

begun to show significant potential to enable a sea change in 

computational science and engineering, allowing scientists to 

address critical questions in national security, energy 

security, and leadership science with a level of agility and 

accuracy that will fundamentally change how we address 

risks in an uncertain world. These advances, detailed in 

Section 01 of this report, also require fundamental changes in 

the nature of scientific applications and workflows, both 

exploiting new hardware architectures and involving new 

forms of data flows and shifts in computational methods, such 

as the use of surrogate models. The scientific, energy, and 

national security challenges to which AI can make 

groundbreaking contributions are numerous. Fully realizing 

them—supporting these new forms of applications and 

workflows—will require revolutionary advancements in AI-

oriented hardware architectures. These advances are driven 

by requirements spanning the new approaches described in 

Section 01 as well as the crosscutting areas detailed in 

Section 02. 

The U.S. Department of Energy’s (DOE’s) approach to 

developing and deploying computational resources also must 

be revisited, particularly with respect to the “co-design” 

methodology. Deep co-design for the Exascale Computing 

Project (ECP), has resulted in breakthroughs in cluster-level 

and even node-level architecture, system software, workflow 

tools, and applications, but with limited influence over the 

central/graphical processing unit (CPU/GPU) design—

designed and produced for consumer workloads. To fully 

harness new AI approaches (Section 01) to reinvent the 

broad and diverse scientific, energy, and security domains 

outlined in Section 02, the co-design process and timeframes 

of interactions must extend to the CPU/GPU design and 

beyond to encompass new materials and techniques 

necessary for future zeta-scale machines, which are to be 

constructed within rational constraints with respect to costs, 

especially power.  

15.1 Advanced Research Directions 
in AI-Oriented Hardware 
Architectures 

Each of the fundamental AI approaches described in 

Section 01 promises unprecedented advances across the 

entire suite of DOE scientific domains detailed in Section 02. 

These six AI approaches present unique challenges with 

respect to the hardware architectures underpinning those 

advances. Preliminary analysis of the requirements in each of 

these areas, for example a growing number of large-scale 

industry-driven AI models, suggests a need for three orders of 

magnitude improvement in computational efficiency over the 

next 15 years. This is driven by the need to support the 

magnitude of processing required for training of brain-scale 

neuro-symbolic models, such as surrogate (Chapter 01) and 

foundation (Chapter 02) models. These advances will only be 

realized through Advanced Research Directions (ARDs) 

targeting optimizations for unique DOE needs and major 

improvements in energy-efficient computing from the edge to 

the largest-scale high-performance computing (HPC) facilities. 

15.1.1 ARD 1: ARCHITECTURES OPTIMIZED 

FOR DOE 

DOE has unique hardware architecture needs that are driven 

by the complexity of our HPC and AI applications, which 

comprise massive multi-scale modeling and simulation and 

the integration and analysis of experimental data necessary 

for training of AI models for specific domains (many unique to 

DOE). Architectures that support these capabilities will push 

the limits of extreme heterogeneity, reconfigurability, and 

DOE-specific optimizations: 

 True hardware reconfigurability, enabling frictionless 

composition of discrete components of the hardware; 

PROJECT SPOTLIGHT 

Project Name: Flexible neuromorphic computation in 

networks of superconducting oscillators 

PI: Christoph Kirst and Co-PI: Dilip Vasudevan 

Organizations Involved: Lawrence Berkeley National 

Laboratory and the University of California–

San Francisco  

Goal: Design and evaluation of superconducting 

oscillatory networks using collective dynamics principles 

of neural activity. 

Significant Accomplishment: Designed hardware for 

superconducting oscillatory neural network with pixel 

error detection for image recognition and software for 

modeling the superconducting oscillatory computing.  

In the News: One of the five teams selected for DOE 

neuromorphic computing funding (awarded for two 

years). R. Cheng, C. Kirst, and D. Vasudevan, 2022. 

Superconducting-Oscillatory Neural Network with Pixel 

Error Detection for Image Recognition, presented at 

Applied Superconductivity Conference (ASC 2022), 

Hawaii, October. 
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 Specialized micro architectures and components (chiplets, 

analog, non-von Neumann, compute in network/storage);  

 Symbolic and probabilistic computing;  

 Able to run in harsh environments (radiation and/or 

vacuum); 

 Uncertainty quantification (UQ)-capable processing 

elements; 

 Hardware-enabled trust.  

15.1.2 ARD 2: ENERGY-EFFICIENT COMPUTING 

(EDGE TO HPC)  

DOE must lead the nation in energy efficient HPC and edge 

computing. Current technology trends are realizing a slowing 

in energy efficiency that will cause our competitiveness in 

science, energy, and security to stagnate. This must be 

addressed through a focused set of research topics: 

 Edge computing platforms that are as capable as today’s 

multi-petaflop systems. 

 An ability to dynamically control numerical precision, 

frequency, and resiliency for total dissipated power.  

 Alternative hardware (analog, non-von Neumann).  

 Massive increases in compute density within a fixed power 

budget. 

 Differentiable computing hardware from the gate to 

component level. 

 New materials and approaches to support ultra-low-power 

computation both in the aggregate (HPC systems) and at 

the edge (battery/solar powered devices). 

Deep co-design of each of the DOE AI approaches alongside 

the ARDs will be necessary to meet the performance, 

scalability, resiliency, and reliability requirements they 

impose. To date, efforts and investments from industry have 

been driving rapid advancement in AI-oriented hardware 

targeted at a limited number of general-purpose use cases, 

such as recommender systems, speech and image 

recognition, and language translation. The financial benefits 

have driven industry to create more specialized AI-oriented 

hardware for these specific use cases (e.g., tensor cores, 

bfloat16 data format, low-precision/low-bandwidth data 

processing units [DPUs], etc.). 

This hyper-optimization for divergent workloads in isolation 

will have limited benefit for DOE’s diverse, unique set of 

science, energy, and security grand challenges. 

Advancements driven by strategic national priorities, such as 

many of those outlined in Section 02, will benefit from some 

facets of industry work, such as data management and 

workflow systems for training large-scale surrogate or 

foundation models, conceptual architectures for digital twins, 

or advanced transformers, but their application to DOE 

domain areas will require significant adaptation and, in some 

cases, a complete refactoring. Such efforts are under way in 

other countries, notably in China, where industry, academia, 

and government laboratories are inextricably connected. 

China’s “New Generation Artificial Intelligence Development 

Plan” was established in November 2017 and coordinated by 

the Ministry of Science and Technology Error! Reference 

source not found.. As of November 2022, China is the 

world’s largest producer of super-computers, and Chinese 

supercomputers dominate the TOP500 rankings—hosting 

160 systems, nearly twice the number of U.S. systems [1]. 

DOE’s ECP program has kept the U.S. competitive for 

traditional simulation and modeling, but today must be 

augmented to pivot to new AI approaches, without which the 

United States will most certainly decline in national 

competitiveness [2]. China, Japan, and the European Union 

continue to make bold bets on AI, which represents an 

opportunity to erase, if not leapfrog, decades of 

U.S. leadership—largely reliant on the DOE complex. 

15.2 Why Is It Important? 

Here, we walk through the six new and emerging AI 

approaches detailed in Section 01 of this report, noting the 

hardware architecture demands unique to both the approach 

and the DOE target domain areas (Section 02). 

AI and Surrogate Models for Scientific Computing 

(Chapter 01) require rapid inference using large, complex 

models [3] Error! Reference source not found.,[4] that are 

trained on data from instruments and simulations on a 

massive scale. UQ Error! Reference source not found. and 

training robust models bring unique requirements that require 

hardware innovations to support multi-path AI training Error! 

Reference source not found. in which data is labeled with 

probability distributions. and training is conducted across 

multiple discrete samples of the distribution. Large-scale 

training data with uncertainty distributions can be generated 

with microarchitecture advances that are transparent to the 

simulations used to generate them Error! Reference source 

not found.. These active learning workloads will require 

frictionless composition of discrete components of the 

hardware, such as UQ-capable processing elements, neural 

network accelerators, and high-performance memories that 

are shared across these components, driving the need for 

memory-rich, chiplet-based architectures that are 

composable at runtime (Figure 15-1). These advances will 

enable massive scale UQ ensembles to be run in line with 

active learning workflows that train models on the 

distributions generated by these ensembles, ultimately to 

generate AI-based surrogates capable of achieving multiple 

orders of magnitude higher performance than traditional fine-

grained modeling techniques.  

AI Foundation Models for Scientific Knowledge Discovery, 

Integration, and Synthesis (Chapter 02) outlines some of the 

most demanding computational and data requirements in 
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existence. Just a few years ago, the BERT Error! Reference 

source not found. model, a forerunner of modern foundation 

models, was the largest sequence-to-sequence model in 

existence, with 110 million parameters. Google broke the one 

billion mark in 2016.  

 

Figure 15-1. Conceptual view of an architecture optimized for DOE, 
composed of optically interconnected AI accelerators, HPC 
processors, and advanced memory technologies coupled via 
3D organic and silicon integration. 

Trillion-parameter models are now commonplace, and 

models with hundreds of trillion parameters are not unheard 

of Error! Reference source not found.. As the complexity of 

these models and the data on which they operate continue to 

grow, so also does the need for radically new hardware 

architectures that go beyond simply increasing throughput 

and focus on accuracy and latency to meet the needs of 

active learning with timely feedback. Specifically, the 

differentiation between the self-supervised network core and 

the network periphery supporting task adaptation provides a 

unique opportunity for AI hardware architecture co-design. 

Computational systems are complex, multi-layer, engineered 

systems, the complexity of which—illustrated by today’s 

exascale machines--demands new design techniques. AI for 

surrogate or foundation models, applied to challenges such 

as AI for Advanced Property Inference and Inverse Design 

(Chapter 03), requires the ability to operate on massive 

datasets that tie structure/organization to desired properties. 

These data can span simulations, observations, experiments, 

publications, and more. Training for inverse design will 

require exabytes of simulation data coupled with many more 

exabytes of imaging or other experimental data. The data is 

often sparse, presenting unique requirements to efficiently 

manipulate these data structures at a level of performance 

and scalability that is relevant for large inference engines. 

AI-Based Design, Prediction, and Control of Complex 

Engineered Systems (Chapter 04) drives the need for ultra-

fast predictive control, allowing decision making that is 

anticipatory rather than reactive for everything from 

hypersonic vehicles to fusion reactors. Intelligent edge 

devices that can handle the massive data volume and 

velocity will require rethinking how sensors integrate with 

these devices. Real-time inference with quantified 

uncertainties will be required for these high-consequence 

scenarios. This will require such innovations as differentiable 

computing elements that enable global loss-function 

optimization that is orders of magnitude more efficient in 

space and power. Hardened and resilient computing 

architectures that can withstand harsh environments and can 

degrade gracefully over time while continuing to meet 

threshold performance limits are required. Constraints on the 

power envelope and operating environment will necessitate 

deep co-design of these processor-in-sensor devices.  

AI and Robotics for Autonomous Discovery (Chapter 05) 

brings major challenges in pushing high-intensity computing 

capabilities deep into scientific instruments and facilities. The 

compact muon solenoid experiment at the large hadron 

collider, with 1 billion detector channels, will generate a 

petabyte per second of data that must be processed in situ. 

This will necessitate edge computing platforms that are as 

capable as today’s multi-petaflop systems. Perhaps more 

challenging will be the need to run these systems in harsh 

environments (radiation and/or vacuum) and/or remote 

locations with limited communication capacity (e.g., climate or 

ecological observatories). Massive increases in compute 

density within a fixed power budget may necessitate entirely 

new process technologies and major advances in cooling and 

radiation hardening techniques. AI for autonomous discovery 

will require synchronization of DOE computing with data 

resources that span the DOE complex. This organization of 

compute and data resources will drive the co-design of AI 

hardware architectures that facilitate distributed workloads, 

which in turn incorporate modeling/simulation and AI 

training/inference, with data access and control systems at 

the edge. 

AI for Programming and Software Engineering (Chapter 06) 

promises to fundamentally change how we approach 

computational science and engineering. With the potential to 

reduce multi-decade efforts in code development and 

validation to a few short months or even weeks, AI in 

programming and software engineering will allow us to 

answer questions of national importance in a truly agile way. 

The impact of such a capability cannot be overstated: It 

provides a means to gain an understanding of complex 

systems instead of being limited to often superficial levels of 

detail. Accomplishing this will require the ability to routinely 
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train massive neuro-symbolic models that combine 

knowledge of algorithms, methods, programming languages, 

and architectures. These neuro-symbolic models will 

integrate symbolic languages for knowledge representation, 

neural networks for pattern recognition, and probabilistic 

inference to establish causal relationships between 

entities Error! Reference source not found..  

All of this will require several critical AI hardware advances. 

For the neural network component, hardware will need to 

scale to support AI models of up to a quadrillion parameters 

as well as training times in days rather than months—far 

beyond what is feasible today. The ability to dynamically 

control numerical precision, frequency scaling, and total 

dissipated power during training will be the path to achieving 

this goal. Coupling this with symbolic reasoning and 

probabilistic methods will require even more aggressive 

architecture changes Error! Reference source not found.. 

15.3 Why Can’t It Be Realized Now? 

Today’s AI hardware technologies—built from commodity 

materials and components, albeit assembled and operated 

through co-designed architecture efforts—are simply 

incapable of scaling to the level of throughput required for our 

most pressing challenges, particularly in foundation models, 

surrogates, complex systems, software development, and 

engineering. Each of these areas requires a function step 

change in the nation’s ability to train on massive datasets and 

parameter spaces that dwarf what is possible in even one-off 

“hero calculations” today. Analysis of the requirements in 

each of these areas indicates a need for at least three orders 

of magnitude improvement in efficiency over the next 15 

years. This is driven by the need to support routine training of 

brain-scale neuro-symbolic models with an agility and 

responsiveness 100 times more than the current state-of-the-

art while achieving a 20-times improvement in energy 

efficiency. Currently, the largest model requires 

approximately 175 to 540 billion parameters to describe its 

state space and took the equivalent of half of the combined 

computing resources of the top ten supercomputers in the 

world for over a month.  

Future systems must be capable of routinely training models 

with over a quadrillion parameters. Incrementally training 

models this large in real time will require hardware with 

adaptive resilience, differentiable resources, lattice-structures 

of memory and computation, and dynamic precision. 

Adaptive resilience will enable architects to place resiliency 

on control paths while relaxing it on data paths where there is 

more error tolerance (due to the inherent error of the 

underlying data). Dynamic precision will enable massive 

improvements in efficiency while improving model 

robustness. Differentiable hardware resources will enable 

global optimization among compute elements in loss function 

 
3 HBM = high-bandwidth memory. 

minimization, further improving performance and the ability to 

backtrack when errors are encountered that would otherwise 

result in ad hoc “solutions” to convergence that are currently 

based on trial and error rather than causal analysis. Lattice 

structures will enable major gains in efficiency and the ability 

to drive massive hybrid parallelism (model and data) that are 

out of reach on today’s systems. These technology advances 

coupled with deep co-design are the path to meeting our 

grand challenges. 

New hardware architectures will also be required to address 

daunting challenges in computing at the edge. This is 

particularly true for complex systems and autonomous 

discovery, where hyper-local decision making is often 

needed. Harsh and inaccessible environments will prevent 

the routine use of a remote HPC environment for active 

learning, inference, and control, necessitating a level of AI 

computational density that far outstrips what is available 

today. These requirements will drive further advances in 

critical dimension shrink, integration, and novel architectures 

to achieve power/performance requirements while improving 

the latency of response by several orders of magnitude. 

These architectures will need to be engineered for graceful 

degradation over time with predictable reliability and 

performance. In essence, we will need to achieve a “resilient 

petaflop and petabyte at the edge” over the next 15 years. 

Such a capabilities would catalyze an entirely new ecosystem 

of technologies to support the diversity of workloads from the 

largest scale HPC environments to embedded computing at 

the far edge. 

15.4 Why Is It Reasonable to Start 
Now? 

The ECP Error! Reference source not found.[6] has driven 

major technological advances in HPC and AI to meet the 

scientific and national security goals of the project. The 

Frontier supercomputer achieved the first sustained exaflop 

of double-precision floating point performance in the world. 

Beyond the remarkable power efficiency of this system for 

this level of performance, Frontier has delivered new 

networking, storage, and packaging technologies that will 

provide the foundation for an entire ecosystem of 

supercomputing technologies moving forward. The El Capitan 

supercomputer is driving major advances in processor 

manufacturing; the MI300A accelerated processing unit 

(APU) is “a 3D chiplet design with AMD CDNA3 GPUs, Zen 4 

CPUs, cache memory and HBM3 chiplets” Error! Reference 

source not found.. The Aurora system is driving advances in 

3D packaging (Foveros) and chiplet interconnects (EMIB). 

These processor and packaging advances have 

revolutionized how computing technologies are designed and 

built and will enable major breakthroughs in systems moving 

forward.  
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While major advances have clearly been achieved, some 

compromises had to be made along the way. The first 

generation of exascale systems are highly optimized for 

dense and uniform computations, which are important—but 

insufficient to meet our future goals. Advances in the ability to 

handle sparsity due to an explosion of parameter space 

and highly divergent workloads that will be needed in 

neuro-symbolic AI will require new hardware technologies, 

some of which are beginning to emerge in prototype form.  

Moore’s law (technology shrink) has slowed significantly over 

the past two decades, and Dennard scaling (frequency 

increases) has halted entirely. This has driven scientists and 

engineers to tackle the continued demand for performance 

improvements in other innovative ways, such as 3D chip 

stacking and interconnecting of multiple chiplets. Wafer-scale 

manufacturing of tightly interconnected processing and 

memory fabrics is another approach that is being actively 

explored.  

We expect these trends of tight integration of heterogeneous 

chiplets to continue and hybrid approaches to emerge. 

Advances in silicon photonics coupled with advanced 

packaging technology will result in highly connected discrete 

multi-package modules, each of which will be capable of 

many petaflops of performance and orders of magnitude 

higher memory bandwidth than today’s most capable 

computing systems. This massive increase in connectivity 

between computing technologies will enable the first truly 

reconfigurable systems, in which complex workflows with 

divergent computing and data requirements will adapt the 

hardware on demand to their requirements. The implications 

of this change are profound, enabling supercomputers to be 

designed with a variety of processing and memory 

technologies that are individually optimized for particular 

components of a workflow but can then be assembled and 

operate in unison as if they were a single piece of silicon. 

Other innovations, such as cryogenic complementary metal 

oxide semiconductor (CMOS) design, which cools the entire 

system to around 77 K, present a tremendous power-saving 

potential for centralized computing facilities. Joint 

optimization of device and design will further enable total 

power savings of more than 30%, including the cooling power 

for the complete system Error! Reference source not 

found.. 

Concurrent with these technological advances, there has 

been a tectonic shift in the economics of hardware design 

and manufacturing [19]Error! Reference source not found.. 

In the past, technologies providers and foundries were 

vertically integrated organizations. This is no longer the case. 

Technology providers are now separate from foundries, either 

in completely different companies or in different business 

units. Fabrication through these foundries is now much more 

accessible, particularly at larger process nodes, which has 

enabled an explosion of technology vendors pursuing highly 

optimized, near-specialized accelerators for extremely 

specific workloads. The availability of licensable and open 

intellectual property (IP) (ARM and RISC-V) is further 

lowering the barrier of entry for hardware designers. Custom 

processing technologies no longer cost $400 million for each 

design and tape-out cycle; customization can be done for as 

cheaply as a few million dollars today. As a result, over the 

past decade, we have witnessed over 140 fabless 

(i.e., without foundries) design companies emerge to take 

advantage of the confluence of changing economics in 

hardware design and the need for customized technologies to 

meet our grand challenges. These technologies include 

coarse-grained reconfigurable architectures, spatial 

streaming dataflow architectures, machine learning (ML) 

inference engines, ML training accelerators, graph analysis 

accelerators, processors in memory, and programmable 

network and storage devices. This diversity of computing 

technologies is currently the most likely path toward 

achieving the 2,000-times improvement in end-to-end 

efficiencies needed to meet our requirements. 

While encouraging, many of these technologies remain quite 

immature and the marketplace is highly fractured. 

Architecture research, design, and fabrication still has a 

significant lead time, necessitating early engagement with 

commercial vendors, including not only system integrators, 

but also technology component vendors of processors, 

accelerators, memory storage systems, etc. The fledging 

marketplace also requires the timely development of 

standards for interoperability. DOE’s involvement can ensure 

the neutrality and openness of the marketplace. The CHIPS 

and Science Act of 2022 will provide significant resources 

and support public–private partnerships to drive such 

interoperability standards Error! Reference source not 

found.. 

Deep co-design Error! Reference source not found. is 

needed to ensure that the most pressing science, energy, 

and security challenges are addressed by these component 

technologies. Technology maturation of these co-designed 

technologies will require enduring partnerships with scientists 

and engineers at the national laboratories. To meet our grand 

challenges, no single component technology is sufficient, 

necessitating a level of technology integration at a massive 

scale that no single organization can achieve. Similarly, the 

massive diversity of technologies, a veritable Cambrian 

explosion, will require deployments of multiple systems 

across major computing facilities within the DOE, where each 

system will focus on a set of technologies aligned with a 

broad, but potentially not exhaustive, set of grand challenge 

workloads. 

The timeframe to achieve ECP advances and to transition 

from development to operation has been on the order of 7–

10 years. The reinvention of DOE’s modeling and simulation 

through adoption and development of AI approaches and the 

design and construction of the necessary AI system 

architectures will be a similarly long pipeline. With the ECP 
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transitioning from development to operation, any delay risks 

stalling this pipeline. 

15.5 What Is Needed to Start Now? 

This project is a unique opportunity for DOE to lead the 

nation in developing new AI-aware hardware that addresses 

DOE and national missions. The time is ripe for deep 

engagement on component technologies (e.g., processors, 

memory, accelerators, network, storage) as the 

aforementioned market forces accelerate. Beginning 

immediately, DOE must invest in the following: 

 Deep co-design activities that span fundamental 

technology design, from materials and processor 

architecture to algorithms and applications. While drawing 

upon prior experience in co-design before and throughout 

the ECP, this co-design process must encompass a much 

broader set of technologies and recognize our ability to 

shape technologies, up to and including the fundamental 

microarchitecture. 

 Investment in fast-forward/path-forward activities driven by 

the national laboratories, which will require an ability to 

reason about and shape technologies, algorithms, and 

applications at a very deep level while preserving a high 

degree of productivity and agility. 

Longer term, a roadmap for the developments in this area 

includes the following: 

 AI driven hardware design and optimization to achieve 

2,000-times improvement in efficiency (20-times power 

reduction and 100-times performance improvement).  

 Exploration and evaluation of new edge device systems 

integrating edge-AI, sensing, and workflows for critical 

DOE mission environments, including experimental 

instruments/facilities and autonomy in complex systems, 

such as laboratories or vehicles. 

 Tool building to enable computational scientists, applied 

mathematicians, computer scientists, and computer 

engineers to productively reason about and shape 

applications, algorithms, and architectures. 

 Interdisciplinary centers that couple fast-forward/path 

forward-like activities with subject matter experts and 

advanced tools for application-, algorithm-, and 

architecture-based co-design. 
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SECTION 04: INFRASTRUCTURE AND WORKFORCE 
REQUIREMENTS 

 

Advancing and leveraging new AI capabilities, translating decades of investment and 

advancement of DOE’s world-leadership in modeling, simulation, and infrastructure into 

world-leadership in AI-empowered science, energy, and security systems will require the 

DOE workforce, scale of operation, computational and data resources, and 

instrumentation to be similarly transformed to meet the challenges and achieve the vision 

captured in this report. We survey each of these areas in this section, noting the current 

state, the grand challenges, and the path forward to meeting those challenges. 
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Chapter 17: SCALE 

Chapter 18: COMPUTATIONAL RESOURCES 

Chapter 19: DATA INFRASTRUCTURE 
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16. WORKFORCE AND ETHICS 

Progress in artificial intelligence (AI) for U.S. Department of 

Energy (DOE) mission science requires a growth in the 

workforce across the DOE, especially when considering what 

is needed with respect to the advanced research directions. 

Moreover, it is essential for DOE to lead in critical areas of 

ethics and safety, for instance developing and embracing 

principles such as accountability, which relates to AI 

researchers having a clear understanding of the liability 

involved with application of AI and potential unintended 

consequences. Concurrently, the impact of AI on workforce is 

multi-dimensional challenge. In this chapter we discuss the 

need for DOE workforce development as well as the 

importance of ethical considerations related to the use of AI.  

16.1 Current State 

Nationally, the demand for AI researchers and practitioners 

has grown rapidly. Achieving transformational artificial 

intelligence (AI) for U.S. Department of Energy (DOE) 

mission science requires not only robust AI methods but 

integration of AI research with advanced computational skills 

and methods in concert with domain-specific knowledge. As 

DOE expands its AI workforce, it is also essential to 

emphasize broadening participation among groups 

underrepresented in STEM fields and within DOE labs. In 

addition, DOE must stimulate and accelerate the 

development of AI expertise and experience within the 

existing DOE workforce through collaborations, training, and 

career development. 

DOE has a data-rich environment often including major 

instruments. It possesses mature state-of-the-art 

computational models with access to the world’s most 

advanced computers. Moreover, its existing scientific 

workforce is highly interdisciplinary and collaborative. These 

assets offer an attractive learning environment for new and 

existing staff to explore transformative AI for a range of DOE 

missions. 

The DOE has a long and productive history of partnering with 

other agencies, universities, and industry to advance the 

nation’s innovation leadership and stimulate technological 

breakthroughs. From fundamental to applied research, the 

DOE ecosystem offers a ripe environment for maturing the 

full complement of AI-related skills in individuals, teams, and 

institutions. These skills include but are not limited to 

computer and computational science, information science, 

statistical sciences and uncertainty quantification, applied 

mathematics, and theory of complex systems. 

It is also important that the DOE workforce reflect U.S. 

demographics. When considering underrepresented 

communities in science, technology, engineering, and 

medicine (STEM, i.e., women, African American/Black, 

Hispanic/Latino, American Indian/Alaskan Native), the current 

DOE technical research staff consists of 20% female and 

13% ethnic minoritized communities (African American/Black, 

Hispanic/Latino, American Indian/Alaskan Native) [1]. In 

contrast, the 2021 U.S. demographics indicate 32.2% ethnic 

minoritized communities and 51% female [2]. To provide the 

transformative science needed to ensure America’s security 

and prosperity, it is critical to have a highly skilled DOE 

workforce that fully utilizes all the talent available in America. 

Targeted alliances such as the Stewardship Science 

Academic Alliances (SSAA) Program, NNSA’s Predictive 

Academic Alliance Program (PSAAP), Minority Serving 

Institution Partnership Program (MSIPP), and others will 

ensure that new opportunities to develop AI skills necessary 

to participate in DOE AI research and development is 

available to students. 

Concurrently, the research, development, and application of 

new AI capabilities—including the adaptation of industry 

results where possible—requires new skills and experience 

that are in high demand not only within DOE but in industry. 

This competition for talent suggests that DOE must examine 

new models for collaboration with industry. 

In addition to addressing the skills competition with industry, 

this report lays out several areas where AI models will 

perform some tasks that currently require “humans-in-the-

loop,” whether in operating laboratory instruments, or in data 

management and curation, or even in software development. 

Such automation can have the effect of increasing the time 

for scientists to focus on creative and innovative tasks to 

advance the science resulting from the elimination of 

mundane tasks. Further, the job areas automated with, or 

assisted by, AI models are likely to have the greatest effect 

on entry-level jobs in the tech workforce, which require the 

least amount of experience or subject matter expertise. 

Consequently, DOE’s workforce training efforts must 

accommodate this shift, including skills related to using new 

AI tools and frameworks, by developing new strategies for 

early-career staff, including engineers and scientists. The 

DOE will also need to work closely with partnering 

universities through their academic alliance programs (such 

as the Stewardship Science Academic Alliances (SSAA) 

Program, NNSA’s Predictive Academic Alliance Program 

(PSAAP), Minority Serving Institution Partnership Program 

(MSIPP), etc.) to ensure that new hires have the AI skills 

necessary to perform these jobs. 

With respect to the ethics of AI, the White House (Office of 

Science and Technology Policy) has released the “Blueprint 

for an AI Bill of Rights: Making Automated Systems Work for 
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the American People.” [15] as a starting point. However, with 

the release of large language models in the late 2022 and 

early 2023, it is clear that more work is needed. Here, the 

series of AI@DOE Roundtables held in late 2021 and early 

2022 provide valuable guidance.  

16.2 Grand Challenges 

16.2.1 GROW AND FOSTER AI AT A DOE 

WORKFORCE THAT REFLECTS THE U.S. 

DEMOGRAPHICS 

To achieve the AI that will foster transformative scientific 

breakthroughs for DOE science, energy, and security, it is 

critical to have the diversity of thought that comes from fully 

engaging a broad cross-section of the scientific workforce. 

For some communities, achieving representation that 

matches the U.S. demographics requires increases in 

unprecedented multiples of their current representations, that 

is, changes on a scale that could accurately be described as 

a grand challenge.  

Ample evidence suggests that the benefits from a diverse 

workforce are broad and significant. A more diverse 

workforce does scientific research differently and does both 

different and more innovative scientific research. 

 Doing science differently: Just as a black cosmologist 

who is also a jazz musician develops physics theories 

inspired by a black music tradition [3], a more diverse 

workforce can bring a diversity of approaches to using AI to 

accelerate advances in DOE science, energy, and security. 

 

 Doing different science: Just as a black research 

software engineer who has confronted stigma in other 

arenas might feel emboldened to embrace a widely 

stigmatized programming language [4], a more diverse 

workforce might be inspired to explore the benefits of novel 

language choices in DOE AI programming environments. 

 Inspiring innovation: The application of machine learning 

to text analysis of the publications of a near-complete 

population of 1.2 million U.S. doctoral degree recipients 

between 1977 and 2015 demonstrated that the 

underrepresented groups that diversify organizations 

produce higher rates of scientific novelty [5]. Paradoxically, 

the same study showed that scientific researchers from 

underrepresented communities had less successful 

careers due to such factors as their work being taken up 

less by others. 

 Rethinking “entry level” skills: The use of AI models for 

many rudimentary tasks will also change the nature of 

training and learning opportunities for early career 

individuals, both by introducing new workflows and tools 

and by raising the bar with respect to minimum job skills 

required and the content and extent of resources that will 

be required for effective training and onboarding. 

16.2.2 DEMOCRATIZING AI FOR DOE SCIENCE 

Developing a workforce ready to advance AI for the DOE 

mission requires broadly exposing and engaging both the 

existing computational and disciplinary workforce to AI as and 

future generations of the DOE workforce. This will entail 

democratization to consider the full educational ecosystem—

K-12, two-year institutions, higher education, graduate 

programs, and alternative paths (e.g., code camps and other 

mechanisms for retraining). The DOE complex comprises 17 

national laboratories, all of which have developed resources 

for the various components of the educational ecosystem [6]. 

To provide the training needed for AI for DOE mission areas, 

it is important that the associated research be made available 

in appropriate ways for the different levels of the educational 

ecosystem, with special attention given to significantly 

engaging students from underrepresented communities and 

the shifting of entry-level skills toward more advanced AI, 

science, and engineering requirements. 

At the same time, the competition for talent in science, 

technology, and mathematics will only increase and DOE 

must increasingly focus on attracting and retaining early 

career individuals, particularly in AI, computer and 

computational sciences, and mathematics. 

16.2.3 ETHICS OF AI SYSTEMS AND 

APPLICATIONS 

The DOE AI Roundtable events in late 2021 and early 2022 

included ethics discussions throughout many breakout 

sessions. These discussions identified the need for an 

PROJECT SPOTLIGHT 

Project Name: Sustainable Research Pathways (SRP) 

PI: Mary Ann Leung  

Organizations Involved: Sustainable Horizons Institute 

Goal: Connect scientists at eight DOE labs with faculty 

and students from underrepresented groups at 

community colleges, four-year colleges, and doctoral 

degree-granting research institutions. 

Significant Accomplishment: Since its 2015 inception 

at Lawrence Berkeley National Laboratory through its 

current eight-lab operation, SRP has fostered hundreds 

of new research collaborations between national lab 

scientists and faculty and students at a variety of 

institutions, including Historically Black Colleges and 

Universities (HBCUs) and Hispanic-Serving Institutions 

(HSIs). 

In the News: HPCWire Workforce Diversity and Inclusion 

Award 2021, available at: https://www.hpcwire.com/off-

the-wire/hpcwire-reveals-winners-of-the-2021-readers-

and-editors-choice-awards-during-sc21/, accessed 

December 5, 2022. 

https://www.hpcwire.com/off-the-wire/hpcwire-reveals-winners-of-the-2021-readers-and-editors-choice-awards-during-sc21/
https://www.hpcwire.com/off-the-wire/hpcwire-reveals-winners-of-the-2021-readers-and-editors-choice-awards-during-sc21/
https://www.hpcwire.com/off-the-wire/hpcwire-reveals-winners-of-the-2021-readers-and-editors-choice-awards-during-sc21/
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advisory framework within DOE to “help guide and address AI 

R&D ethical questions, advise on concerns, and maintain 

awareness of social and technological challenges” [16]. The 

concerns arising from widespread adoption of large language 

model-based applications (e.g., OpenAI ChatGPT, Google 

Bard, Microsoft Bing) in early 2023 underscores and indeed 

increases the urgency of this recommendation. The need for 

developing effective ethics and safety guidelines and guard-

rails underscores the urgency of advancing fundamental 

research understanding complex AI systems—as discussed 

in Chapter 12: Mathematics and Foundations and throughout 

Section 03 of this report. 

16.3 Path Forward 

16.3.1 DIVERSE LAB WORKFORCE FOR AI AT 

DOE: NEAR TERM 

Success will require normalizing inclusion so that 

underrepresented communities become an integral part of 

the scientific enterprise from the initial spark of an idea to that 

heady moment when an experiment actually works. To 

address and retain a scientific workforce that is 

representative of the U.S. demographics, it is important to 

address issues related to recruiting (i.e., expanding the 

networks and partnerships leveraged to seek candidates), the 

hiring decision process (i.e., are inclusive factors considered 

in hiring decisions), and the need for an inclusive 

environment where all voices are valued and considered with 

respect to promotion and advancement. 

To address the recruiting issue, we need to bridge the gap 

between multiple sectors, bringing researchers into close 

collaboration across institutional, geographic, and cultural 

divides. We need to expand the professional networks of AI 

at DOE researchers by supporting collaborations across 

institutions in ways that differ from long-established patterns 

[7–11]. It is important to establish long-term connections with 

minority-serving institutions, workforce development 

organizations such as the Graduate Degrees for Minorities in 

Engineering and Science (GEM) consortium [9] and 

Sustainable Horizons Institute [12], which organizes the 

Sustainable Research Pathways (SRP) program (see 

Figure 16-1), and as well as to have visibility at diversity 

conferences. The existing DOE diversity programs, such as 

Minority Serving Institutions Internship Program (MSIIP) and 

Minority Serving Institution Partnership Program (MSIPP), 

need to be strengthened and grown to promote hiring of 

diverse candidates. The individual national laboratories can 

leverage each other’s work by approaching events or 

partnerships with the aim of representing not only the lab 

itself but also the DOE complex. In this way, we significantly 

increase impact through a collaborative approach. 

 

Figure 16-1. Sustainable Horizons Institute landing page (sample). 

Further, it is important to continuously identify and diagnose 

bias in hiring and promotion practices and outcomes. A 

common activity is to provide bias training for staff. It is 

recognized, however, that one-time training does not result in 

cultural change. It is important to apply bias diagnosis in 

ways that affect hiring and promotions, for example, by 

analyzing the language used in job descriptions and revising 

as necessary to be more inclusive. Similarly, organization-

wide (and laboratory-wide) climate surveys can be used to 

identify issues about the culture and practices of the 

organization. Disaggregated promotion and retention data 

can be analyzed to further identify issues in these areas. 

It is recognized that affinity groups are important to creating 

inclusive environments, as such groups often provide a sense 

of belonging, informal mentoring, and a sharing of narratives. 

It is important to leverage affinity groups at all scales: within 

individual labs (e.g., employee resource groups), across labs 

(e.g., national laboratory women of color community forum), 

and via professional societies and organizations 

(e.g., National Society of Black Engineers and Advancing 

Chicanos/Hispanics & Native Americans in Science).  

To gauge impact, such efforts must include assessments that 

measure outcomes—as distinct from more common 

measures such as regarding participation in activities. For 

inclusion to be normalized and for any new partnerships to be 

sustainable, such partnerships must ultimately be productive. 

To have sustained and transformative impact, there must be 

concrete evidence that diversifying the workforce involved in 

AI for DOE advances the cause of science. Researchers 

must see objective evidence that the partnerships and 

inclusive programs lead to breakthrough science. This 

ultimately suggests that the investment in this grand 

challenge must reflect expectations of transformative impact. 
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16.3.2 DIVERSE LAB WORKFORCE FOR AI AT 

DOE: LONG TERM 

The next decade will witness a democratization of AI such 

that the high school students of tomorrow will conduct studies 

that today require the training and resources of Ph.D. 

students. It is important to consider the full educational 

ecosystem with respect to developing the needed workforce 

for AI for DOE science, energy, and security in the long term. 

Achieving this goal will mean partnering with organizations 

such as Level Playing Field Institute, which organizes the 

Summer Math and Science Honors (SMASH) program [13], 

and CSforAll, which is a national consortium working with 

state and city educational systems to provide resources to 

improve the quality of computer science education to all 

children [14]. Partnerships with such organizations can 

involve providing grade-appropriate materials relevant to AI 

for DOE science, energy, and security to excite students 

about STEM disciplines. Such investments today will have a 

long-term impact. 

With respect to two-year institutions, higher education, 

graduate education, and alternative pathways, the labs offer 

internships and visiting faculty positions to help students and 

faculty, especially from underrepresented communities, 

engage in the research to advance AI at DOE. 

16.3.3 ACCELERATING DEVELOPMENT 

Accelerating the path to an AI for DOE workforce that reflects 

the U.S. demographics requires intentionality, which implies 

that it is a top priority for everyone and is woven into the way 

we conduct the science. Much as a fully connected neural 

network can encode rich information about complex inputs 

that escape the grasp of a single-layer perceptron, a research 

community in which ideas flow freely among diverse 

researchers enables the otherwise daunting challenges of 

leveraging AI for the most pressing problems in DOE mission 

science.  

16.3.4 DEVELOPING EFFECTIVE AI ETHICS 

GUIDELINES FOR DOE 

DOE’s wide-ranging mission space creates a breadth and 

depth of scientific and technological innovation that has 

applications in scientific discovery, energy research and 

production, nuclear security, and environmental 

management. The AI ethical principles established for DOE 

will need to provide a framework for balancing scientific 

discovery against societal impact, while not compromising 

national security. It is important for DOE to be strategic in its 

AI investments, while determining policies to ensure the safe 

development and ethical application of AI technologies 

consistent with our Nation’s values, policies, and priorities. 

There has been considerable discussion around AI related 

ethics in both government and industry. Public statements on 

AI tend to address broad principles, but often neglect to 

discuss tools for implementation. Recurring themes include 

the need for principles that are specific to the organization, 

that principles should be implementable through actionable 

practices and procedures, and the importance of 

acknowledging that considerable scientific advances are 

necessary to fully enable ethical pursuit of AI. A future 

framework for ethical AI development and use at DOE should 

not only specify a set of principles to guide research and 

development of AI, but must also deliver guidance for 

implementing these principles.  
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17. SCALE 

17.1 Current State 

Between 2022 and 2024, the U.S. Department of Energy 

(DOE) will successfully launch its first exascale computing 

machines. In 2022, it launched Frontier at Oak Ridge 

Leadership Computing Facility (OLCF, Figure 17-1). In 2023, 

it will add Aurora at Argonne’s Advanced Leadership 

Computing Facility (ALCF) and then El Capitan at Lawrence 

Livermore National Laboratory (LLNL). DOE has also 

deployed the sixth generation of the Energy Sciences 

Network (ESnet6) and the National Energy Research 

Scientific Computing Center Supercomputer (NERSC-9, or 

Perlmutter). These new facilities will support commonly used 

AI/ML environments, and DOE will invest in development of 

additional AI-focused supercomputing capabilities in the next 

decade, along with environments facilitating development of 

large-scale AI models, (e.g., the foundation models), and 

real-time federated learning across multiple experimental 

facilities. 

Recent advances in AI have emerged from the ability to use 

large high-performance computing (HPC) facilities to collect, 

store, and process large, labeled datasets. The DOE’s HPC 

facilities represent some of the world’s largest computational 

and data ecosystems to generate, move, and analyze 

experimental and simulation data. These facilities are 

uniquely positioned to be centers for advances in AI research 

and applications and must therefore prepare to fully support 

these capabilities in the next decade [1]. Improving 

integration among DOE experimental user facilities will 

ensure domain scientists have the resources to apply AI 

methods in their research. 

 

Figure 17-1. Frontier Supercomputer, DOE Exascale Computing Project. 

The unique position of DOE’s HPC facilities to support the 

advances in AI discussed throughout this report stem partly 

from the scale at which DOE’s Exascale Computing Project 

(ECP) deployed data and computing resources in 2022 [2]. In 

this regard, traditional rankings such as the Top500 list do not 

fully capture scale [3]. For example, the performance of the 

first ECP machine, Frontier, at DOE-OLCF is nearly as 

powerful as the sum of the rest of the machines in the list’s 

top 10 in June 2022. At 1.102 exaflops, Frontier is 2.5x more 

powerful than Fugaku, ranked second at 0.442 exaflops. The 

sum of the remaining eight top 10 systems is 0.724 exaflop 

[3]. Nevertheless, a system at this scale is designed to 

support a relatively small number of the largest projects, and 

the integration of AI methods and approaches brings different 

types of scale challenges to HPC centers. The computational 

requirements for training large-scale models, whether 

surrogates, foundation models, or others, will increase the 

scale of a number of projects demanding HPC resources. 

The workforce requirements, particularly with foundation 

models, will increase the scale of teams from dozens to 

hundreds of scientists, each with unique training and 

execution workflows. We discuss these and other scaling 

challenges below. Simply put, the reinvention of DOE’s 

modeling and simulation approaches—required to achieve 

the promise of new AI approaches outlined in Section 01 of 

this report—has the potential to overwhelm DOE’s 

computational resources. For example, generating the 

training to create a surrogate model for an ECP application 

will in itself require ensembles of tens to hundreds of 

PROJECT SPOTLIGHT 

Project Name: CANDLE (CANcer Distributed Learning 

Environment) 

PI: Rick Stevens, Georgia Tourassi, Fred Streitz, Tanmoy 

Bhattacharya, and Eric Stahlberg 

Organizations Involved: Argonne National Laboratory, 

Oak Ridge National Laboratory, Lawrence Livermore 

National Laboratory, Los Alamos National Laboratory, 

Brookhaven National Laboratory, and Fredric National 

Laboratory for Cancer Research 

Goal: Use deep learning at scale on DOE leadership 

computing resources to address molecular, cellular, and 

population-level problems in cancer research and beyond. 

Significant Accomplishment: Members of the CANDLE 

team contributed to three Gordon Bell COVID-19 Special 

Prize Finalists during a pivot in 2021 from cancer to 

COVID-19 in response to a request by the Secretary of 

Energy. 

In the News: CANDLE team members and others 

presented significant results on COVID-19 in the Gordon 

Bell COVID-19 special track, including: (1) Language 

Models for the Prediction of SARS-CoV-2 Inhibitors; 

(2) Intelligent Resolution: Integrating Cryo-EM with AI-

Driven Multi-Resolution Simulations to Observe the SARS-

CoV-2 Replication-Transcription Machinery in Action; and 

(3) #COVIDisAirborne: AI-Enabled Multiscale 

Computational Microscopy of Delta SARS-CoV-2 in a 

Respiratory Aerosol. 

https://sc21.supercomputing.org/?post_type=page&p=3479&id=gbv104&sess=sess249
https://sc21.supercomputing.org/?post_type=page&p=3479&id=gbv104&sess=sess249
https://sc21.supercomputing.org/?post_type=page&p=3479&id=gbv104&sess=sess249
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instances—an illustration of the maxim, “things will get worse 

before they get better.” 

17.2 Grand Challenges 

The uniqueness of DOE’s missions on science, energy, and 

security requires not only supercomputing capabilities, but 

also scalable evaluation and benchmarking suites for 

assessing trustworthiness of AI models, integration of AI into 

experimental facilities for cross-lab AI-guided federated 

scientific experiments, and large-scale interdisciplinary AI 

teams to achieve the AI research objectives discussed in the 

previous chapters. The expected outcome will be a DOE-

level scalable AI environment that provides the resources and 

environment that support the advances detailed throughout 

this report. The user community will range from scientists 

solving scientific problems to operational engineers 

controlling the power grid to National Nuclear Security 

Administration (NNSA) weapon development and 

maintenance. 

17.2.1 IMPROVE PREDICTIVE CAPABILITIES OF 

HPC-BASED MODELING AND SIMULATION BY 

INTEGRATING LARGE-SCALE SCIENTIFIC DATA 

DOE’s ECP has invested to leverage AI and scientific data to 

improve the accuracy and efficiency of scientific prediction on 

modern HPC [2]. A common routine for AI-based data model 

integration initially uses a scalable simulator to generate 

many training samples that complement the missing 

information in experimental data; then uses the combined 

training set to build a surrogate model (e.g., deep neural 

networks); and finally uses the trained surrogate to reduce 

time-to-solution in computationally expensive tasks, such as 

solving inverse problems. For example, the Cancer 

Distributed Learning Environment (CANDLE) project built a 

scalable, deep neural network code to solve large-scale 

machine learning problems for cancer-related pilot 

applications, such as the drug response problem and the 

treatment strategy problem. DOE’s ECP project, ExaLearn, 

has demonstrated initial applications of fast neural network 

emulators to computational cosmology, as well as AI-based 

inverse solvers to back out complex materials structure from 

neutron scattering data. However, even with the success of 

those pioneering efforts, a wide gap still exists between the 

current and the ideal situation. Large-scale scientific datasets 

are usually heterogenous and multimodal, and exascale 

computational models often consist of modules that simulate 

multi-scale, multiphysics processes. These differences 

present a major challenge in data-model integration. Blindly 

integrating data of an incorrect type into an exascale model 

may deteriorate the performance or undermine the accuracy 

of the original model. Moreover, unlike the reduced-precision 

HPC systems used in the industry, DOE’s AI mission requires 

a completely new co-design of HPC and AI systems that 

support mixed precisions with a significant portion of double 

precision machines, to support the accurate AI-based 

inference and prediction for high-risk scientific applications.  

Thus, domain scientists need an AI-based, goal-oriented, 

data-model integrating system to help find the best model 

and the best data for their problems. This AI system can 

initially be trained by prior knowledge and then be actively 

updated by users’ experiences. The constant AI system 

update requires massive computing resources to 

automatically select informative data (e.g., data that are new 

to the AI model) and pre-processing data, update AI model 

parameters, and re-validate AI model predictions. 

Furthermore, each DOE supercomputer will support many of 

these AI systems for different scientific domains and user 

facilities. Building an effective hardware and software 

workflow infrastructure presents another challenge to fulfill 

this objective (Chapter 13). 

17.2.2 EVALUATION AND TRUSTWORTHINESS 

OF AI-BASED DECISION-MAKING AT SCALE 

DOE has a broad range of responsibilities, including 

managing and overseeing the U.S. energy sector (e.g., power 

grids and oil reserves) and nuclear arsenal. DOE often must 

make urgent decisions but may lack sufficient related data 

and appropriate models (or knowledge of the data and model 

on which to rely) to inform reliable decisions with high 

consequences. AI technologies have potential to play an 

important role in providing suggestions in this urgent 

decision-making process. However, such decisions rely on 

trust in the AI-assisted predictions. This means that every 

step to establish, select data, train, and evaluate AI models 

should integrate assessments of trustworthiness instead of 

adding such assessments as an afterthought. 

Despite considerable industry advancement of AI models, the 

resulting methods to assess trustworthiness do not 

necessarily accommodate exascale simulation and large-

scale scientific data. Risk and reliability of AI-assisted 

predictions are often measured using uncertainty 

quantification (UQ) or probabilistic training [4]. The calculation 

of a risk or reliability metric usually requires training and/or 

evaluating a large ensemble of AI models, therefore the 

computational resources required to assess trustworthiness 

of AI models may be dominant in future AI modeling, 

especially in making high-consequence decisions. For 

example, the electricity grid has more uncertainties when 

distributed generation, storage, and dynamics of use 

(e.g., private solar panels, whole-home batteries, and electric 

vehicles) are added [5]. An AI-based grid controller must 

consider the large-scale uncertainties in making operational 

decisions, but non-scalable UQ and trustworthiness methods 

may not provide a reliable solution in time. Therefore, building 

a large-scale evaluation suite to benchmark DOE’s AI models 

will require a major crosscutting effort across scientific 

domains, workflows, software, and hardware. 
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To address this challenge, DOE HPC systems will play a 

critical role in assessing AI-based predictions for timely 

decisions in urgent situations. In addition to the surge in 

computational resource requirements associated with AI 

model training, this urgency represents a significant 

departure from the traditional operational model for HPC 

systems, where no time-critical integration with experimental 

or operational instruments or facilities exists. We discuss this 

challenge next. 

17.2.3 INTEGRATION OF AI INTO LARGE-SCALE 

EXPERIMENTAL USER FACILITIES 

The concept of AI-enabled smart laboratories and facilities 

(Chapters 04 and 05) has attracted much attention in the 

scientific community, and small-scale, self-driving 

laboratories, from autonomous chemical synthesis to 

materials discovery, have been successfully demonstrated. 

However, integrating AI into the operation of DOE’s large-

scale experimental user facilities is much more challenging. 

To close the loop between experiments and AI modeling, we 

need to integrate many independent components into a 

single integrated platform. Most DOE user facilities were 

established many years before the recent AI advances, so 

experimental instruments were not designed to accommodate 

AI technologies, and do not have sufficient sensors to collect 

operational data for an AI agent to steer experiments. It may 

be feasible to upgrade a small-scale research laboratory to 

an AI-assisted autonomous laboratory by adding sensors 

and/or controllers to instruments and connecting them to a 

small computing cluster. However, it is orders of magnitude 

harder to upgrade a large-scale DOE scientific user facility to 

accommodate AI techniques.  

For example, the DOE’s entire Spallation Neutron Source 

(SNS) facility is an integrated system with a mercury target 

station, a neutron beam accelerator, and twenty different 

instruments. Integrating AI into SNS will require a systematic 

upgrade to all the components of the facility, including adding 

sensors to the target station to predict the mercury target’s 

lifetime and adding controllers to the accelerator to 

automatically detect and maintain the neutron beam’s 

stability. These upgrades require intrusive modification of the 

core hardware of the facility, which may be impractical due to 

potential safety issues.  

This HPC integration is essential, however, as small-scale 

clusters cannot fulfill the computing and networking resources 

needed to enable AI at these large-scale DOE facilities. 

Leveraging DOE’s HPC resources will be essential to 

providing sufficient computing power for autonomous 

experimental facilities. Because the HPC and experimental 

facilities are at different geographical locations (many across 

the country), making seamless connections between them 

presents another significant challenge. Experimental facilities 

typically generate a large amount of data for each 

experiment, and the current paradigm of sending all the data 

to HPC for analysis is already increasingly intractable; data 

reduction at the edge is needed. At the same time, the data 

cannot be reduced to the point of losing critical physics 

information. The expertise of domain scientists is needed to 

design a plan that balances data reduction and networking 

bandwidth to connect HPC and experimental facilities. 

Similarly, edge-analysis is required in many cases, 

particularly where AI models are used to control and optimize 

an experiment—where the latency of analyzing data on a 

remote HPC system is prohibitive. Therefore, enabling AI at 

DOE’s existing large-scale experimental facilities presents 

significant challenges from the perspective of hardware, 

software, and infrastructure, which requires strategic 

investment.  

17.2.4 BUILDING AND MAINTAINING LARGE-

SCALE INTERDISCIPLINARY AI TEAMS 

To conduct large AI projects in industry, AI research groups 

increasingly comprise more than a thousand team members. 

Scientific teams typically include researchers with diverse 

knowledge backgrounds and expertise, and, on scales 

involving dozens of participants, the knowledge and 

communication gaps between team members are relatively 

easy to manage. At scales of hundreds of participants, 

however, organization, team building, communication, 

tracking, operational security, and similar functions need 

much more sophisticated methods. Moreover, to fully achieve 

DOE’s objectives of using AI to advance science, energy, and 

security technologies, large-scale interdisciplinary AI 

research teams with members from significantly different 

scientific communities with many facets of AI will be 

necessary. Unlike typical AI teams in industry, DOE’s AI 

teams will need both AI experts and scientists with critical 

domain expertise but possibly very little AI or even computing 

knowledge. DOE has a long history of successfully 

performing research and development with large-scale 

interdisciplinary teams, from the Manhattan Project to ECP. 

The breadth of impact that AI can have, as outlined in earlier 

chapters, will encompass nearly every aspect of DOE’s 

research and development (R&D) and operational missions. 

Consequently, DOE’s future AI teams will include some of the 

most diversified and interdisciplinary teams ever assembled.  

One example is development of a general AI foundation 

model for scientific discovery for use in a variety of 

downstream applications, such as material design, chemical 

synthesis, or drug design. This would require highly 

coordinated collaboration between physicists, chemists, 

biologists, mathematicians, and computer scientists. Thus, 

leveraging DOE’s experience to develop organizational 

support functions to build and train DOE’s AI teams presents 

a significant challenge. Moreover, all AI models evolve as 

they continuously learn, and need regular updates to adapt to 

and incorporate new hardware, software, and AI approaches. 

Even though DOE has extensive experience in managing 

large-scale codes, maintaining the AI models for DOE 
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requires a sustainable approach to AI teams. Addressing this 

challenge requires a strategic plan on AI workforce 

development for prioritized scientific and security areas 

(Chapter 16). 

17.3 Path Forward 

The DOE’s first three Advanced Scientific Computing 

Research (ASCR) facilities—Frontier (OLCF), Aurora (ALCF), 

and El Capitan (LLNL)—support the most popular AI 

platforms, which are typically much smaller scale than HPC 

systems. In the coming decade, DOE will develop more AI-

focused HPC systems, as well as AI environments for sharing 

AI models, architectures, weights, and hyperparameters 

across the DOE complex. The deployment of scalable 

scientific data management systems to form the foundation 

for curating high-quality datasets is needed (Chapter 14). 

This work will continue with the deployment of ESnet-

integrated data gateways, which in turn are controlled and 

optimized by AI workflow and data management models, that 

facilitate the transfer of data among instruments, 

experimental facilities, and computational facilities. 

The outcomes of ECP, including exascale simulators for 

science, energy, and security applications; scalable software 

libraries; and the exascale data infrastructure, will be 

transformed and integrated into DOE’s scalable AI 

ecosystem. These capabilities will be accessible by the broad 

scientific community. For example, the scalable simulators 

will be used to generate datasets to train and validate AI 

models, and data-driven AI models will be integrated into the 

exascale simulators to add missing physics to improve the 

predictive capabilities of the simulators. Concurrently, DOE’s 

scientific experimental facilities will gradually integrate new AI 

capabilities. To achieve the goal of AI-based self-driving 

facilities within the next 10 years, AI technologies will be 

deeply integrated into facility daily operation. 

To realize AI-assisted federated facilities and self-driving 

experimentation across facilities in the DOE complex requires 

at least several additional exascale machines. These 

additional machines will train AI foundation models, fully 

integrate edge computing at experimental facilities for AI data 

processing and steering experiments, and further the 

interconnection of all facilities with an upgraded, next-

generation ESnet. Without the support of DOE HPC facilities 

and these resource expansions, the scientific community will 

struggle to take advantage of the promise of AI. With 

appropriate direction, funding, and cross-facility cooperation, 

DOE can achieve a seamlessly interconnected DOE 

complex.  

17.3.1 LARGE-SCALE FEDERATED LEARNING 

Training a large-scale AI foundation model on an HPC 

system will in most cases require experimental and 

simulation data at the scales of peta- to exabytes, generated 

from multiple DOE experimental facilities and computational 

models. Often, regulations or limited network bandwidth 

prevent sharing of some data. Here, AI-based federated 

learning techniques can accelerate AI model development by 

training a high-quality, centralized model, where the training 

data remains distributed over many locations. For every 

iteration in training, each experimental facility computes an 

update of the current model based on its own data and then 

pushes the update to an HPC facility at another location, 

which aggregates all the updates from different experimental 

facilities to obtain a new globally, optimized model [6]. 

Federated facilities can enable scalable information fusion 

and decentralized control of assets in a reliable fashion. The 

realization of federated facilities requires not only exascale 

computing systems, but also scalable data infrastructure 

(Chapter 19) and AI workflows (Chapter 13), in order to 

enable on-the-fly training or updating of AI models using large 

streams of data generated in situ at multiple DOE facilities.  

Usually, raw experimental data cannot be used directly to 

train AI models. Both AI practice in industry and experience in 

the scientific community show that significant effort is 

required to prepare data for each AI project. Currently, we 

lack the infrastructure and policies to facilitate curating high-

quality AI-ready datasets at the scale needed for the AI 

projects outlined in this report, which are critical to fully 

realize the potential of AI [7]. The findability, accessibility, 

interoperability, and reusability (FAIR) data principles provide 

guidelines to reach this goal, but the effort needed to 

implement such systems is daunting [8]. The scale of data 

involved in advancing AI requires focused investment to 

further develop data management, curation, publication, 

standardization, and streaming software and services—with 

an emphasis on exploring the use of AI methods for these 

tasks (Chapters 13 and 14). A variety of independent 

activities along these lines is already taking place at every 

DOE facility. However, the progress needed in this area will 

require a tightly coordinated effort across the DOE complex. 

For example, user facilities need edge computing 

ecosystems that can integrate data preprocessing for AI and 

connect to the next-generation ESnet. These edge 

ecosystems will automatically process (compress, label, 

reformat, restack, tokenize, etc.) raw data for in situ 

experiment control or for migration to other facilities via ESnet 

to train or update AI surrogates or foundation models [9, 10].  

17.3.2 SMART CYBERINFRASTRUCTURES 

THROUGH AI AT THE EDGE 

DOE has invested in high-performance, national-scale 

cyberinfrastructure, such as the ESnet, to support large-scale 

scientific research [11]. ESnet interconnects the entire 

national laboratory complex, including its HPC and user 

facilities, allowing scientists to access data independent of 

time and location through fast connections to the facilities at 

speeds up to 100 gigabits per second. Today, ESnet carries 

approximately 20 petabytes of data each month, and DOE’s 
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Basic Energy Science (DOE-BES) Program predicts that its 

use alone will increase by an order of magnitude in the 

coming decade. We envision using a large portion of the data 

handled by ESnet to train AI models. To enable AI-ready 

ESnet to make intelligent decisions and coordinate actions 

across the globe, cyberinfrastructure operation—from 

local instrument to facility to laboratory scale—requires 

embedded edge AI capabilities throughout the entire ESnet 

system [12, 13] (Chapter 04).  

In addition, DOE’s Biological and Environmental Research 

(BER) Program recently began building large-scale urban 

integrated field laboratories, establishing the first instances in 

Chicago, Baltimore, and on the Texas Gulf Coast. These and 

additional laboratories planned for 2023 and beyond will 

integrate new field measurement infrastructure with climate 

and environmental models, relying on AI approaches, from 

edge-AI-enabled sensors to foundation and surrogate 

models, to explore climate change and its impact on urban 

communities.  

17.3.3 AI-ASSISTED SELF-DRIVING 

EXPERIMENTATION ACROSS FACILITIES 

An exciting scientific discovery possibility for interconnected 

instruments across facilities lies in going beyond today’s 

human-in-the-loop experiments to enable large-scale AI 

models to evaluate results and steer experiments. One 

example is material imaging. Studying atomic structure and 

properties of a new material usually requires multiple types of 

imaging experiments, such as x-ray, electron microscopy, or 

neutron scattering, each of which unveils certain properties of 

the material [14]. New, scalable AI and data infrastructures 

(Chapters 13 and 19) and foundation models (Chapter 02) 

will enable new scenarios unheard of with today’s 

infrastructure. For instance, X-ray crystallography work at 

DOE’s Advanced Light Source (ALS) at LBL will generate 

data to train models using HPC at Argonne’s ALCF. There, 

inverse analysis using AI-based foundation models will refine 

the atomic structure of the material and pass the suggested 

neutron experiment setup to SNS at ORNL to perform a 

neutron scattering experiment [15, 16]. The interaction 

among those facilities—located in three different regions of 

the country—could repeat several iterations until 

experimenters obtain the desired results. The implementation 

of this process as a self-driving experimentation at scale will 

further require not only sufficiently fast networking and 

computing powers, but also large-scale, reliable AI-based 

controllers to coordinate, optimize, and operate experiments 

(Chapter 05). This type of AI-enabled self-driving material 

design, synthesis, and evaluation will increase the pace of 

scientific discovery by orders of magnitude.  

Additionally, integrating AI and supporting instrumentation, 

such as traditional and new edge-AI-enabled sensors 

(Chapter 15), into experimental facilities must be considered 

during the design phase of new facilities or upgrades of 

existing facilities. For example, DOE has approved the design 

and construction of the Second Target Station (STS) at the 

SNS to address emerging science challenges [17]. The target 

station and associated instrument designs must readily 

accommodate current and future AI technologies by installing 

additional sensors and controllers for AI agents to perceive, 

learn, and control entire STS operations.  
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18. COMPUTATIONAL RESOURCES 

Computational sciences have in the past several decades 

become integral to virtually all science and technological 

breakthroughs, and sustained progress is intimately tied to 

the capacities, usability, and capabilities of available 

computational resources. However, with the diversity of 

application classes that have emerged, including the critical 

operations underpinning artificial intelligence (AI) model 

training and execution, data preparation, and other functions, 

computational resources are no longer characterized solely in 

terms of traditional measures such as floating-point 

operations per second (flops). In the increasingly diverse 

hardware ecosystem, having the right type of resources at 

the right place and with the right connectivity is at least as 

important as the nominal flop count. There now exists a wide 

range of computational tasks and challenges, from running 

massively parallel simulations to training machine learning 

(ML) models and from controlling experiments using edge 

computing to mobile sensor swarms. Each of these 

applications relies on different mixes of hardware, software, 

storage, communications, and other technical requirements, 

each calling for specialized solutions. Consequently, each 

application space represents both a new opportunity for AI 

and ML to have a significant impact and also unique 

challenges to developing and deploying effective AI-driven 

solutions. It is therefore important to understand what 

computational resources exist today; how they match to the 

current and predicted workflows, applications, and 

challenges, especially in relation to AI; and what type of 

computing must be provided or, if necessary, designed and 

developed to address future needs and drive new innovation. 

18.1 Current State 

The U.S. Department of Energy (DOE) has a long tradition of 

designing and deploying some of the largest supercomputers 

in the world, regularly fielding multiple systems ranked in the 

top 10 fastest supercomputers worldwide as tracked by the 

Top 500 list [1]. In addition to such flagship systems as 

Frontier [2], Summit [3], Sierra [4], Perlmutter [5], and Polaris 

[6], DOE facilities also deploy a wide variety of smaller 

systems from a wide range of vendors and with different 

architectures and performance characteristics. 

Until recently, the fundamental drivers for deployment of 

these systems have been simulation codes that enable 

scientific discovery and support national security missions, 

such as stockpile stewardship. Lately, however, the explosion 

of AI in commercial applications, among other trends, has 

caused a shift toward the use of accelerators rather than 

general-purpose central processing units. Following this 

trend, most of the recent DOE systems also rely heavily on 

accelerators, which, from the perspective of modeling and 

simulation, has caused significant challenges in porting 

applications to new machines and achieving even a fraction 

of the code’s theoretical peak performance. 

However, in the context of AI-based research at DOE, this 

architecture choice has turned out to be fortuitous, as many 

of the current systems are well suited to address the 

computing needs for much of the initial, small-scale AI 

workloads. At the same time, at larger scales it has become 

apparent that current supercomputers are materially different 

from the computing environments that industry is using to 

drive the impressive recent advances in AI, such as the 

creation of foundation models and models with powerful 

natural language processing capabilities (Chapter 02). 

Furthermore, the AI challenges in science and engineering 

also differ substantially from those addressed by industry AI 

systems: DOE applications typically require much larger per-

sample data, have more stringent constraints related to 

robustness and uncertainty quantification (UQ), and involve 

far more diverse data types. These needs have led to the 

development of custom toolchains, such as the Livermore Big 

Artificial Neural Network (LBANN) toolkit [7], both to exploit 

DOE-specific hardware and to solve challenges specific to 

science, energy, and security applications. 

The DOE is also continuing to explore next-generation 

computing concepts and architectures, working with industry 

on various testbeds to define future directions. This work 

includes significant investments in AI-specific hardware from 

partners, such as Cerebras [8], SambaNova [9], Graphcore 

[10], Groq [11], or Habana [12]—deployed for example in the 

Argonne Leadership Computing Facility AI testbed [13] or the 

Livermore Computing machines [14]. Conceptually, all of 

these architectures refine the notion of a general-purpose 

accelerator based on graphics processing units, such as 

those available from NVIDIA [15] and AMD [16], to focus 

nearly exclusively on the deep-learning use case. However, 

each of these architectures has its own peculiarities, 

specialized interfaces, and unique integration mechanisms, 

which makes even testing capabilities—let alone deploying 

code in production—challenging. There also exist forays into 

cloud-based computing environments [17], Arm-based 

systems [18], and continuous efforts to define future 

generations of supercomputing systems [19]. Finally, DOE’s 

large-scale experimental facilities have started to deploy 

more general-purpose edge computing resources such as 

those that embed AI hardware within sensor devices [20], in 

addition to the traditional streaming processing necessary to 

manage live data streams from particle colliders or light 

sources. 
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18.2 Grand Challenges 

Although many of the computational resources discussed 

above are now used to support the development and 

deployment of AI-driven solutions, few were designed 

explicitly with this goal in mind. We highlight four grand 

challenges here. 

As AI becomes more central to DOE’s mission and the 

techniques become more specialized and sophisticated, the 

dual purpose of computing resources (i.e., supporting both 

traditional simulation and AI) will require careful 

consideration. For example, as discussed in Chapter 02, 

there will be a need to develop large-scale foundation models 

that integrate massive volumes of diverse, multimodal data 

across many subdomains to support large science 

communities. Given that the initial industry-developed 

foundation-style models, trained primarily with text and 

images, are reaching trillions of parameters, training 

foundations for science domains, using much more diverse 

and voluminous data, will certainly require leadership-class 

computing and push the boundary of what is feasible. For 

example, training the Megatron-Turing NLG 530B [21] model 

in 2021 already reached a sustained throughput of roughly 

380 petaflops, a number on par with the 102 petaflops and 

4.4 exaflops quoted for the 2021 Gordon Bell Prize [22] or the 

171-petaflop to 1.1-exaflop range for the 2020 Gordon Bell 

Prize [23]. However, the architectures used were very 

different.  

The Megatron project used 480 of NVIDIA’s DGX nodes [24], 

while the 2021 Gordon Bell Prize [21] used almost 108K 

Sunway nodes [25] (with a total of 42M compute cores). This 

discrepancy raises a question about how future resources will 

be structured to address all future needs. On one end of the 

spectrum, the current model may prevail, in which 

fundamentally scientific computing resources are adapted to 

AI workloads through custom tool chains. The other extreme 

would be dedicated AI hardware, potentially built with 

specialized compute cores. Independent of the specific 

solution, the overarching grand challenge is to provide 

computing resources dedicated to AI-focused workloads 

on par with—and potentially surpassing—the large 

simulation workloads. Just as for current cutting-edge 

simulations, we expect the most complex possible AI model 

to be determined by the size of the largest supercomputer 

available and how effective that machine is solving the 

respective problem. 

The second grand challenge is the need for ubiquitous 

access to AI-ready computing resources through the 

complex. As highlighted in the technical sections, there exist 

a plethora of potential use cases for AI in virtually all aspects 

of DOE’s mission, and we expect this number to only 

increase as AI technologies mature. Exploring these 

possibilities will require access to relevant resources for all 

stakeholders.  

The third grand challenge will be the unique need within 

DOE applications to couple AI-driven solutions to 

existing simulations, experiments, or sensors. This need 

will favor a compromise in which the various stakeholders co-

design future systems to be as broadly applicable as possible 

and a tight coupling between resources both within and 

across facilities.  

The final grand challenge is the need to support the many 

DOE-specific edge cases, whether these are operating in 

hard radiation, on the edge of large-scale experiments, or 

in autonomous sensors and drones. In the absence of 

commercial drivers for such use cases, it will be up to DOE 

scientists to adapt, extend, and develop the necessary 

solutions.  

18.3 Path Forward 

To become a leader in AI for mission-relevant problems, DOE 

will need to field substantial, AI-focused compute resources 

on par with current supercomputing systems. Depending on 

the direction of the commercial systems and in collaboration 

with vendor partners, DOE will need to determine whether to 

pursue a hybrid approach in which flagship systems are 

suitable for both scientific computing and AI workloads or 

whether there is a need to purse independent, specialized 

solutions. Given the need for integration (discussed later in 

this section), the first approach appears more suitable, but 

the unavoidable price in peak performance of a hybrid system 

will need to be evaluated.  

Beyond the raw compute power necessary for the largest and 

most complex models, DOE faces a number of additional 

challenges equally important to the overall success of 

leveraging emerging AI approaches to drive scientific 

discovery. To support an ever-growing number of use cases, 

DOE will need to provide easy access to small- and mid-

range, AI-ready computing resources for any application 

scientist and engineer within the complex. However, as 

mentioned above, AI applications require different hardware, 

software stacks, and data infrastructure than most other 

computing-based problems. Addressing this need will require 

all DOE sites to house—and support the user communities 

of—AI-focused systems of sufficient capacity and to provide 

easy access for model training and development. 

Furthermore, this access must include support for a variety of 

AI software stacks, as well as resource management tools 

adapted to AI needs (e.g., on-the-fly access to compute 

nodes during training). Unlike the flagship resources and 

problems which are typically driven by specialized tools and 

dedicated efforts, the commodity use of AI within DOE will 

have to rely on commercially driven software stacks. These 

stacks are typically less well adapted to DOE’s security 

needs, science requirements (e.g., UQ, explainability), and 

hardware and thus may require additional effort for 

deployment. Alternatively, cloud-based resources could 
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supplement local shortfalls and provide additional flexibility. 

Commercial cloud resources could provide elasticity, though 

at the cost of additional challenges in data movement and 

information security. A DOE-wide cloud could provide an 

interesting alternative that rather than moving data to the 

compute resource, as in commercial systems, could instead 

move compute resources (in the form of cloud allocations) to 

the data, that is, to whatever facility is currently housing it. 

Finally, on-premises clouds are already used to mirror 

commercial development practices and provide a seamless 

integration with commodity software stacks. As a final 

challenge, these resources must be easily accessible to 

outside partners at universities or other agencies 

(e.g., Department of Defense, Department of Homeland 

Security) to facilitate collaboration and reduce barriers. 

Another hallmark of DOE applications is the need for a tight 

coupling between the resources and components involved in 

a particular problem (as also discussed in Chapter 13). A 

typical example is the notion of a self-driving facility for 

autonomous discovery (Chapter 05). Here, data from sensors 

are collected and processed on edge-based computing 

resources and integrated into AI-based models, which 

themselves are trained at and integrated with leadership-

class facilities. These high-performance computing (HPC) 

resources in turn execute high-fidelity simulations (e.g., a 

“digital twin” of the laboratory process) to provide real-time 

control to robotic systems operating and optimizing the 

experiment. Such an approach not only requires AI-enabled 

systems throughout the entire chain from experiment to 

supercomputer but also relies on tight connections between 

these components to achieve the overarching goal. A similar 

coupling exists in many other situations, for example, when 

integrating fast inference into a simulation or when guiding an 

ensemble for optimization. Such use cases fundamentally 

require a mix of different computing solutions either in the 

form of hybrid systems not optimized for either simulations or 

AI but able to adequately serve both or through a tight 

coupling of specialized resources. Hybrid systems likely will 

require more concerted efforts in co-designing hardware with 

various vendors, as DOE will have particular needs that will 

differ from most other customers, whereas tight coupling will 

put more pressure on networks, resource management, and 

workflows. 

Finally, within the DOE mission, there exist many important 

niche applications with unusual requirements. An example is 

already emerging in DOE research and development in edge 

computing and sensing hardware that must operate in 

extreme or hazardous environments; such hardware might 

include ultrafast edge devices or low-power sensor swarms. 

These devices may require dedicated hardware designs 

developed in collaboration with industry partners. 

Furthermore, the notion of dedicated or at least highly 

specialized hardware may not be limited to the deployment 

environment. For example, DOE has a strong need for robust 

models and reliable uncertainty quantification. Most of the 

existing techniques that begin to address these concerns rely 

on ensemble-style training and inference, random variations 

in the training data, or similar approaches. These strategies 

might drastically increase the already large computing 

resources required to train models. One potential solution is 

to express the necessary replications directly in silico using 

specialized UQ-enabled chips, which could alleviate such 

problems. Similar concerns might apply for model and data 

provenance or adversarial defense. In summary, DOE will 

require a large range of AI-ready compute resources—from 

leadership-class systems to dedicated hardware—to drive the 

next generation of scientific discovery and technological 

progress. 
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19. DATA INFRASTRUCTURE 

The modern deep learning revolution has been driven in large 

part by access to enormous quantities of labeled data [1]. 

However, most of these datasets have been assembled for 

reasons other than science, and few have any relevance to 

the scientific, energy, or security applications that are of 

interest to the U.S. Department of Energy (DOE) as outlined 

in Section 02 of this report. The advancements in those areas 

as envisioned in this report will require a sustained effort on 

the acquisition, curation, preparation, and management of 

large quantities of new and extant scientific data and on the 

infrastructure required to support those activities. 

19.1 Current State 

DOE has made major investments to ensure that world-class 

scientific data are produced at its computational, 

observational, and experimental facilities. These facilities 

(e.g., light sources, supercomputers, environmental 

observatories and field campaigns) and those of DOE’s 

partners (e.g., Large Hadron Collider [LHC], Rubin 

Observatory) generate enormous and exponentially growing 

quantities of data at scales that dwarf those seen at most 

other federal agencies. DOE laboratories have also invested 

in data infrastructure, particularly at DOE’s high-performance 

computing (HPC) centers (including Leadership Computing 

Facilities, NERSC, and Trilab facilities), some of which have 

100’s of petabytes of storage. DOE researchers are pursuing 

a growing volume and variety of projects that employ artificial 

intelligence (AI) methods to analyze, manage, and otherwise 

make use of DOE data. DOE efforts to foster a broadly 

deployed yet integrated research infrastructure are also 

bearing fruit. The new (sixth generation) of the Energy 

Sciences Network (ESnet6) connects DOE laboratories and 

facilities at up to 400+ Gbps. High-speed “Science DMZs” [2] 

and data transfer nodes, along with the near-ubiquitous 

Globus software, today allow scientific applications with 

diverse requirements to use this bandwidth effectively, so that 

transferring petabytes is now routine [3]. 

While DOE data clearly have high scientific value, much of 

DOE’s data infrastructure lags that of adversarial nations and 

even other U.S. domestic agencies (e.g., National Institutes 

of Health data infrastructure), as well as industry standards 

and best practices. While DOE data clearly should be curated 

and preserved for use by current and future generations, 

many DOE facilities that generate large quantities of data 

lack sufficient long-term storage capacity and thus are forced 

to roll-off data to avoid astronomical growth and to prevent 

untenable data inertia.  

Beyond managing the data lifecycle and moving bulk data 

among facilities, many science disciplines supported by DOE 

require that data be shared within large and diverse 

communities [4]. Yet the current state of infrastructure makes 

this far from routine. Today’s fragmented DOE data storage 

ecosystem, with equally fragmented and often inflexible 

retention and access policies, leads to repetition of effort and 

dilution of capabilities that weaken the return on DOE’s 

investment in data production and storage. In almost all 

cases, the requirements (e.g., formats, metadata, access 

methods) of large-scale AI model training are not 

contemplated, confounding our ability to leverage these data 

resources as necessary to unlock the potential of the AI 

approaches—requiring unprecedented volumes of multi-

modal training data to be prepared, evaluated, and used—as 

detailed in Section 01 of this report. Additionally, DOE has 

unique security concerns related to classified and other 

sensitive data that often prevent effective data integration and 

use. A unifying system for integrated but distributed data 

storage with robust and secure AI at all levels in the 

infrastructure would optimize the ability of researchers to 

extract scientific knowledge from the data that is produced 

across the DOE complex. 

Imminent developments exacerbate a number of these 

problems. Next-generation instruments, as discussed in more 

detail in the next section, will increase data volumes by 

orders of magnitude. An increased push to federate 

instruments (e.g., microscopy, light sources, neutron sources 

linked with HPC) introduces additional new data challenges. 

So too will more automated generation of data via automated 

facilities as discussed in Chapter 05. Today, data are rarely 

generated systematically at scale but rather to address 

specific user questions. A transition to systematic and 

automated data generation will be transformative in many 

fields [5]. Other AI approaches such as foundation models, as 

discussed next and in Chapter 02, also introduce new 

requirements. 

19.2 Grand Challenges 

We envision a future in which the DOE laboratory system has 

created an AI-enabled and AI-enabling data infrastructure 

such that all data and models produced within DOE are 

organized and connected to permit effective discovery, 

adaptation, curation, and reuse, subject to security concerns 

that ensure that confidential information is not revealed 

inappropriately. This infrastructure will allow new data to be 

produced and enhanced via a co-design process that 

maximizes the value of collected data for AI-driven discovery. 

Additionally, powerful integrating models (e.g., foundation 

models or surrogates underpinning digital twins) are created 

and updated automatically over time as new data are 
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generated—and all of these capabilities are available for use 

to guide discovery and innovation. We coin the term active 

collective memory to denote this integrated and integrating 

data infrastructure, with the aspiration that, similar to human 

memory, it will permit retrieval of relevant information in many 

different settings, at different levels of detail and abstraction 

depending on context, while evolving and adapting to 

maintain dynamic consistency with evolving experience and 

knowledge. 

Realizing this vision of a DOE-wide active collective memory 

will require overcoming important challenges as detailed in 

the following. 

1. Creation of an AI-driven data and model observatory. 

Large quantities of data and trained machine learning (ML) 

/ active learning (AL) models are of little value if data are 

not structured, discoverable, and accessible in ways 

suitable for AI applications. The challenge here is to 

enable AI agents—for example, engaged in prediction and 

control of complex engineered systems—to rapidly 

locate/integrate similar data and models, from across and 

indeed beyond the DOE complex (Figure 19-1). In the 

case of digital twins (Chapter 04), this approach would 

entail selecting optimal models for the overall system and 

for each subsystem. The rich complexity of large datasets 

renders human-supplied metadata insufficient for fully 

capturing relevant characteristics as necessary to enable 

discovery. Here, AI-driven indexing and search methods 

are likely required, particularly those that can discover and 

characterize patterns and internal relationships. For 

example, in the case of an additive manufacturing system 

tasked with generating a new design, this system should 

be able to locate data from dozens of similar runs in high-

dimensional embedding space, select and fine-tune the 

associated model(s)—themselves data objects that can be 

discovered—and with those models produce an optimal 

manufacturing schedule. 

 

Figure 19-1. An AI-driven data and model observatory should allow for 
discovery of datasets (e.g., Exp_i, Exp_k) and associated trained models 
(e.g., Model_j) within a high-dimensional embedding space. 

2. Data infrastructure for creating foundation models. As 

described in Chapter 02, foundation models [6]—large AI 

models trained on large quantities of unlabeled data, 

usually by self-supervised learning—have emerged as an 

important technology exploiting deep learning due to the 

wide variety of downstream tasks to which a trained 

foundation model can be applied. Technology companies, 

such as Google and Meta, have demonstrated the ability 

to train foundation models on large quantities of text, which 

to date are focused on natural language processing and 

other applications atypical of DOE science and energy 

research. However, these models and the techniques for 

creating them can be leveraged within DOE to build and 

train foundation models on the large collections of 

scientific text and/or on large bodies of experimental, 

observational, and simulation data. In pursuit of the active 

collective memory concept introduced above, we may 

imagine a malleable, tiered set of AI foundation models 

with high bandwidth connections. A compact 

representation of the data will allow usage of this 

information across a hierarchy of computational 

infrastructure. The data representations, tailored for AI 

foundation models (Chapter 11 discusses data 

representation research challenges), would evolve over 

time as new measurements are made at DOE facilities, 

field laboratories, and scientific instruments. These varying 

foundation models would also connect and coalesce, as 

relationships are discovered between the different data 

sources, either by the growing understanding of domain 

scientists or through connections made by computational 

analysis at scale. This integrated endeavor could be made 

to act similar to a collaboration suggestion engine for 

complementary but unwittingly isolated efforts across the 

DOE complex. 

Realizing these goals will require substantial effort and 

investments at many levels. One immediate challenge is 

that DOE data (e.g., documents preserved by DOE’s 

Office of Scientific and Technical Information; data 

produced at experimental facilities) are not organized in 

forms suitable for use by foundation models. The current 

push to make data more easily findable, accessible, 

interoperable, and reusable (FAIR) [7] can be a step in the 

right direction but is typically oriented toward the needs of 

human consumers rather than AI training applications. 

Overall, data management for foundation models (as well 

as surrogate models, discussed in Chapter 01) is a 

multidisciplinary problem that will require sustained effort 

from data, AI, disciplinary science, and other experts. 

3. Hierarchical federated learning across sources and 

scales. DOE scientists produce and use data in many 

locations and many sources. Certain important data are 

sensitive: for example, data relating to national security 

applications (e.g., NNSA) and from commercial partners 

(e.g., data from power grid operators). Methods are 

needed to allow AI agents to learn effectively from 

distributed data: for example, from multiple sensors at a 
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single facility, in which case rapid coordination is the 

primary concern; from a single sensor type at multiple 

facilities, in which case confidentiality is the primary 

concern; and in more complex cases involving sensor-to-

sensor, facility-to-facility, and region-to-region federations. 

Such methods would enable, for example, an AI agent to 

learn to predict brownouts based on pooled power grid 

operator data without the need to reveal sensitive 

operations data. Significant innovation will be required to 

enable such hierarchical federated learning across scales, 

among facilities, and encompassing both observation and 

simulations. The ability to perform active learning over 

non-IID (independent, identically distributed) data will be 

important, as will the ability to integrate data from external 

sources (e.g., literature) and to encode negative results. 

These tasks can be tackled in collaboration with industrial 

partners (e.g., grid operators, battery manufacturers [8], 

materials companies) who want to learn how to improve 

processes without revealing sensitive data. 

Security and federated learning mechanisms also need to 

be built into the architecture of federation for the AI 

foundation models just discussed. This capability will allow 

access and connections to the information through access 

control processes that are developed explicitly for 

multilevel privacy in distributed data-parallel training, also 

known as federated learning. This system would be much 

like how humans evolve and adapt or explicitly edit their 

own memories as their worldview changes, keeping 

dynamic consistency with our evolving experience and 

knowledge. Cross-agency security is itself akin to the 

human ability to control our own release of information 

depending on social context. 

4. Co-designing massive datasets. Many methodological 

innovations in AI over the past decade have been driven 

by access to large, labeled datasets that were generated 

essentially at no or very little cost as a side effect of 

business processes (e.g., storing consumer photographs, 

consumers clicking on ads). In scientific AI, on the other 

hand, data collection and data labeling tend to be 

expensive. Furthermore, accuracy is far more important for 

scientific applications, given that the goal is fundamental 

understanding of nature rather than targeted advertising. 

These considerations suggest a need to develop AI 

models, science applications, and datasets together via a 

co-design approach, thereby maximizing the value of each 

experiment, observation, simulation, and human expert. 

Data collection processes need to be (1) designed with the 

end in mind; (2) automated and subject to quality control 

(QC) processes to ensure that proper contextual metadata 

are provided and that data meet quality standards; and 

(3) guided by applications and AI models to identify 

important sampling directions and to target data of 

maximum relevance to the scientific problem(s) at hand. 

For larger datasets, consideration needs to be given to 

downstream uses and to opportunities to combine with 

other datasets. These considerations all suggest a need 

for data curation and management to be considered as 

scientific and engineering skills in their own rights.  

5. Data infrastructure = compute infrastructure. Current 

DOE computational facilities are designed primarily to 

support specialized use cases: primarily large-scale 

simulation (at leadership computing facilities) and in some 

cases (e.g., high-energy physics facilities) massively 

parallel data analysis. Data science applications require 

new capabilities, such as fast, smart response to new data 

(e.g., from a new experiment); rapid, random access reads 

(e.g., when training a foundation model); edge or in-transit 

processing capabilities (e.g., to filter out interesting events 

from a high-rate experimental data stream); and continual 

update of data and knowledge bases as new data 

appears—for example to perform automatic metadata 

inference or to update foundation models. These new 

capabilities may be deployed at existing centers (where 

they would benefit from proximity to current high-end 

simulation capabilities) or in other locations (e.g., near 

experimental facilities). In either case, they require new 

thinking about data and software architectures. Solutions 

to these problems will allow DOE facilities and scientists to 

process and respond in a timely manner to massive data 

streams coming from many sources and allow for effective 

integration of ML models into ongoing simulations and 

experiments. 

6. Online prediction and control of high-data-rate 

facilities. DOE experimental and computational facilities 

face the unique problem of needing to identify interesting 

events and anomalies in multi-MHz, multi-Tbit/s data 

streams at decision-relevant speeds. As an example, in 

the case of a MHz ptychographic imaging facility used to 

scan a microprocessor or an optical fiber for defects 

(i.e., to enable rapid imaging of large devices), an AI agent 

needs to be able to combine historical and online data to 

detect interesting regions of the chip or fiber and to then to 

“zoom in” on those regions for more detailed investigation. 

To provide this capability, new methods are needed for 

online and continuous learning from high-data-rate 

sources; ultra-high-data-rate inference; integration of 

historical and online data and models; uncertainty 

quantification; and identification of important information 

for preservation. This work should be supported by pilot 

projects designed to demonstrate use of online control to 

achieve a factor of 10 or more improvement in scan speed 

for several different imaging processes. 

7. Low latency between data and decision. Making the 

most of AI’s ability to learn quickly from new data requires 

infrastructure that will respond rapidly to new data being 

generated. Approaches that rely on updating AI models 

given new data, such as self-driving laboratories or AI-

enhanced simulation codes, will have significantly different 
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requirements for active memory systems. First, data 

streams vary greatly in the quantities and dates of data 

involved, making one-size-fits-all solutions unrealistic. 

Second, some systems will generate data from many 

different levels of fidelity (e.g., fast checks performed 

before big investments), meaning that databases must mix 

data from many sources though coherent interfaces. Third, 

there is a strong need for autonomous quality assurance, 

as “garbage” inputs could lead to garbage decisions. Data 

management systems must know when to trust and when 

not to trust data. Examples of success include designing 

manufactured/synthesized material microstructures with 

optimized properties; engineering nuclear deterrent 

systems that are survivable in radiation environments; and 

optimizing operation of electrical grid under evolving 

demand environments.  

8. Pervasive data collaboration. The challenges above 

have emphasized the requirements of large, big data 

projects. But the many DOE projects with smaller datasets 

(projects that, in aggregate, comprise the vast majority of 

DOE scientists and facility users) also face profound 

challenges as they seek to leverage the entirety of DOE’s 

expertise and resources in advancing their own scientific 

goals while contributing their own products to the DOE 

knowledge base without compromising their own research. 

A DOE-wide knowledge base and secure, federated 

learning capabilities are both needed. Researchers need 

to be able to determine quickly and easily what data and 

models already exist relevant to their research problems. 

Methods are needed to allow data produced by small 

research teams to be captured, described, and published 

in ways that place manageable demands on research 

teams while maximizing value to others. Trustworthy and 

confidentiality-preserving federated learning will be 

essential if researchers are to make use of these 

capabilities. These are profoundly challenging 

requirements for which no solutions are currently known; 

extensive research and experimentation will be required to 

make progress. However, the benefits can be large, as 

evidenced by examples such as past DOE lab uses of grid 

storage field data from vendors, and polymer property 

prediction models trained across data from multiple 

teams [9]. 

19.3 Path Forward 

19.3.1 ADVANCES IN THE NEXT DECADE 

Both the opportunities and challenges associated with the 

use of DOE data for data-driven discovery are poised to 

increase substantially soon. New exascale and post-exascale 

computers will increase scientists’ ability to generate 

simulation data for AI model training by orders of magnitude. 

Major enhancements to experimental and observational 

facilities are also underway. For example, from 120 pulses 

per second to 1 million pulses per second at LCLS-II (2022); 

the brighter and more focused beam at the upgraded 

Advanced Photon Source (APS-U: 2024) will increase data 

rates by up to a factor of 1000; and the high-luminosity LHC 

(2029) will increase data rates by an order of magnitude. 

Other instruments are starting up as well, such as the Rubin 

Observatory, DUNE neutrino observatory, and high-

throughput materials science and biological laboratories. 

These and other developments will demand major advances 

in data collection, analysis, and storage capabilities. 

Work toward an integrated research infrastructure is also 

expected to advance quickly. Ultra-fast and reliable ESnet 

connectivity, broadly deployed data and computing 

connections, and extensive task automation [10] will make it 

trivial to implement and run flows that link experiments and 

simulations with AI agents, data repositories, and other 

elements of an AI-enabled and AI-enabling DOE science 

infrastructure. Continued work on policy will be required to 

avoid bureaucratic barriers to effective resource sharing and 

collaborative work. 

19.3.2 ACCELERATING DEVELOPMENT 

Research, infrastructure, and pilot projects are required to 

accelerate progress on the challenges articulated above: 

research to identify new approaches to known problems, 

infrastructure to support increasingly ambitious experiments, 

and pilot projects to build experience with solutions and to 

identify the as-yet-unknown challenges that will otherwise 

emerge, with perhaps fatal effect, only at much later stages.  

Research needs include new methods for producing 

embedded databases; encoding high-dimensional data; 

capturing and navigating hierarchical relationships; identifying 

and exploiting redundancy in data; and exposing and 

supplementing sparse information.  

New approaches are required for data storage, curation, and 

preservation: while current approaches to archival storage 

may provide cost-effective storage for large volumes of data, 

their contents are often hard to identify, access, digest, and 

process. AI advancements are needed to maximize the 

investments DOE makes in acquiring the best scientific data 

and to track the derived value of that data—information that 

can be used to inform dynamic retention policies. This effort 

should generate AI that acts as a foundation model for the 

instruments used at the DOE, encapsulating the behavior and 

properties of a palette of complementary instruments. We 

intend to generate AI that detects structure, functional 

relationships, and knowledge representations from large, 

diverse, and distributed datasets. 

Pilot projects are required in a range of data modalities and 

application needs, and these could be structured similarly to 

past programs, recognizing that the complexity and volume 

contemplated in this report far exceed those associated with 

prior “Big Data” pilot projects. To give just two examples: one 
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promising area will be to demonstrate use of aggregated data 

and models from 10 or more DOE cross-facility light source 

beamlines for advanced online prediction and control. A 

similar opportunity exists for additive manufacturing systems 

across labs and industry partners.  

19.3.3 EXPECTED OUTCOMES 

The work articulated in this chapter is intended to foster 

realization of an AI-enabled and AI-enabling active collective 

memory encompassing all information produced or used by 

DOE laboratories. Success in this endeavor will include an 

integrated data infrastructure spanning multiple DOE 

facilities, greatly increasing the quality and speed of the 

science performed within the labs, and the impact of DOE 

facilities on their external users. 

At a more granular level, the following are examples of 

specific advances that we expect to be enabled by such an 

infrastructure: 

 An AI-driven data and model observatory will allow AI 

agents to call upon the collective knowledge of thousands 

of experiments at dozens of facilities. 

 Online prediction and control methods permit AI agents to 

make timely decisions based on MHz and Tb/s data 

streams.  

 Hierarchical federated learning across data sources and 

scales enables AI agents to learn effectively from large, 

distributed data without centralization. 
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AA. AGENDAS 

Workshops 1, 2, and 3 

WORKSHOP 1: TUESDAY, JUNE 14, 2022 

Tennessee State University, Elliot Hall 
 
8:00 a.m. Registration and Breakfast 
 

8:45 a.m. Workshop Welcome 

• Doug Kothe, Associate Laboratory Director, ORNL, and Jason Pruett, ASC Program Director, 
LANL 

 

9:00 a.m. Tennessee State University Welcome 

• Dr. Quincy Quick, Interim Vice President for Research and Sponsored Programs 
 

9:15 a.m. Workshop Opening 

• David Womble, AI Program Director, ORNL, and Russell Bent, ASC Deputy Program Director, 
LANL 

 

9:20 a.m. AI4SES Overview 

• Rick Stevens, Associate Laboratory Director, ANL 
 

9:50 a.m. Morning Break 
 

10:00 a.m. Plenary Talks 

• Karen Wilcox, Director, Oden Institute for Computational Engineering and Sciences, University 
of Texas at Austin 

• Mike Grosskopf, Scientist, LANL 
 

11:30 a.m. Breakout Charge 

• David Womble, AI Program Director, ORNL, and Russell Bent, ASC Deputy Program Director, 
LANL 

 

12:00 p.m. Lunch 
 

1:00 p.m.  Domain Breakout Sessions Running Concurrently 

• T1D1: Large, Engineered Networks; location: HSB 103A  

• T1D2: Energy Generation and Scheduling; location: HSB 103B 

• T1D3: Physics, including High-Energy Physics, Fission, and Fusion; location: HSB 110 

• T1D4: Advanced Manufacturing; location HSB 114 

• T1D5: Facilities Operations; location HSB 205 

• T2D1: Energy Systems and Storage; location HSB 206  

• T2D2: Bio and Health Science; location HSB 210 

• T2D3: Materials Science; location HSB 243 

• T2D4: Climate Science and Earth Systems Predictivity; location HUM 313 

• T2D5: Multiscale Physics; location HUM 323 

5:00 p.m. Day One Concludes 

WEDNESDAY, JUNE 15, 2022 

Tennessee State University, Elliot Hall 
 
8:00 a.m. Registration and Breakfast 
 

9:00 a.m. Domain Breakout Reports 

• T1D1: Large, Engineered Networks 

• T1D2: Energy Generation and Scheduling 

• T1D3: Physics, including High-Energy Physics, Fission, and Fusion 

• T1D4: Advanced Manufacturing 
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• T1D5: Facilities Operations 
 

10:15 a.m. Morning Break 

• T2D1: Energy Systems and Storage 

• T2D2: Bio and Health Science 

• T2D3: Materials Science 

• T2D4: Climate Science and Earth Systems Predictivity 

• T2D5: Multiscale Physics 

12:00 p.m. Lunch 
 
1:00 p.m.  Technology Breakout Sessions Running Concurrently 

• T1T1: AI Foundations and Mathematics; location: HSB 103A  

• T1T2: AI Software and Frameworks; location: HSB 103B 

• T1T3: Large-scale AI Workflows; location: HSB 110 

• T1T4: Data Capabilities and Management for AI; location HSB 114 

• T1T5: AI Hardware Architectures; location HSB 205 

• T2T1: AI Software and Frameworks; location HSB 206  

• T2T2: Bio and Health Science; location HSB 210 

• T2T3: Large-scale AI Workflows; location HSB 243 

• T2T4: Data Capabilities and Management; location HUM 313 

• T2T5: AI Hardware Architectures; location HUM 323 

5:00 p.m. Day Two Concludes 

THURSDAY, JUNE 16, 2022 

Tennessee State University, Elliot Hall 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m. Technology Breakout Reports 

• T1T1: AI Foundations and Mathematics  

• T1T2: AI Software and Frameworks 

• T1T3: Large-scale AI Workflows 

• T1T4: Data Capabilities and Management for AI 

• T1T5: AI Hardware Architectures 
 

10:15 a.m. Morning Break 

• T2T1: AI Software and Frameworks 

• T2T2: Bio and Health Science 

• T2T3: Large-scale AI Workflows 

• T2T4: Data Capabilities and Management 

• T2T5: AI Hardware Architectures 
 

12:00 p.m.  Lunch 
 
1:00 p.m. Leadership / Writing Team Convenes for Writing 
 
3:00 p.m. Workshop 1: Adjourn 
  



 

AA. AGENDAS 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY   

161 

WORKSHOP 2: TUESDAY, JULY 26, 2022 

University of California – Davis, California Hall 
 
8:00 a.m. Registration and Breakfast 
 
8:45 a.m. Workshop Welcome 

• J. Rob Neely, Program Coordinator for Computing Environments and CASC ADL, LLNL 
 
9:00 a.m. UC Davis Welcome 

• Cristina Davis, Association Vice Chancellor, UC Davis 
 
9:15 a.m. Workshop Opening 

• Bert de Jong, Group Lead, LBNL, and Brian Spears, Principal Investigator, LLNL 
 
9:20 a.m. AI4SES Overview 

• Rick Stevens, Associate Laboratory Director, ANL 
 
9:50 a.m. Q&A re: AI4SES 

• Laboratory Leadership 
 
10:00 a.m. Morning Break 
 
10:15 a.m. Plenary Talk: AI Applications in Next Generation Food Systems 

• Xin Liu, Professor, Computer Science, UC Davis 
 
10:45 a.m. Plenary Talk: AI for Scientific Computing at Scale – Opportunities and Open Challenges 

• Paris Perdikaris, Assistant Professor of Mechanical Engineering and Applied Mechanics, 
University of Pennsylvania 

 
11:15 a.m. Confronting (Un)Conscious Bias in AI 

• Tina Park, Head of Inclusive Research and Design, Partnership on AI 
 
11:45 a.m. Breakout Charge 

• Bert de Jong, Group Lead, LBNL, and Brian Spears, Principal Investigator, LLNL 
 
12:00 p.m. Lunch 
 
1:00 p.m. Domain Breakout Sessions Running Concurrently 
 

 Topic #1: AI for Advanced Properties Inference and Inverse Design 

• T1D1: Rational Design in Biochemistry, Chemistry, and Materials; location: California Hall  

• T1D2: Design and Operation of Multiscale and Multiphysics Systems; location: SCC-Meeting 
Room A 2nd Floor 

• T1D3: Automated Design and Optimization of Engineered and Manufacturable Systems; 
location: SCC-Meeting Room B 2nd Floor 

• T1D4: Resilient Water and Agriculture Resources; location: SCC-Meeting Room B Room 
2nd Floor 

• T1D5: AI for Energy Resilient Infrastructure; location: SCC-Meeting Room E 2nd Floor 

 Topic #2: Foundation AI for Scientific Knowledge Discovery, Integration, and Synthesis 

• T2D1: Biomedicine and Healthcare; location: SCC-Multi-Purpose Room 2nd Floor  

• T2D2: Synthesis of Diverse Data in the Physical Sciences; location: MU-De Carli Room 
2nd Floor 

• T2D3: Emerging Threats in the AI Era; location: MU-Fielder Room 2nd Floor 

• T2D4: New Approaches to AI Enabled Scientific Discovery; location: MU- Garrison Room 
2nd Floor 

• T2D5: Foundation Models for Decision Support, and Risk and Policy Analysis; location: 
MU-Smith Room 4th Floor 

5:00 p.m. Day One Concludes 
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WEDNESDAY, JULY 27, 2022 

University of California – Davis, California Hall 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m. Domain Breakout Reports 
 Topic #1: AI for Advanced Properties Inference and Inverse Design 

• T1D1: Rational Design in Biochemistry, Chemistry, and Materials 

• T1D2: Design and Operation of Multiscale and Multiphysics Systems 

• T1D3: Automated Design and Optimization of Engineered and Manufacturable Systems 

• T1D4: Resilient Water and Agriculture Resources 

• T1D5: AI for Energy Resilient Infrastructure 
 
10:15 a.m. Morning Break 
 
10:30 a.m. Domain Breakout Reports 
 Topic #2: Foundation AI for Scientific Knowledge Discovery, Integration, and Synthesis 

• T2D1: Biomedicine and Healthcare 

• T2D2: Synthesis of Diverse Data in the Physical Sciences 

• T2D3: Emerging Threats in the AI Era 

• T2D4: New Approaches to AI Enabled Scientific Discovery 

• T2D5: Foundation Models for Decision Support, and Risk and Policy Analysis 
 
12:00 p.m. Lunch 
 
1:00 p.m. Technology Breakout Sessions Running Concurrently 

Topic #1: AI for Advanced Properties Inference and Inverse Design 

• T1T1: AI Foundations and Mathematics; location: California Hall  

• T1T2: AI Software Frameworks, Libraries, and Tools; location: SCC-Meeting Room A 2nd Floor 

• T1T3: Large-scale AI Workflows; location: SCC-Meeting Room B 2nd Floor 

• T1T4: Data Capabilities and Management for AI; location: SCC-Meeting Room B Room 
2nd Floor 

• T1T5: AI Hardware Architecture; location: SCC-Meeting Room E 2nd Floor 

Topic #2: Foundation AI for Scientific Knowledge Discovery, Integration, and Synthesis 

• T2T1: AI Foundations and Mathematics; location: SCC-Multi-Purpose Room 2nd Floor 

• T2T2: AI Software Frameworks, Libraries, and Tools; location: MU-De Carli Room 2nd Floor 

• T2T3: Large-scale AI Workflows; location: MU-Fielder Room 2nd Floor 

• T2T4: Data Capabilities and Management for AI; location: MU-Garrison Room 2nd Floor 

• T2D5: AI Hardware Architectures; location: MU-Smith Room 4th Floor 

5:00 p.m. Day Two Concludes 

THURSDAY, JULY 28, 2022 

University of California – Davis, California Hall 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m. Technology Breakout Reports 
 Topic #1: AI for Advanced Properties Inference and Inverse Design 

• T1T1: AI Foundation and Mathematics 

• T1T2: AI Software and Frameworks 

• T1T3: Large-scale AI Workflows 

• T1T4: Data Capabilities and Management for AI 

• T1T5: AI Hardware Architectures 
 
10:15 a.m. Morning Break 
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10:30 a.m. Technology Breakout Reports 
 Topic #2: Foundation AI for Scientific Knowledge Discovery, Integration, and Synthesis 

• T2T1: AI Foundation and Mathematics 

• T2T2: AI Software and Frameworks 

• T2T3: Large-scale AI Workflows 

• T2T4: Data Capabilities and Management for AI 

• T2T5: AI Hardware Architectures 
 
12:00 p.m. Lunch 
 
1:00 p.m. Building a Diverse, Equitable, and Inclusive AI Research Community 
 
2:00 p.m. Leadership / Writing Team Convenes for Writing 
 
3:00 p.m. Workshop 2: Adjourn 
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WORKSHOP 3: TUESDAY, AUGUST 16, 2022 

Bowie State University, Bldg. 20 - Student Center: Wiseman Ballroom 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m. Workshop Welcome 

• Dr. Carl B. Goodman, Provost and VP for Academic Affairs, BSU 
 
9:15 a.m. AI for Science: Overview 

• Rick Stevens, Associate Laboratory Director, ANL 
 
9:50 a.m. AI for Energy: Introduction 

• Sydni Credle, Technology Manager, NETL 
 
10:10 a.m. AI for Security: An NNSA Perspective 

• Ron Oldfield, Manager, SNL 
 

10:30 a.m. Morning Break 
 

10:45 a.m. Plenary Talk 

• Dr. Rosemary Shumba, Chair and Professor, Department of Computer Science, BSU 
 

11:15 a.m. Breakout Charge 

• Ian Foster, Division Director, ANL 
 

12:00 p.m. Collect Box Lunch and Proceed to Domain Breakout Sessions 
 

Domain Breakout #1: AI and Robotics for Autonomous Discovery – Autonomous (robotic) 
laboratories, e.g., in biology, chemistry, materials, choosing the next experiments 
BSU Bldg. 20 - Student Center: Wiseman Ballroom 

• Chair: Arvind Ramanathan, ANL 

• Co-chair: Joshua Schrier, Fordham University 

• Scribe: Dinali Jawardana, BSU 
 

Domain Breakout #2: AI and Robotics for Autonomous Discovery – Analysis of data from large 
instruments, e.g., in HEP and astronomy 
BSU Bldg. 20 - Student Center: Baltimore/Columbia 

• Chair: Luc Peterson, LLNL 

• Co-chair: Tom Peterka, ANL 

• Scribe: Tia Dean, BSU 
 

Domain Breakout #3: AI and Robotics for Autonomous Discovery – Scenarios in which AI is used 
to steer experimental apparatus, e.g., light sources, Z-machine 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1220 

• Chair: Marcus Noack, LBNL 

• Co-chair: Christine Sweeney, LANL 

• Scribe: Mariam Kiran, LBNL  
 

Domain Breakout #4: AI and Robotics for Autonomous Discovery – Additive and advanced 

manufacturing with autonomous control, e.g., materials, pits, microelectronics 

BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1221 

• Chair: David Stevens, LLNL 

• Co-chair: John Feddema, SNL 

• Scribe: Vivia Lewis, BSU 
 

Domain Breakout #5: AI and Robotics for Autonomous Discovery – Automation in field and 

inhospitable environments, e.g., NNSA materials 

BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1222 

• Chair: Philip Bingham, ORNL 

• Co-chair: Steve Buerger, SNL 

• Scribe: Joed Ngangmeni, SNL 
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Domain Breakout #6: AI for Programming and Software Engineering – HPC modeling and 

simulation, e.g., performance, productivity, using Transformer models to move data from one 

accelerator to another, using AI for hardware design 

BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1223 

• Chair: Damian Rouson, LBNL 

• Co-chair: Feiyi Wang, ORNL 

• Scribe: Nick Winovich, SNL 

 

Domain Breakout #7: AI for Programming and Software Engineering – AI hardware and edge 

devices, e.g., experimental systems, data architectures, neuromorphic computing, co-design 

BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1224 

• Chair: Siva Rajamanickam, SNL 

• Co-chair: Valerie Taylor, ANL 

• Scribe: Zack Morrow, SNL 

 

Domain Breakout #8: AI for Programming and Software Engineering – Data intensive science, 

e.g., AI methods for data analysis on HPC systems, deploying AI on HPC systems 

BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1225 

• Chair: Danny Dunlavy, SNL 

• Co-chair: Guojing Cong, ORNL 

• Scribe: Nathaniel Hudson, UChicago 

 

Domain Breakout #9: AI for Programming and Software Engineering – Real-time control systems, 

e.g., nuclear reactors, critical infrastructure, grid, etc. 

BSU Bldg. 19 – Thurgood Marshall Library: Library Special Collections 

• Chair: Draguna Vrabie, PNNL 

• Co-chair: David Womble, ORNL 

• Scribe: Valerie Hayot-Sasson, UChicago 

 

Domain Breakout #10: AI for Programming and Software Engineering – AI-assisted software 

development, e.g., vulnerability analysis of software, using AI to identify flaws / vulnerabilities in 

software, programming systems, transformation, modernization, performance analysis, 

optimization 

BSU Bldg. 19 – Thurgood Marshall Library: Library Auditorium 

• Chair: Rajeev Thakur, ANL 

• Co-chair: Chunhua Leo Liao, LLNL 

• Scribe: Qian Gong, ORNL 

 
5:00 p.m. Day One Concludes 

WEDNESDAY, AUGUST 17, 2022 

Bowie State University, Bldg. 20 - Student Center: Wiseman Ballroom 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m.  Domain Breakouts Report Out (10 min. each) 

• Domain Breakout #1: AI and Robotics for Autonomous Discovery –  
Autonomous (robotic) laboratories 

• Domain Breakout #2: AI and Robotics for Autonomous Discovery –  
Analysis of data from large instruments 

• Domain Breakout #3: AI and Robotics for Autonomous Discovery –  
Scenarios in which AI is used to steer experimental apparatus 
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• Domain Breakout #4: AI and Robotics for Autonomous Discovery –  
Additive and advanced manufacturing with autonomous control 

• Domain Breakout #5: AI and Robotics for Autonomous Discovery –  
Automation in field and inhospitable environments 

• Domain Breakout #6: AI for Programming and Software Engineering –  
HPC modeling and simulation 

• Domain Breakout #7: AI for Programming and Software Engineering –  
AI hardware and edge devices 

• Domain Breakout #8: AI for Programming and Software Engineering –  
Data intensive science 

• Domain Breakout #9: AI for Programming and Software Engineering –  
Real-time control systems 

• Domain Breakout #10: AI for Programming and Software Engineering –  
AI-assisted software development 

 
11:45 a.m.  Crosscut Breakout Charge  
 Ron Oldfield, Manager, SNL 
 
12:00 p.m. Collect Lunch and Proceed to Crosscut Breakout Sessions 
 

Crosscut Breakout #1: AI and Robotics for Autonomous Discovery – Software and Frameworks 
BSU Bldg. 20 - Student Center: Wiseman Ballroom 

• Chair: Brian Van Essen, LLNL 

• Co-chair: Mike Grosskopf, LANL 

• Scribe: Dinali Jawardana, BSU 
 
Crosscut Breakout #2: AI for Programming and Software Engineering – Software and 
Frameworks 
BSU Bldg. 20 - Student Center: Baltimore/Columbia 

• Chair: Prasanna Balaprakash, ANL 

• Co-chair: Aleksandra Ciprijanovic, FermiLab 

• Scribe: Pamela Moses, BSU 
 
Crosscut Breakout #3: AI and Robotics for Autonomous Discovery – Mathematics and 
Foundations 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1220 

• Chair: Tommie Catanach, SNL 

• Co-chair: Sven Leyffer, ANL 

• Scribe: Amina Ayodeji-Ogundiran, BSU 
 
Crosscut Breakout #4: AI for Programming and Software Engineering – Mathematics and 
Foundations 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1221 

• Chair: Rick Archibald, ORNL 

• Co-chair: Silvia Crivelli, LBNL 

• Scribe: Aditya Kashi, ORNL 
 
Crosscut Breakout #5: AI and Robotics for Autonomous Discovery – Workflows (Edge to Center) 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1222 

• Chair: Shantenu Jha, BNL 

• Co-chair: Peer-Timo Bremer, LLNL 

• Scribe: Hao Lu, ORNL 
 
Crosscut Breakout #6: AI for Programming and Software Engineering – Workflows (Edge to 
Center) 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1223 

• Chair: Arjun Shankar, ORNL 

• Co-chair: Nicola Ferrier, ANL 

• Scribe: Tom Uram, ANL  
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Crosscut Breakout #7: AI and Robotics for Autonomous Discovery – Data Management and Data 
Infrastructure 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1224 

• Chair: Rosalyn Rael, LANL 

• Co-chair: Deb Agarwal, LBNL 

• Scribe: Kadir Amasyali, ORNL 
 

Crosscut Breakout #8: AI for Programming and Software Engineering – Data Management and 
Data Infrastructure 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1225 

• Chair: Michela Tauffer, University of Tennessee Knoxville 

• Co-chair: Franck Cappello, ANL 

• Scribe: Casey Stone, ANL 
 

Crosscut Breakout #9: AI and Robotics for Autonomous Discovery – AI Hardware Architectures 
BSU Bldg. 19 – Thurgood Marshall Library: Library Special Collections 

• Chair: Frank Liu, ORNL 

• Co-chair: Jim Ang, PNNL 

• Scribe: Ana Gainaru, ORNL 
 

Crosscut Breakout #10: AI for Programming and Software Engineering – AI Hardware 
Architectures 
BSU Bldg. 19 – Thurgood Marshall Library: Library Auditorium 

• Chair: Galen Shipman, LANL 

• Co-chair: Clayton Hughes, SNL 

• Scribe: Khaled Ibrahim, LBNL 
 
5:00 p.m. Day Two Concludes 

THURSDAY, AUGUST 18, 2022 

Bowie State University, Bldg. 20 - Student Center: Wiseman Ballroom 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m.  Crosscut Breakouts Report Out (10 min. each) 

• Crosscut Breakout #1: AI and Robotics for Autonomous Discovery –  
Software and Frameworks 

• Crosscut Breakout #2: AI for Programming and Software Engineering –  
Software and Frameworks 

• Crosscut Breakout #3: AI and Robotics for Autonomous Discovery –  
Mathematics and Foundations 

• Crosscut Breakout #4: AI for Programming and Software Engineering –  
Mathematics and Foundations 

• Crosscut Breakout #5: AI and Robotics for Autonomous Discovery –  
Workflows (Edge to Center) 

• Crosscut Breakout #6: AI for Programming and Software Engineering –  
Workflows (Edge to Center) 

• Crosscut Breakout #7: AI and Robotics for Autonomous Discovery –  
Data Management and Data Infrastructure 

• Crosscut Breakout #8: AI for Programming and Software Engineering –  
Data Management and Data Infrastructure 

• Crosscut Breakout #9: AI and Robotics for Autonomous Discovery –  
AI Hardware Architectures 

• Crosscut Breakout #10: AI for Programming and Software Engineering –  
AI Hardware Architectures 

 



 

AA. AGENDAS 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY   

168 

11:45 a.m. Concluding Remarks 
 Rick Stevens, Associate Laboratory Director, ANL 
 
12:00 p.m. Collect Lunch and Writing Group Convenes in the Ballroom 
 
3:00 p.m. Workshop 3 Adjourns 
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AB. COMBINED WORKSHOP REGISTRANTS 

FIRST NAME LAST NAME INSTITUTION 

Jonas Actor Sandia National Laboratories 

Omotoyosi Adams National Nuclear Security Administration 

Deb Agarwal Lawrence Berkeley National Laboratory 

James Ahrens Los Alamos National Laboratory 

Ahmad Al Rashdan Idaho National Laboratory 

Francis Alexander Brookhaven National Laboratory 

Boian Alexandrov Los Alamos National Laboratory 

Jonathan Allen Lawrence Livermore National Laboratory 

Kadir Amasyali Oak Ridge National Laboratory 

Oluwamayowa Amusat Lawrence Berkeley National Laboratory 

Gemma Anderson Lawrence Livermore National Laboratory 

James Ang Pacific Northwest National Laboratory 

Katie Antypas Lawrence Berkeley National Laboratory 

Rick Archibald Oak Ridge National Laboratory 

Daniel Arnold Lawrence Berkeley National Laboratory 

Pedro Arrechea IBM 

Lloyd Arrowood CNS (Y-12) 

Halima Audu Bowie State University 

Amina Ayodeji-Ogundiran Bowie State University 

Tyler Backman Lawrence Berkeley National Laboratory 

Prasanna Balaprakash Argonne National Laboratory 

Feng Bao Florida State University 

Jennifer Bauer National Energy Technology Laboratory 

Tom Beck Oak Ridge National Laboratory 

Pete Beckman Argonne National Laboratory 

Kristian Beckwith Sandia National Laboratories 

Carolyn Begeman Los Alamos National Laboratory 

Mehmet Belviranli Colorado School of Mines 

Russell Bent Los Alamos National Laboratory 

Debasis Bera Samsung 

Wahid Bhimji Lawrence Berkeley National Laboratory 

Philip Bingham Oak Ridge National Laboratory 

Aron Bishop Bowie State University 

Jonathan Bisila Sandia National Laboratories 

Anika Bissahoyo Bowie State University 

Johannes Blaschke Lawrence Berkeley National Laboratory 

Patrick Blonigan Sandia National Laboratories 

Harry Bonilla-Alvarado Ames National Laboratory 

Peter Bosler Sandia National Laboratories 

Kristofer Bouchard Lawrence Berkeley National Laboratory 

Peer-Timo Bremer Lawrence Livermore National Laboratory 

Thomas Brettin Argonne National Laboratory 

Ben Brown Lawrence Berkeley National Laboratory 

Stephen Buerger Sandia National Laboratories 

Tan Bui-Thanh University of Texas at Austin 



 

AB. COMBINED WORKSHOP REGISTRANTS 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY   

170 

FIRST NAME LAST NAME INSTITUTION 

Aydin Buluc Lawrence Berkeley National Laboratory 

Josh Burby Los Alamos National Laboratory 

Shawn Burns National Nuclear Security Administration 

Paolo Calafiura Lawrence Berkeley National Laboratory 

Andrea Calloway Bowie State University 

Eden Canlilar Google 

Yanzhao Cao Auburn University 

Franck Cappello Argonne National Laboratory 

Matthew Carbone Brookhaven National Laboratory 

Janine Carney National Energy Technology Laboratory 

Austin Carson SeedAI 

Jonathan Carter Lawrence Berkeley National Laboratory 

Tommie Catanach Sandia National Laboratories 

Charlie Catlett Argonne National Laboratory 

Mayanka Chandra Shekar Oak Ridge National Laboratory 

Barry Chen Lawrence Livermore National Laboratory 

Junhong Chen Argonne National Laboratory 

Matthew Cherukara Argonne National Laboratory 

Taylor Childers Argonne National Laboratory 

Seonho Choi Bowie State University 

Youngsoo Choi Lawrence Livermore National Laboratory 

Alok Choudhary Northwestern University 

Sutanay Choudhury Pacific Northwest National Laboratory 

Giridhar Chukkapalli NVIDIA 

Michael Churchill Princeton Plasma Physics Laboratory 

Randy Churchill Princeton Plasma Physics Laboratory 

Aleksandra Ciprijanovic Fermilab 

Mary Ann Clarke National Energy Technology Laboratory 

Austin Clyde Argonne National Laboratory 

Ryan Coffee Stanford Linear Accelerator Center 

William (Bill) Collins Lawrence Berkeley National Laboratory 

Guojing Cong Oak Ridge National Laboratory 

Dylan Copeland Lawrence Livermore National Laboratory 

Sydni Credle National Energy Technology Laboratory 

Silvia Crivelli Lawrence Berkeley National Laboratory 

Sajal Dash Oak Ridge National Laboratory 

Warren Davis Sandia National Laboratories 

Wibe de Jong Lawrence Berkeley National Laboratory 

Tia Dean Bowie State University 

Diego Del-Castillo-Negrete Oak Ridge National Laboratory 

Thomas Desautels Lawrence Livermore National Laboratory 

Chris DeYoung Penguin 

Gautham Dharuman Argonne National Laboratory 

Sayera Dhaubhadel Los Alamos National Laboratory 

Emily Dietrich Argonne National Laboratory 

William Dorland Princeton Plasma Physics Laboratory 

Eamon Duede University of Chicago 
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FIRST NAME LAST NAME INSTITUTION 

Vincent Dumont Lawrence Berkeley National Laboratory 

Danny Dunlavy Sandia National Laboratories 

Mary Dzielski Argonne National Laboratory 

Christopher Earls Cornell University 

Auralee Edelen Stanford Linear Accelerator Center 

Hilary  Egan National Renewable Energy Laboratory 

Hoda El-Sayed Bowie State University 

Austin Ellis Oak Ridge National Laboratory 

Patrick Emami, Patrick National Renewable Energy Laboratory 

Tegan Emerson Pacific Northwest National Laboratory 

Keith Erickson Princeton Plasma Physics Laboratory 

David Etim National Nuclear Security Administration 

Katherine Evans Oak Ridge National Laboratory 

Sam Evans Harvard University 

John Feddema Sandia National Laboratories 

Kyle Felker Argonne National Laboratory 

Nicola Ferrier Argonne National Laboratory 

Hal Finkel Department of Energy 

Garrison Flynn Los Alamos National Laboratory 

Sam Foreman Argonne National Laboratory 

Ian Foster Argonne National Laboratory 

Geoffrey Fox University of Virginia 

Devin Francom Los Alamos National Laboratory 

Joshi Fullop Los Alamos National Laboratory 

Ana Gainaru Oak Ridge National Laboratory 

Baskar Ganapathysubramanian Iowa State University 

Hector Garcia Martin Lawrence Berkeley National Laboratory 

Anthony Garland Sandia National Laboratories 

Tim Germann Los Alamos National Laboratory 

Dipak Ghosal University of California, Davis 

Ayana Ghosh Oak Ridge National Laboratory 

Brian Giera Lawrence Livermore National Laboratory 

Andrew Gillette Lawrence Livermore National Laboratory 

Jens Glaser Oak Ridge National Laboratory 

Peter Glaskowsky Esperanto Technologies, Inc. 

Sonja Glavaski-Radovanovic Pacific Northwest National Laboratory 

Ylicia Godinez National Nuclear Security Administration 

Michael Goldman Lawrence Livermore National Laboratory 

Qian Gong Oak Ridge National Laboratory 

Aldair Gongora Lawrence Livermore National Laboratory 

Renee Gooding Sandia National Laboratories 

Carl Goodman Bowie State University 

Wyatt Gorman Google 

Alex Gorodetsky University of Michigan 

John Gounley Oak Ridge National Laboratory 

David Graham Oak Ridge National Laboratory 

Michael Grosskopf Los Alamos National Laboratory 
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FIRST NAME LAST NAME INSTITUTION 

Salman Habib Argonne National Laboratory 

Simon Hammond National Nuclear Security Administration 

Peter Harrington Lawrence Berkeley National Laboratory 

Valerie Hayot-Sasson University of Chicago 

Bruce Hendrickson Lawrence Livermore National Laboratory 

Tae Wook Heo Lawrence Livermore National Laboratory 

Michael Heroux Sandia National Laboratories 

Kyle Hickmann Los Alamos National Laboratory 

Jeffrey Hittinger Lawrence Livermore National Laboratory 

Justin Hnilo U.S. Department of Energy 

Thuc Hoang National Nuclear Security Administration 

Eric Hoar Savannah River National Laboratory 

Andy Hock Cerebras Systems 

Sameera Horawalavithana Pacific Northwest National Laboratory 

Jason Hou Pacific Northwest National Laboratory 

Paul Hovland Argonne National Laboratory 

Yu-Ting (Tim) Hsu Lawrence Livermore National Laboratory 

Xun Huan University of Michigan 

Andy Huang Sandia National Laboratories 

Xiaobiao Huang Stanford Linear Accelerator Center 

Nathaniel Hudson University of Chicago 

Eliu Huerta Argonne National Laboratory 

Clay Hughes Sandia National Laboratories 

Kelli Humbird Lawrence Livermore National Laboratory 

Lisa Hundley Argonne National Laboratory 

Wade Hunter NextSilicon 

Khaled Ibrahim Lawrence Berkeley National Laboratory 

Michael Irvin Argonne National Laboratory 

Toby Isaac Argonne National Laboratory 

Olexandr Isayev Carnegie Mellon University 

Dan Jacobson Oak Ridge National Laboratory 

Dinali Jayawardana Bowie State University 

Shantenu Jha Brookhaven National Laboratory 

Grant Johnson Ames National Laboratory 

Earl Joseph Hyperion Research 

Amy Justice VA Connecticut Healthcare System West Haven 

Aditya Kashi Oak Ridge National Laboratory 

Karthik Kashinath NVIDIA 

Beth Kaspar Los Alamos National Laboratory 

Jennifer King National Renewable Energy Laboratory 

Ryan King National Renewable Energy Laboratory 

Mariam Kiran Esnet 

Kerstin Kleese van Dam Brookhaven National Laboratory 

Natalie Klein Los Alamos National Laboratory 

Elena Klimova Bowie State University 

Risi Kondor University of Chicago 

John Korbin Bowie State University 
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FIRST NAME LAST NAME INSTITUTION 

Ron Koshita Pacific Northwest National Laboratory 

Olivera Kotevska Oak Ridge National Laboratory 

Douglas Kothe Oak Ridge National Laboratory 

Sharlotte Kramer Sandia National Laboratories 

Aditi Krishnapriyan Lawrence Berkeley National Laboratory 

Michael Kruse Argonne National Laboratory 

Ralph Kube Princeton Plasma Physics Laboratory 

Neeraj Kumar Pacific Northwest National Laboratory 

Suhas Kumar Rain AI 

Ana Kupresanin Lawrence Livermore National Laboratory 

Kuldeep Kurte Oak Ridge National Laboratory 

Paul Laiu Oak Ridge National Laboratory 

Michael Lang National Nuclear Security Administration 

Earl Lawrence Los Alamos National Laboratory 

Patricia Lee U.S. Department of Energy 

Steven Lee U.S. Department of Energy 

Margaret Lentz U.S. Department of Energy 

Edgar Leon Lawrence Livermore National Laboratory 

Katie Lewis Lawrence Livermore National Laboratory 

Vivia Lewis Bowie State University 

Sven Leyffer Argonne National Laboratory 

Frankie Li HPE 

Chunhua Liao Lawrence Livermore National Laboratory 

Linyu Lin Idaho National Laboratory 

Frank Liu Oak Ridge National Laboratory 

Xin Liu University of California, Davis 

Yajun Liu SuperMicro 

Zhengchun Liu Argonne National Laboratory 

Andrey Lokhov Los Alamos National Laboratory 

Manuel Lopez Roldan Graphcore 

Vaness Lopez-Marrero Brookhaven National Laboratory 

Hao Lu Oak Ridge National Laboratory 

Zarija Lukic Lawrence Berkeley National Laboratory 

Dalton Lunga Oak Ridge National Laboratory 

Massimiliano Lupo Pasini Oak Ridge National Laboratory 

Darlyn Lutes Argonne National Laboratory 

Nancy Lybeck Idaho National Laboratory 

Isaac Lyngaas Oak Ridge National Laboratory 

Heng Ma Argonne National Laboratory 

Ravi Madduri Argonne National Laboratory 

Ramana Madupu U.S. Department of Energy 

Alister Maguire Lawrence Livermore National Laboratory 

Michael Mahoney Lawrence Berkeley National Laboratory 

Thomas Maier Oak Ridge National Laboratory 

Linda Malone Oak Ridge National Laboratory 

Carla Mann Argonne National Laboratory 

Manohar Mareboyana Bowie State University 
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FIRST NAME LAST NAME INSTITUTION 

Vasileios Maroulas University of Tennessee Knoxville 

Cari Martinez Sandia National Laboratories 

Chris Mayes Stanford Linear Accelerator Center 

Benjamin McMahon Los Alamos National Laboratory 

Diana McSpadden Jefferson Laboratory 

Murali 

(Gopalakrishnan) 

Meena  Oak Ridge National Laboratory 

Daniel Merl Lawrence Livermore National Laboratory 

Wayne Mitchell Lawrence Livermore National Laboratory 

Bashir Mohammed Lawrence Berkeley National Laboratory 

Kelly Moran Los Alamos National Laboratory 

Dmitriy Morozov Lawrence Berkeley National Laboratory 

Zachary Morrow Sandia National Laboratories 

Pamela Moses Bowie State University 

Silvia Mulligan Argonne National Laboratory 

Albert Musaelian Harvard University 

Jamie Myers Oak Ridge National Laboratory 

Kary Myers Los Alamos National Laboratory 

Kristian Myhre U.S. Department of Energy 

Habib Najm Sandia National Laboratories 

Hai Ah Nam Lawrence Berkeley National Laboratory 

Ben Nebgen Los Alamos National Laboratory 

Rob Neely Lawrence Livermore National Laboratory 

Joed Ngangmeni Pacific Northwest National Laboratory 

Nga Nguyen-Fotiadis Los Alamos National Laboratory 

Jeff Nichols Oak Ridge National Laboratory 

Jonathan Nistor BlueWave AI Labs 

Marcus Noack Lawrence Berkeley National Laboratory 

Andrew Norman Fermilab 

Alex Norton Hyperion Research 

Peter Nugent Lawrence Berkeley National Laboratory 

Dan O'Malley Los Alamos National Laboratory 

Adetunji Oduduwa Bowie State University 

Aderonke Oduwole Bowie State University 

Ayodeji Ogundiran Bowie State University 

Ron Oldfield Sandia National Laboratories 

Diane Oyen Los Alamos National Laboratory 

Pinaki Pal Argonne National Laboratory 

Michael Papka Argonne National Laboratory 

Vincent Paquit Oak Ridge National Laboratory 

Julie Parente Argonne National Laboratory 

Tina Park Partnership on AI 

Lekha Patel Sandia National Laboratories 

Ravi Patel Sandia National Laboratories 

Sean Peisert Lawrence Berkeley National Laboratory 

Slaven Peles Oak Ridge National Laboratory 

Swann Perarnau Argonne National Laboratory 
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FIRST NAME LAST NAME INSTITUTION 

Talita Perciano Lawrence Berkeley National Laboratory 

Paris Perdikaris University of Pensylvania 

Tom Peterka Argonne National Laboratory 

Luc Peterson Lawrence Livermore National Laboratory 

Yarom Polsky Oak Ridge National Laboratory 

Stanley Posey NVIDIA 

Thomas Potok Oak Ridge National Laboratory 

Line Pouchard Brookhaven National Laboratory 

Zach Prince Idaho National Laboratory 

Jason Pruet Los Alamos National Laboratory 

Irene Qualters Los Alamos National Laboratory 

Rosalyn Rael Los Alamos National Laboratory 

Siva Rajamanickam Sandia National Laboratories 

Kishansingh Rajput Jefferson Laboratory 

Robert Rallo Pacific Northwest National Laboratory 

Lavanya Ramakrishnan Lawrence Berkeley National Laboratory 

Sreenivasan Ramamurthy University Of Maryland, Baltimore County 

Arvind Ramanathan Argonne National Laboratory 

Monsuru Ramnoi Navajo Tech 

Pradeep Ramuhalli Oak Ridge National Laboratory 

Timothy Randles Los Alamos National Laboratory 

Nageswara Rao Oak Ridge National Laboratory 

Jaideep Ray Sandia National Laboratories 

Yihui Ren Brookhaven National Laboratory 

Matthew Reno Sandia National Laboratories 

Juan Restrepo Oak Ridge National Laboratory 

Ryan Richard Ames National Laboratory 

Rob Rieben Lawrence Livermore National Laboratory 

Joshua Romero NVIDIA 

Damian Rouson Lawrence Berkeley National Laboratory 

Wissam Saidi National Energy Technology Laboratory 

Brian Sammuli General Atomics 

Nandakishore Santhi Los Alamos National Laboratory 

Soumalya Sarkar Raytheon Technologies 

Kento Sato Riekn 

Nobuo Sato Jefferson Laboratory 

Markus Schordan Lawrence Livermore National Laboratory 

Mark Schraad Los Alamos National Laboratory 

Malachi Schram Thomas Jefferson National Accelerator Facility 

Joshua Schrier Fordham University 

Sudip Seal Oak Ridge National Laboratory 

William Severa Sandia National Laboratories 

Zubair Shafiq University of California, Davis 

Vivek Shandilya Bowie State University 

Arjun Shankar Oak Ridge National Laboratory 

Millikarjun Shankar Oak Ridge National Laboratory 

Yongning Sheng SambaNova Systems Inc. 
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FIRST NAME LAST NAME INSTITUTION 

Chung Shih National Energy Technology Laboratory 

Galen Shipman Los Alamos National Laboratory 

Amir Shirkhodaie Tennessee State University 

Rose Shumba Bowie State University 

Horst Simon U.S. Department of Energy 

Prashant Singh Ames National Laboratory 

Mike Sohn Lawrence Berkeley National Laboratory 

Carlos Soto Brookhaven National Laboratory 

Brian Spears Lawrence Livermore National Laboratory 

Claudia Spiro NNSA-NA-22 

Michael Sprague National Renewable Energy Laboratory 

Suhas Sreehari Oak Ridge National Laboratory 

George Stelle Los Alamos National Laboratory 

Rick Stevens Argonne National Laboratory 

David Stevens Lawrence Livermore National Laboratory 

Panos Stinis Pacific Northwest National Laboratory 

Jennifer Stokes-Draut Lawrence Berkeley National Laboratory 

Casey Stone Argonne National Laboratory 

Otto Erik Strack Sandia National Laboratories 

Thomas Strohmer University of California, Davis 

Shashank Subramanian Lawrence Berkeley National Laboratory 

Fred Sudler Oak Ridge National Laboratory 

Sreenivas Sukumar HPE 

WaiChing Sun Columbia University 

Rajeev Surendran Assary Argonne National Laboratory 

Samantika Sury Samsung 

Ceren Susut U.S. Department of Energy 

Sriram Swaminarayan Los Alamos National Laboratory 

Christine Sweeney Los Alamos National Laboratory 

Anika Tabassum Oak Ridge National Laboratory 

Bill Tang Princeton Plasma Physics Laboratory 

Michela Taufer University of Tennessee, Knoxville 

Valerie Taylor Argonne National Laboratory 

Kazuhiro Terao Stanford Linear Accelerator Center 

Rajeev Thakur Argonne National Laboratory 

Peter Thornton Oak Ridge National Laboratory 

Peyton Ticknor Oak Ridge National Laboratory 

Zoe Tosi Lawrence Livermore National Laboratory 

Gina Tourassi Oak Ridge National Laboratory 

Nathaniel Trask Sandia National Laboratories 

Thomas Uram Argonne National Laboratory 

Daniela Ushizima Lawrence Berkeley National Laboratory 

Bart van Bloemen Waanders Sandia National Laboratories 

Hubertus Van Dam Brookhaven National Laboratory 

Brian Van Essen Lawrence Livermore National Laboratory 

Bart vanBloemenWaanders Sandia National Laboratories 

Dirk VanEssendelft National Energy Technology Laboratory 
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FIRST NAME LAST NAME INSTITUTION 

Lav Varshney Brookhaven National Laboratory 

Rama Vasudevan Oak Ridge National Laboratory 

Stephen Verzi Sandia National Laboratories 

Richard Vilim Argonne National Laboratory 

Svitlana Volkova Pacific Northwest National Laboratory 

Draguna Vrabie Pacific Northwest National Laboratory 

Adam Wachtor Los Alamos National Laboratory 

Feiyi Wang Oak Ridge National Laboratory 

Logan Ward Argonne National Laboratory 

Jean-Paul Watson Lawrence Livermore National Laboratory 

Bobbie-Jo Webb-Robertson Pacific Northwest National Laboratory 

Justin Weber National Energy Technology Laboratory 

Jack Wells NVIDIA 

Madison Wenzlick National Energy Technology Laboratory 

Daniel White Lawrence Livermore National Laboratory 

Lauret White Advanced Micro Devices, Inc. 

Rebekah White Sandia National Laboratories 

Andrew Wiedlea Lawrence Berkeley National Laboratory 

Stefan Wild Argonne National Laboratory 

Timothy Wildey Sandia National Laboratories 

Karen Willcox University of Texas, Austin 

Nolan Wilson, Nolan National Renewable Energy Laboratory 

Theresa Windus Ames National Laboratory 

Nickolas Winovich Sandia National Laboratories 

Kristen Winther Stanford Linear Accelerator Center 

Robert Wisniewski Samsung 

Lora Wolfe Oak Ridge National Laboratory 

David Womble Oak Ridge National Laboratory 

John Wu Lawrence Berkeley National Laboratory 

Dongbin Xiu Ohio State University 

Angel Yanguas-Gil Argonne National Laboratory 

Fenghui Yao Tennessee State University 

Shinjae Yoo Brookhaven National Laboratory 

Guannan Zhang Oak Ridge National Laboratory 

Pei Zhang Oak Ridge National Laboratory 

Amanda Ziemann Los Alamos National Laboratory 

Steve Zitney National Energy Technology Laboratory 
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AC. ACRONYMS AND ABBREVIATIONS 

ACRONYMS  ABBREVIATIONS 

3D three-dimensional 

5G, 6G fifth-generation, sixth-generation [networks] 

AAR Annual Assessment Report (NNSA) 

ADAPD Advanced Data Analytics for Proliferation Detection 

AI artificial intelligence 

AI4SES AI for Science, Energy, and Security 

ALCF Argonne Leadership Computing Facility 

ALS Advanced Light Source (LBNL) 

AML Advanced Machine Learning 

AMO Advanced Manufacturing Office (DOE) 

ARD advanced research direction 

ARPA-E Advanced Research Projects Agency–Energy (DOE) 

ASC Advanced Simulation and Computing (LLNL) 

ASCR Advanced Scientific Computing Research (DOE) 

BER Biological and Environmental Research (DOE-SC) 

BES Basic Energy Sciences (DOE-SC) 

CANDLE Cancer Distributed Learning Environment 

CFD computational fluid dynamics 

CMOS complementary metal oxide semiconductor 

DAE differential-algebraic equation 

DARPA Defense Advanced Research Projects Agency 

DDMD Discovery, Design Optimization, Manufacturing and Certification, and Deployment and Surveillance 

DFT density functional theory 

DNN deep neural network 

DNN R&D Defense Nuclear Nonproliferation Research and Development (NNSA, also NA-22) 

DOE U.S. Department of Energy 

DP Office of Defense Programs (DOE) 

DT digital twin 

ECP Exascale Computing Project 

EDA electronic design automation 

EERE Office of Energy Efficiency and Renewable Energy (DOE) 

ESnet Energy Sciences Network 

ESnet6 sixth generation of ESnet 

FAIR Findable, Accessible, Interoperable, Reusable 

FECM Office of Fossil Energy and Carbon Management (DOE) 

Flop, flops floating point operations 

FPU first production unit 

FSM finite state machine 

FY fiscal year 

GPU graphical processing unit 

HED high-energy-density 

HEDP high-energy-density physics 

HIL hardware-in-the-loop 

HPC high-performance computing 

I/O input/output 
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ACRONYMS  ABBREVIATIONS 

IC integrated circuit 

IP intellectual property 

IRI integrated research infrastructure 

ITER International Thermonuclear Experimental Reactor 

LANSC Los Alamos Neutron Science Center 

LBANN Livermore Big Artificial Neural Network 

LEP life extension programs 

LLNL Lawrence Livermore National Laboratory 

LYNM Low Yield Nuclear Monitoring 

MINOS Multi-Informatics for Nuclear Operations Scenarios 

ML machine learning  

NA-10 Office of Defense Programs (NNSA) 

NA-20 Office of Defense Nuclear Nonproliferation (NNSA) 

NA-22 Defense Nuclear Nonproliferation Research and Development (NNSA) 

NA-50 Office of Infrastructure (NNSA) 

NA-114 Reference in Ch. 10 

NAERM North American Energy Resilience Model 

ND nuclear deterrent 

NDES nuclear deterrence electrical system 

NDTE Non-Destructive Test and Evaluation 

NE Office of Nuclear Energy (DOE) 

NERSC National Energy Research Scientific Computing Center (DOE-ASCR) 

NIH National Institutes of Health 

NNSA National Nuclear Security Administration 

NSF National Science Foundation 

OOD out-of-distribution 

OLCF Oak Ridge Leadership Computing Facility 

ORNL Oak Ridge National Laboratory 

PDE partial differential equation 

PF-4 Reference in Ch. 10 

PI Principal Investigator  

PPL probabilistic programming language 

QoI quite OK image (format)  

R&D research and development 

RadMHD radiation-magnetohydrodynamics 

RKE resilient knowledge ecosystem 

RL reinforcement learning 

ROM reduced-order model 

SAW Sandia Analysis Workbench 

SC Office of Science (DOE) 

SME subject matter expert 

SNS Spallation Neutron Source (ORNL) 

SSP scientific seed prompt 

STEM science, technology, engineering, and medicine 

STS Second Target Station (ORNL-SNS) 

TB terabyte 

TSRH Trusted strategically rad-hard 
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ACRONYMS  ABBREVIATIONS 

UQ uncertainty quantification  

V&V validation and verification 

WCI-ICF Weapons and Complex Integration-Inertial Confinement Fusion 

XAI Explainable AI 
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