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EXECUTIVE SUMMARY 
Over the past decade, fundamental changes in artificial intelligence (AI)—from foundational to applied—have delivered 
dramatic insights across a wide breadth of U.S. Department of Energy (DOE) mission space. AI is helping to augment and 
improve scientific and engineering workflows (e.g., for control, design, and dramatic performance gains through surrogate 
models) in national security, the Office of Science, and DOE’s applied energy programs. The progress and potential for AI in 
DOE science was captured in the 2020 “AI for Science” report from the DOE laboratory community in collaboration with 
academia and industry. Specific scientific areas ready to further leverage the power of AI ranged from the scale and 
performance of computational models to data analysis to creating new classes of observations using computer vision. Since 
that report, the scale and scope of scientific AI have accelerated, revealing new, emergent properties that yield insights that go 
beyond enabling opportunities to being potentially transformative in the way that scientific problems are posed and solved. 

Thus, under the guidance of both the Office of Science (SC) and the National Nuclear Security Administration (NNSA), the 
DOE national laboratories organized a series of workshops in 2022 to gather input on new and rapidly emerging opportunities 
and challenges of scientific AI. This 2023 report is a synthesis of those workshops. The scientific community believes AI can 
have a foundational impact on a broad range of DOE missions, including science, energy, and national security. Further, DOE 
has unique capabilities that enable the community to drive progress in scientific use of AI, building on long-standing DOE 
strengths and investments in computation, data, and communications infrastructure, spanning the Energy Sciences Network 
(ESnet), the Exascale Computing Project (ECP), and integrative programs such as the NNSA Office of Defense Programs 
Advanced Simulation and Computing (ASC) and the SC Scientific Discovery through Advanced Computing (SciDAC) 
programs. 

Today, the urgency to undertake a major and transformational initiative in AI is increasing, fueled both by the acceleration of AI 
advancements and the robust international activity and investments to capture these advancements. Moreover, the 
introduction of powerful language models in public-facing Internet services such as those from OpenAI, Microsoft, Meta, and 
Google have revealed a pressing need for fundamental understanding of new, emergent capabilities of these models and the 
associated risks to society. This report details the criticality of harnessing AI to advance science and address national 
imperatives such as energy and security, laying out a research agenda that is equally relevant and desperately needed, while 
also addressing challenges such as those discussed in an April 2023 open letter from the Association for the Advancement of 
Artificial Intelligence (AAAI), including “the potential for AI systems to make errors, to provide biased recommendations, to 
threaten our privacy, to empower bad actors with new tools, and to have an impact on jobs” [1]. 

Fields such as natural language processing (NLP) and image recognition have shown game-changing promise, as have the 
design, engineering, deployment, and operation of complex systems—especially those lying at the heart of DOE’s core 
science, energy, and security mission areas. Progress in designing and deploying supercomputers in China, Japan, Europe, 
and other nations has resulted in a competitive AI position that cannot be ignored. As AI capabilities begin to transform nearly 
every aspect of science, energy, and security, establishing leadership in AI and in the underlying capabilities, including high-
performance computing (HPC), will be intimately tied to the nation’s future and its role in the global order. This race is arguably 
deeper and more consequential than any the nation has seen in the past 60 years. As noted in the Final Report of the National 
Security Commission on Artificial Intelligence:  

No comfortable historical reference captures the impact of artificial intelligence (AI) on national security. AI is not 
a single technology breakthrough, like a bat-wing stealth bomber. The race for AI supremacy is not like the space 
race to the moon. AI is not even comparable to a general-purpose technology like electricity. However, what 
Thomas Edison said of electricity encapsulates the AI future: “It is a field of fields … it holds the secrets which 
will reorganize the life of the world.” [2]. 

Similarly, global forces threaten the nation’s leadership in semiconductors, despite promising results from ECP, HPC, and data 
infrastructure. These areas are inextricably tied to leadership in AI, where the most revolutionary advances are empowered by 
computation and unprecedented volumes of data. The extreme scales offered by exascale systems represent the global 
stakes for AI competitiveness, but leadership will hinge on developing sustainable exascale and beyond-exascale (zettascale) 
computing environments along with the underlying theory, mathematics, and software systems necessary to exploit the power 
of those systems. As such, this report lays out six crucial foundational AI methodologies; elucidates their potential to transform 
DOE’s science, energy, and security mission areas; sets forth a broad architecture of crosscutting technology areas that must 
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be advanced to enable those transformations; and assesses the state of DOE’s workforce and the scale, computational 
capability, and data infrastructure with respect to the department’s ability to affect those advancements. 

Global leadership—empowered by comprehensively and aggressively embracing and advancing AI across DOE—will also 
require bold initiatives in at least three dimensions. The first is to address increasingly disruptive workforce challenges, notably 
the diversion of talent from fundamental and applied sciences at DOE laboratories and academia toward supporting 
commercial applications where only a subset of incentives and goals align with DOE missions. The second is to capitalize on 
lessons learned through designing and deploying exascale systems, from semiconductors and HPC system co-design efforts 
through computing and storage system integration to system and application software, along with the need in future systems 
for much closer, and nontraditional, partnerships with industry providers. The third is to fully embrace the nascent potential to 
harness emergent capabilities of deep learning—exemplified in the AI approaches outlined in the first section of this report—by 
investing in focused campaigns targeted at DOE mission challenges, all of which are nationally strategic. 

This report lays out a comprehensive vision for DOE to leverage and expand new capabilities in AI to accelerate the progress, 
and deepen the quality of mission areas spanning science, energy, and security. Equally important, the vision and blueprint 
align precisely with the pressing need for scientific grounding in areas such as bias, transparency and explainability, data 
security, validation and accuracy, and grappling with the impact of AI on jobs. Much of the most dramatic progress being made 
in AI comes from industry and defense in the U.S. and other nations, whose objectives and incentives only partially align with 
DOE’s mission. These advances also reflect the migration of AI and computer science talent to industry, creating a workforce 
disruption that DOE must address with a sense of urgency. Nevertheless, DOE’s investments in exascale systems, 
infrastructure, software, theory, and applications—combined with unique, multidisciplinary co-design approaches scaled to 
thousands of experts—uniquely position the DOE complex to extend its global leadership in science, energy, and security. 
Concurrently, these DOE assets and capabilities are uniquely suited to address new, AI-related challenges faced by society 
today—creating not only opportunity, but the responsibility, to lead the nation and to creatively engage U.S. industry to 
address those challenges. Focused, sustained campaigns toward the development and application of new AI methods are 
required, along with their integration into (and in some cases replacement of) the tools and infrastructure supporting DOE 
mission areas and leveraging of the world-leading human, computational, and data science infrastructure created through the 
ECP and foundational DOE programs and integrative infrastructure including ESnet, SciDAC, and others. 

AI for Science, Energy, and Security: Report Overview 
Well over a thousand researchers participated in seven workshops in 2019 and 2022. The workshops in 2019 and the 
resulting report, “AI For Science,” detailed the opportunities for applying new AI and machine learning (ML) techniques to the 
DOE enterprise, spanning 16 application areas, including science, energy, security, facilities, and other facets of the complex. 
Building on this application roadmap, the 2022 workshops were organized around significant advances in AI that represent 
emerging challenges and opportunities, focusing on (1) six broadly applicable AI building block approaches with potential to 
transform the department’s modeling, simulation, and experimental processes; (2) the domain-specific opportunities they 
represent for science, energy, and security grand challenges; (3) crosscutting technologies that must be adapted or created to 
enable those opportunities while also addressing significant new challenges associated with emergent properties in AI such as 
those that are demonstrated with large language models; and (4) the current state of readiness in workforce, data, 
infrastructure, and scale. 

Section 01 details six new AI-empowered computing paradigms—AI Approaches (see the Introduction’s sidebar). These form 
a set of building blocks that combine and scale fundamental AI functions, such as inference from large-scale and often 
unstructured and multi-modal data sources, NLP, and object recognition. These building blocks can be integrated to generate 
transformational capabilities, from surrogate and foundation models; to digital twins; to automated, real-time control and 
optimized instruments, experiments, or complex infrastructure, and ultimately autonomous experiments, laboratories, and 
instruments; to automated software engineering and programming. Executing on these AI-empowered computing paradigms is 
timely given recent discoveries of emergent capabilities that represent new classes of AI models, such as large language 
models (underlying products like ChatGPT,1 Bard, and Bing) and foundation models, and accelerated progress in capabilities 
such as physics-informed surrogate models. 

In Section 02, we show the impact of applying these new AI approaches to the unique challenges of DOE’s application and 
program areas in basic science, energy, and national security programs, as well as the emerging Energy Earthshots. 
Achieving these transformations will require fundamental changes in the nature of computational workloads, significantly 

 
1 The remarkable popularity and societal concern regarding OpenAI’s ChatGPT—growing to 100M users during the several months’ time that 

this report was compiled—illustrates the urgency and criticality of the research and development outlined in this report. 
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increasing the scale of computational and data resources needed as workloads shift to encompass model training as well as 
exploring a broader range of model scenarios. Transforming our effectiveness in addressing DOE science, energy, and 
security challenges requires rethinking foundational concepts, including traditional simulation, modeling, and data analysis 
approaches and meeting new and rapidly evolving demands placed upon underlying physical and software infrastructure. 

Section 03 describes five key crosscutting technology challenge areas that must be addressed to bridge the gap between 
model-driven methods and data-driven methods; develop the underlying mathematical and foundations of scientific machine 
learning; and create new integrative systems—themselves empowered by the new approaches outlined in Section 01. These 
demand advances in theory and foundational mathematics and computer science methods. The importance of these 
multidisciplinary challenges is illustrated by the paradigm-shifting opportunities outlined throughout Sections 01 and 02, but 
these core capabilities are also manifest, and their importance amplified, in precisely the concerns expressed today with 
respect to AI safety and ethics, including a proposed framework for an Ethics Framework to Guide AI RD&D [1].  

We conclude with Section 04 by assessing the current state and highlighting the challenges, opportunities, and strategies 
necessary to advance and leverage new AI capabilities, translating decades of investment and advancement of DOE’s world-
leadership in modeling, simulation, and infrastructure into world-leadership in AI-empowered science, energy, and security 
systems. This will require the DOE workforce, scale of operation, computational and data resources, and instrumentation to be 
similarly transformed to meet the challenges and achieve the vision captured in this report. 

ES.1 References 
[1] Association for the Advancement of AI, 2023. Working together on our future with AI, April 5. https://aaai.org/working-

together-on-our-future-with-ai/, accessed May 12, 2023.  

[2] National Security Commission on Artificial Intelligence, 2021. Final Report, October. https://www.nscai.gov/2021-final-
report, accessed December 16, 2022. 

[3] Grout, R., Rose, K., Taylor, V., and Essen, B., 2022. AI@DOE Interim Executive Report, United States. 
https://doi.org/10.2172/1872103, https://www.osti.gov/servlets/purl/1872103, accessed May 9, 2023. 
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INTRODUCTION: ADVANCED RESEARCH DIRECTIONS ON AI 
FOR SCIENCE, ENERGY, AND SECURITY
Within the backdrop of recent developments—for example, 
AI’s broad and fast-paced advances and potential impact on 
society, the rising tide of experimental and observational 
data, and availability of extreme-scale compute systems such 
as those deployed through the U.S. Department of Energy’s 
(DOE’s) exascale computing programs—DOE’s core 
missions in science, energy, and security stand at an 
inflection point. Decades of investments in world-class 
physical experimental, observational, and computational 
infrastructure; the underlying theory, modeling, and software 
necessary for the design, operation, and optimization thereof; 
and the diverse design, operational, and scientific expertise 
and experience necessary to use that infrastructure all 
provide the nation with world-leading capabilities. These 
foundational human and technology infrastructure assets 
uniquely position DOE to harness and drive new and 
emerging capabilities in artificial intelligence (AI), directly 
addressing research questions that we now see thrust into 
the public discourse regarding the benefits and dangers of 
powerful AI. 

Harnessing DOE Leadership in 
Computation and Data 
The most promising advances in AI result from scale, thus 
computational capacity and capabilities are central to driving 
the future of AI [1]. The nationwide Exascale Computing 
Project (ECP) team of over 1,000 scientists, engineers, and 
program support staff from DOE laboratories, academia, and 
industry has positioned DOE uniquely in this respect, having 
created a vision for exascale computing and then developing, 
organizing, and executing a DOE complex-wide campaign to 
not merely lead the world but to redefine the field. In 2022, 
the Exascale Computing Initiative (ECI) demonstrated this 
paradigm shift, deploying the world’s first exascale 
supercomputer—the highest ranked world-wide, with more 
capability and capacity than the next four ranked systems 
combined.2 In 2023, the second DOE exascale machine will 
provide twice this capacity. 

ECP leveraged decades of investment in software, facilities, 
and scientific workforce, including programs such as the 
National Nuclear Security Administration (NNSA) Defense 
Programs Advanced Simulation and Computing (ASC) and 
Office of Science (SC) Scientific Discovery through Advanced 

 
2 The November TOP500 rankings show the ECP system, Frontier, 

at 1102 Petaflop/s, leading Japan’s Fugaku (442), EU’s Lumi (309) 
and Leonardo (174), and DOE’s Summit (149), also an ECI 
system. 

Computing (SciDAC) and Energy Science Network (ESnet) 
programs. DOE’s science, energy, and national security 
mission areas have relied on this infrastructure supporting 
physics-based modeling and simulation as an underlying 
paradigm for discovery and design as well as for operations. 
This paradigm spans every facet of computation, from basic 
mathematical algorithms and libraries to system software; 
workflow and data management to applications; and 
encompassing processing, memory, storage, and 
communications hardware and system architectures. 

Nevertheless, the dividends of these intellectual and financial 
investments have also exacerbated growing challenges in 
model, code, and workflow complexity. Similarly, the enormity 
of the data produced by models, even on sub-exascale 
systems, has outstripped traditional data management, 
curation, and analysis capacity, which are similarly complex 
and reliant on human experts. Exploiting the potential of 
emerging, extreme-scale AI models such as surrogate or 
foundation models will place the entire data management 
infrastructure in the critical path for computation rather than 
the traditional role of repositories. Moreover, these 
challenges are central to a critical concern facing society 
today: understanding the data used to train large language 

 
 
 

AI APPROACHES 
New AI-Empowered Computing Paradigms, known 
in this report as AI Approaches 

The scale of data and computation for training AI 
models is opening the potential today for new 
paradigms in computation, including the following AI 
Approaches: 

01. AI and Surrogate Models for Scientific Computing 

02. AI Foundation Models for Scientific Knowledge 
Discovery, Integration, and Synthesis 

03. AI for Advanced Property Inference and Inverse 
Design 

04. AI-Based Design, Prediction, and Control of 
Complex Engineered Systems 

05. AI and Robotics for Autonomous Discovery 

06. AI for Programming and Software Engineering 
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models [2]. Here, AI also offers new approaches to managing 
scale and complexity for both the data and computational 
software infrastructure. The resulting transformation will yield 
complex models that retain resilience and robustness yet are 
more agile and flexible. This outcome will bring deeper 
integration of complex workflows combining experiment and 
computational models. 

DOE’s world leadership in exascale computing and the 
broader aspects of computation and related infrastructure 
directly translate to leadership in science, engineering, and 
security—all of which rely on computational modeling and 
simulation. But ECP also accelerated progress in pioneering 
applications, such as ExaLearn and CANDLE (both described 
in Chapter 17), that leverage unprecedented advances in AI 
and machine learning (ML), including those that are only 
unlocked through exascale computation and commensurate 
scales of data. There remains much untapped potential for 
these innovations to drive new science, energy, and security 
discoveries but also to accelerate the pace of discovery itself 
[3]. Moreover, implementing new AI models within traditional 
modeling and simulation approaches has resulted in both 
entirely new large-scale, data-driven workflows for exascale 
systems and extraordinary improvements in computation 
rates, ultimately multiplying the capacity of those systems. 

ECP also revealed challenges that are amplified by the scale 
of computation and data necessary to fully embrace new AI 
methods, which will require sustained growth in both the 
capabilities of individual exascale and post-exascale 
simulation technologies and the overall capacity of 
computational and data resources supporting DOE mission 
areas. Addressing the prodigious costs of design, 
deployment, and operation of exascale systems will itself 
require AI models. Simply put, these investments have the 
potential—through nontraditional DOE-industry 
partnerships—to impact AI and computation like the impact 
observed in using reusable rockets for satellite 
communications and ultimately space travel. Consequently, 
urgent and immediate action is critical to capturing and 
extending the alignment of insights, community, 
infrastructure, and momentum created with the ECP program. 

Leveraging Industry Advances to 
Extend U.S. Leadership 
The incredible pace of innovation in AI is fueled by enormous 
investments by industry and nation states, primarily focused 
on applications central to industry and national security. 
Underlying techniques and methods, as well as infrastructure 
design and investment strategies from industry and defense 
applications will provide indispensable inputs for DOE 
mission areas in science, energy, and security. The same 
was true for exascale computing—industry and the work of 
other U.S. agencies provided important technologies and 
strategies. But without DOE leadership and sustained 

investment, today’s most capable systems would be 
operating in China, Japan, and the European Union in 
support of their leadership in science, energy, and security. 

Despite the rapid progress being made in industry and 
defense in the U.S. and other nations, many of the objectives 
central to DOE’s mission are not being addressed by industry 
or defense activities. However, DOE’s investments in 
exascale systems, large-scale data infrastructure, software, 
theory, and applications—combined with unique co-design 
approaches now scaled to thousands of experts—uniquely 
position the DOE complex’s use of AI to extend its global 
leadership in science, energy, and security. New AI 
approaches, outlined in this report, can transform DOE’s 
mission areas, particularly through the enabling capabilities of 
DOE’s exascale and beyond computational infrastructure. But 
these new methods and resulting applications will not self-
assemble through incremental progress—they demand a 
complex-wide, integrated initiative with a scale and vision that 
will impact every aspect of not only computational 
applications but the design, optimization, and even the 
assembly and operation of scientific instruments, user 
facilities, and both experimental and operational 
infrastructure. 

Embracing Fundamental AI 
Approaches: Building Blocks 
Six major AI “approaches” have emerged and solidified even 
during the three years since the initial DOE AI workshops 
were conducted [4]. Thus, in 2022 the DOE laboratories 
organized a second set of AI workshops, which examined this 
set of conceptual building blocks—each grounded in 
fundamental AI capabilities such as inference, optimization, 
and deep learning (Section 01). In domain areas spanning 
the DOE complex (Section 02), opportunities are identified to 
apply these approaches, challenges that must be overcome 
to do so, and specific advances that will be required. In turn, 
these Advanced Research Directions (ARDs) reveal 
crosscutting technology requirements in DOE’s infrastructure 
and computational methods, such as scientific workflows and 
the data lifecycle (Section 03). Finally, in Section 04, we 
assess the readiness of the DOE complex—from hardware to 
the workforce—to implement the methodological, logistical, 
and cultural changes necessary to not only adopt new AI 
capabilities in support of the DOE mission but to provide the 
scientific leadership necessary to advance national 
competitiveness in science, energy, and security. 

The scientific community created a comprehensive report 
following the 2019 workshops, laying out opportunities and 
challenges across 16 domains and technology areas 
comprising the DOE complex, from material science to 
complex engineered systems to mathematics and computer 
science [4]. However, the approaches addressed in that 
report were either in early formative stages or, in some 
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cases, had not yet revealed the potential associated with 
scale. For instance, the confluence of advances in ML 
(particularly self-supervised, transfer, and deep learning) with 
extreme-scale data and enormous investments in 
computation time has only recently resulted in emergent 
capabilities in natural language processing (NLP) that reveal 
strategies for application in science and engineering. Such 
“foundation models” are “trained on broad data (generally 
using self-supervision at scale) that can be adapted 
(e.g., fine-tuned) to a wide range of downstream tasks” [5]. 

The state of AI methods in 2019 suggested that substantial 
gains would accrue through grassroots adoption and 
exploration across the many scientific, energy, security, 
engineering, and infrastructure facets of the DOE complex. 
Although this path to progress remains in place today, this 
kind of incremental investment and organic activity would 
also limit DOE—and by extension the nation’s science, 
energy, and security initiatives—to incremental advances at a 
time when other global leaders are investing in 
transformational AI agendas. Since 2019, early and entirely 
new capabilities associated with large-scale AI models 
represent an inflection point where there is opportunity for 
DOE to embrace pathfinding rather than adopting AI as 
followers. Simply put, global leadership cannot be achieved 
through incremental nor solely grassroots progress. 

Seizing Opportunities; Addressing 
New Challenges 
Success in this transformation will also exacerbate existing 
challenges. Harnessing the creativity and effectiveness of a 
truly diverse scientific workforce raises the bar on training 
multiple generations of researchers in AI methods. Many of 
today’s entry-level research functions may be eliminated to 
realize the top-to-bottom shift from traditional modeling and 
simulation to the AI approaches, including autonomous 
discovery and robotics (Chapter 05), along with associated 
reinventions in crosscutting areas such as those outlined in 
Section 03 of this report (data infrastructure, workflows, 
programming tools, etc.). Here, ethics must play an important 
proactive role in guiding workforce reinvention and be a 
central element in the formation and execution of the work 
outlined throughout this report—in contrast to a reactive or 
passive role. These challenges are discussed in Chapter 16. 

Concurrent with these workforce challenges and rigorous 
data curation and associated tasks necessary for training AI 
models, new facets for consideration have emerged, such as 
new vulnerabilities related to training data—for example, the 
intentional or unintentional insertion of data that would 
undermine the correctness of the trained model. The need for 
new mathematics, theory, and foundational methods and 
approaches to data and model evaluation is highlighted 
throughout this report and emphasized in Chapter 12.  

A Blueprint for Leadership 
A leadership strategy for developing, advancing, and 
harnessing the potential power of the six AI approaches will 
require nothing less than a coordinated and comprehensive, 
sustained series of scientific, engineering, and infrastructure 
campaigns. This report specifies a blueprint for those 
campaigns, anchored in grand challenges that are central to 
the DOE mission. Certainly, industry progress will continue to 
be useful and relevant to DOE mission areas, but industry 
incentives are tied to market forces and business growth, and 
their data are often quite different in nature and content 
relative to DOE science, energy, and security data. 
Nevertheless, DOE AI initiatives must proceed in coordination 
with macrotrends in AI, many of which are industry-led and 
supported by increasing private sector investments. This 
approach fundamentally differs from the modeling and 
simulation technologies, methods, and related infrastructure 
that DOE has invented, invested in, and led for the past 
50 years. 

Five such AI macrotrends are reflected throughout this report:  

1. A trend toward larger-scale models, with new and 
emergent capabilities whose training requires 
computational resources that eclipse even the largest 
modeling and simulation efforts in the ECP. 

2. This training itself relies on significant preparation and 
encoding of enormous multimodal data streams and 
sources.  

3. A shift from a 1:1 relationship between data and 
simulation models to a 1:n relationship where the 
resulting AI model can be adapted and applied to many 
(“n”) modeling tasks. 

4. These trends introduce the need for extensive and 
rigorous evaluation suites, well beyond those necessary 
for current modeling and simulation projects.  

5. The scale of software engineering and programming 
efforts to harness these trends is substantial and is 
balanced with the potential for generalizable foundation 
models that can support large communities—in contrast 
to the current modeling/simulation paradigm of many 
individual research teams creating bespoke models and 
evaluation suites. 

The remaking of DOE’s science, energy, and security 
landscape with respect to computation, data, and 
experiments will of course create improved versions of 
contemporary modeling and simulation systems; but more 
importantly, it will result in a new class of applications that 
integrate AI capabilities in multiple steps. This migration will 
begin with hybrid applications (AI and traditional) and 
similarly mixed workflow tools, yielding to end-to-end 
replacements over the next several years. Moreover, 
advanced modern simulation and visualization tools such as 



 

INTRODUCTION 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY  

7 

“digital twins” established in engineering-based applications 
are rapidly moving into complex scientific-based domains [6].  

The focus on AI and the need for a comprehensive 
revitalization of DOE’s scientific enterprise reflects the 
growing evidence that AI is intimately tied to the nation’s 
future and its role in the global order. This reality is woven 
throughout reports from the White House [7] and National 
Academies [8], as well as industry [9] and nongovernmental 
sources. Each of these and other reports convey a similar 
message, that AI is one of only several competitive areas that 
“tell the story of a nation (and its allies) coming perilously and 
unwittingly close to ceding the strategic technology landscape 
and along with it the capacity to shape the future” [10]. 

Table Intro-1 Summary of the AI for Science, Energy, 
and Security – Expected Outcomes. 

01. AI AND SURROGATE 
MODELS FOR SCIENTIFIC 
COMPUTING 

02. AI FOUNDATION MODELS 
FOR SCIENTIFIC 
KNOWLEDGE DISCOVERY, 
INTEGRATION, AND 
SYNTHESIS 

• Fusion Energy • Stockpile Modernization 

• Predictive Multiphysics 
Simulations 

• Knowledge Distillation 
(unstructured to 
structured knowledge) 
and Hypothesis 
Formation 

• Cosmology 
• Digital Twins for 

Engineering Complex 
Scientific Domains 

03. AI FOR ADVANCED 
PROPERTY INFERENCE 
AND INVERSE DESIGN 

04. AI-BASED DESIGN, 
PREDICTION, AND 
CONTROL OF COMPLEX 
ENGINEERED SYSTEMS 

• Materials, Chemistry, and 
Biology Design (atomic / 
molecular scale) 

• Hi-rep Rate Laser 

• Engineered Structures / 
Systems (continuum 
scale) 

• Accelerators 

• Non-proliferation / 
Decision Superiority 
(process / protocols) 

• Reactors (Fusion and 
Fission) 

05. AI AND ROBOTICS FOR 
AUTONOMOUS DISCOVERY 

06. AI FOR PROGRAMMING 
AND SOFTWARE 
ENGINEERING 

• Nuclear Weapons Design 
Transformation 

• Adaption of Codes for 
New Computational 
Targets 

• Accelerated Discovery in 
Materials, Chemistry, and 
Biology 

• Discovering Quality 
Control Algorithms and 
Quality Control 
Optimization 

• Advanced Manufacturing • AI-Driven Co-design 

Expected Outcomes 
We highlight key expected science, energy, and security 
outcomes around the six AI approaches detailed in 
Section 01, which hold transformational potential both 
individually and in combination. More detailed descriptions of 
these and other expected outcomes are included throughout 
the report, particularly in Section 02: Domains. 

Harnessing the five macrotrends comprising the leadership 
blueprint above will require a set of focused campaigns at the 
scale of the ECP project—hundreds of participants from DOE 
laboratories, universities, and industry, working together to 
co-design major instruments (in this case, exascale 
computers) and the software and applications that unlock the 
power of that instrument. Each of the six new AI paradigms 
described in Section 01 require organizing DOE data to build 
and train large-scale AI models targeting specific domain 
areas and involving model design and evaluation. The scale 
required for these campaigns is illustrated by industry efforts 
such as OpenAI’s development of GPT-4 [11] [12], whose 
initial training required months of dedicated time on an 
exascale platform. By late 2023, DOE’s Frontier and Aurora 
systems alone will provide nearly five times the computational 
capacity of OpenAI’s system.  

Each campaign will demand an orchestrated team of 
hundreds of participants who will (a) assemble and prepare 
data from across the DOE complex, (b) strategically augment 
existing experimental data with data from current 
computational models, (c) design and train large-scale AI 
models—typically surrogates or foundation models—along 
with careful evaluation (e.g., validation, uncertainty 
quantification), and (d) develop and scale crosscutting 
capabilities (e.g., workflows, data and communications 
infrastructure) and methodologies (e.g., supporting 
explainability). 

Here we provide highlights of the expected outcomes of 
these campaigns. 

01. AI AND SURROGATE MODELS FOR SCIENTIFIC 
COMPUTING 
Surrogate models, trained by the results of computational 
models, demonstrate orders-of-magnitude speedups over the 
originals. Conceptually, surrogate models represent a 
potential to effectively achieve zettascale performance on 
exascale systems by virtue of their simpler yet faithful 
representation of the full, complex system. Such performance 
is essential for AI systems that can rapidly explore a decision 
space or that can suggest (or actuate) decisions related to 
complex instruments or infrastructure, as we further outline in 
Chapter 04. Following are four exemplars illustrating the 
impact of surrogate models on the DOE mission. 

Climate. Surrogates will enable a new type of AI-accelerated 
climate model, accelerating the model core and process 
physics to yield a speedup rate of at least three orders of 
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magnitude. The surrogate model is trained by using a variety 
of methods, including full baseline model cases on exascale 
systems and by training the individual model components. A 
key capability that such a model would enable is that massive 
ensembles could be run in the same amount of time as a 
single model, providing the basis for uncertainty quantification 
in the climate simulation output. This capability has the 
potential to revolutionize climate predictions, improve our 
understanding of climate variation, and accelerate predictions 
of climate impacts on humans and critical infrastructure. The 
urgency for understanding climate impacts, devising 
adaptations, and evaluating mitigation strategies places high 
priority on this work. 

Fusion Energy. Surrogates have enabled the introduction of 
an exciting kind of AI-accelerated fusion energy model, 
accelerating a validated global electromagnetic gyrokinetic 
code (GTC) to yield a speedup of over 5000x. This synthetic 
gyrokinetic surrogate model, SGTC, is trained using AI/ML 
methods, including full-baseline deep-learning approaches, 
with training carried out on current leadership-class systems, 
such as Summit at Oak Ridge National Laboratory and 
Polaris at Argonne National Laboratory. A key capability that 
this new model has demonstrated is carrying out massive 
numbers of experimentally validated cases run in the same 
amount of time as a single model, providing the basis for real-
time output. This approach has the potential to revolutionize 
real-time predictions in magnetic fusion energy, accelerating 
progress toward favorably modifying the plasma state to a 
more benign thermodynamic state. The urgency of devising 
such mitigation strategies for dangerous disruptive events in 
thermonuclear burning plasmas such as the International 
Thermonuclear Experimental Reactor (ITER) places high 
priority on intensive future validation studies of this kind [13]. 

Predictive Multiphysics Simulations. AI capabilities for 
bridging temporal and length scales in multiphysics 
simulations hold the promise of qualitative leaps in our ability 
to predict and design complex physical systems. These 
capabilities will employ a spectrum of AI methods that 
includes optimization of solvers and other fine-grained 
elements of simulations, efficient learned representation of 
cluttered data with sparse true information content, and 
accurate surrogates for coupled partial differential equations. 
Without this contribution, progress in our ability to simulate 
physical systems for science and national security will stall 
because advances in processor technologies can no longer 
keep pace with the computational cost of increasing 
simulation fidelity. For example, a factor-of-ten improvement 
in resolution in present three-dimensional (3D) simulations 
(which is still far below that needed for bridging to the 
mesoscale) would require a computer that is ten thousand 
times more powerful than exists today. Advances in 
simulation fidelity permitting an ability to predict from 
mesoscale phenomena to macroscopic performance will lead 

to a new generation of engineered physical systems for 
energy, science, and national security.  

Cosmology. The U.S. has invested heavily in cosmological 
surveys leading to discoveries that have unearthed some of 
the deepest mysteries in fundamental science. Because 
cosmology is an observational science, detailed simulations 
are used as forward models to understand and interpret 
large-scale datasets from sky surveys that cover wavebands 
from the radio to gamma rays. These simulations are some of 
the largest applications run on state-of-the-art high-
performance computing (HPC) systems. Under the ECP, the 
simulation capability for DOE-relevant cosmological missions 
has been significantly enhanced. Even so, using a single 
large-scale simulation to directly analyze data is cost 
prohibitive, as it may require thousands or even millions of 
individual runs. Precision surrogate models for summary 
statistics that correspond to cosmological observables were 
pioneered by DOE scientists who succeeded in reducing the 
time by many orders of magnitude (more than a billion), 
thereby allowing more powerful methods of data analysis to 
be used. As computational power grows, it will be possible to 
develop powerful, effective AI-based surrogate models 
(digital twins) for individual simulations in analogy to the case 
of climate science. 

02. AI FOUNDATION MODELS FOR SCIENTIFIC 
KNOWLEDGE DISCOVERY, INTEGRATION, AND 
SYNTHESIS 
The recognition that exascale computing capabilities would 
be critically important for training AI models was well 
understood in 2019, but results from recent industry 
investments in computational resources, along with access to 
vast multimodal data sources, point to even greater 
opportunities. These industry advances have demonstrated 
powerful and, in some cases, new emergent (unplanned and 
unexpected) capabilities, such as the ability of very large 
models to adapt to new tasks despite relatively sparse 
additional training data. Leveraging DOE’s investments in 
exascale systems, along with enormous and growing 
volumes of scientific data, foundation models have the 
potential to be trained for application on broad classes of 
problems relevant to equally large scientific communities. 
This opens the possibility for large-scale, community-built 
foundation models—including digital twins—that, in 
analogous fashion to scientific instruments, enable entire 
communities to perform computational experiments without 
the need to create bespoke infrastructure. Examples of the 
impact of developing foundation models for DOE science, 
energy, and security include the following areas: 

Stockpile Modernization. The NNSA’s nuclear deterrence 
mission requires rigorous analysis of the design, 
manufacturing, and surveillance of components and systems. 
When a component or system failure is identified, a 
significant findings report is created, and an extensive root 
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cause analysis is performed. This is an extremely time-
intensive process requiring person-months of effort searching 
through design, manufacturing, testing, and qualification 
documents and data. AI transformer and foundation model 
methods have shown tremendous advances in automatically 
identifying patterns in natural language, understanding 
relationships, and summarizing text. An urgent need exists 
amongst the NNSA and the DOE labs to extend these 
methods to specifically target the domains of math, science, 
and weapons system design. The current human-intensive 
processes in the NNSA life extension programs (LEPs) carry 
inherent risk of schedule slips. The ability to automatically 
digest technical documents, create summaries, and perform 
root-cause analysis could save the NNSA laboratory staff 
from spending enormous amounts of time on manually 
searching through documents for relevant information 
regarding significant findings. This same technology could be 
used in DOE Office of Science (SC) research facilities to 
perform literature searches, find similarities in reports, and 
summarize information. 

Knowledge Distillation (unstructured to structured 
knowledge) and Hypothesis Formation. Scientists and 
engineers at DOE laboratories seek to understand 
phenomena for which explanatory theories are lacking or 
inadequate (e.g., how clouds affect climate, or how vortices 
evolve in fusion plasmas), to solve engineering problems 
(e.g., an energy storage mechanism that can store 10x more 
energy for one-tenth of the price), or, frequently, to do both at 
once. Regardless of the specific problem being studied, a 
frequent challenge is the vast amount of existing knowledge 
that could potentially be relevant to its solution—a quantity 
that typically far exceeds the cognitive capacity of any one 
individual or even team. The recent and considerable 
successes achieved with large language models suggest that 
a transformative solution may be on the horizon. Most of the 
current “knowledge” is recorded, often implicitly, in 
unstructured forms, whether text (e.g., published scientific 
papers, technical reports, unpublished documents, lab 
notebooks, outputs from computations) or other digital 
formats (e.g., images, videos, simulation outputs). Such 
unstructured data contain vast amounts of information about 
what experiments and computations have been performed 
(whether successfully or unsuccessfully) and the results that 
were obtained, and also about the inferences made, 
hypotheses generated, and conclusions formed by human 
experts from different disciplines and backgrounds. A large 
language model trained on large corpora of this unstructured 
knowledge, particularly one that incorporates knowledge 
about the physical world, may well be able both to distill 
succinct structured representations of extant knowledge 
(e.g., by extracting every recorded property of a specific 
material or structure from millions of documents) and to 
generate hypotheses concerning previously unobserved 
relationships (e.g., by observing that a certain phenomenon 
has been observed only under specific unusual 

circumstances). Such a model would be an invaluable aid for 
DOE researchers working in a wide range of domains. 

Digital Twins for Engineering and Complex Scientific 
Domains. Digital twins established in engineering-based 
applications are rapidly moving into complex scientific-based 
domains [6]. DOE is undergoing a digital transformation 
initiative to support digital engineering within NNSA and SC. 
Transforming the nuclear deterrent (ND) lifecycle from a test-
based process to an integrated test–modeling and simulation 
(ModSim)-based process presents challenges due to the 
complex workflows. These workflows span desktop to HPC 
computational resources; design to environmental 
specification to rigorous qualification to surveillance activities; 
and multiple disciplines such as electrical, electromagnetics, 
mechanical, thermal, and various combinations of these. 
Ultimately, the goal of these workflows is to build the 
knowledgebase necessary to support a risk assessment. 
Much of this kind of risk-based assessment is asserted with 
expert judgment and experience. AI can be used to automate 
these workflows and formulate the risk assessment. Digital 
twins of components and systems will enable shortened 
design, testing, qualification, and surveillance life cycles. New 
AI methods are needed for: (1) model preparation and 
setup—such as computer-aided design (CAD) geometry 
cleanup and simplification for meshing, interpretation of 
design intent already within the CAD assembly design, 
material model choice and uncertainty-informed attribution, 
etc.; (2) model design and tuning: generating reduced-order 
models, solver choices, solver settings, etc.; (3) simulation: 
setting up and executing robust ensembles, quantities of 
interest extraction, optimization, etc.; (4) model credibility; 
(5) data: needed to form the technical basis; (6) risk 
assessment approach(es): to assert certification from the 
component level through to the system level; and 
(7) convolving subject matter expert judgment and formal 
uncertainty quantification methods. 

03. AI FOR ADVANCED PROPERTY INFERENCE 
AND INVERSE DESIGN 
A third AI method leverages the application of AI models to 
property inference and inverse design problems. The former 
involves the use of AI models to predict the physical 
properties of a system given its design, and the latter entails 
models that enable scientists to determine a system design 
that has specified desired properties. For example, in 
chemistry, a property inference model might be used to 
predict the melting point or toxicity of a molecule, given its 
chemical composition, while an inverse design tool would be 
used to identify molecules that are liquid at room 
temperature, have a high heat capacity, and are not toxic. 
Three outcomes illustrate the promise of property inference 
and inverse design. 

Materials, Chemistry, and Biology Design (atomic / 
molecular scale). Critical DOE science, energy, and security 
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missions depend on the discovery and development of new 
molecules for structural materials, biological therapeutics, 
energetic materials, and far more. Using a combination of 
HPC, AI, and experimental expertise, DOE will develop a 
molecular discovery engine that can build critical 
therapeutics—either small molecules or proteins—on bold 
timescales relevant to emergent biothreats, for example, 
several weeks from threat assessment to molecule design to 
deployment. The molecular discovery engine for bioresponse 
will be composed of high-performance, AI-steered processes 
that predict and optimize multiple properties of the molecule–
efficacy on target, safety in humans, pharmacokinetics, and 
manufacturability. The predictive models will provide 
validated measures of uncertainty and will integrate with 
automated chemical synthesis and experimental systems to 
steer the design optimization process and validate the 
resulting molecular designs. Early efforts to apply AI-driven 
models to components of the drug development pipeline have 
been quite successful. Growing access to the required data 
and models, coupled with improving AI-based and 
mechanistic computational models and automated precision 
measurement technologies have primed these applications 
for new capabilities. Inaction will leave the U.S. vulnerable to 
future pandemics and global pharmaceutical technoeconomic 
competition. These capabilities will accelerate and strengthen 
our response to biomedical threats to national security and to 
our economy. They will enable early threat assessment and 
guide the pre-positioning of data, models, and molecules to 
enable earlier starts for response. They will shorten 
development and validation timelines and potentially reduce 
cases, deaths, and economic impact. The capability is 
generally applicable to therapeutic development and will 
accelerate new medicines in areas such as cancer and 
neurological disease. However, such a molecular discovery 
engine has far more uses within DOE and the nation. With 
modification, the engine could be tuned to deliver new 
structural polymers, molecules for high explosives, custom 
metallic alloys for critical applications, and many more 
general material science applications. The impacts would be 
substantial, not only for science and security, but also for 
general U.S. economic and manufacturing competitiveness. 

Engineered Structures / Systems (continuum scale). The 
use of AI-enabled property inference and inverse design to 
create and optimize engineered systems and structures 
represents an opportunity for unprecedented integration 
across scales, from materials to components to entire 
complex engineered systems—and ranging from energy 
storage materials to entire distribution systems or from 
hardened electronics to weapons systems. Using AI for 
inverse engineering will result in “born qualified” 
manufacturable material components specifically tailored for 
precise design specifications. The impact of this integration 
will encompass time and other costs, as well as the safety, 
reliability, and sustainability of these materials, components, 
subsystems, and systems. For example, the complexity of the 

nation’s energy systems, combined with increased 
prevalence of extreme weather, confounds our ability to 
design and operate such systems reliably and cost 
effectively. Advances in AI will enable us to replace today’s 
large simulation models with inference from AI models and 
support real-time decision and control through inverse design 
and optimization processes, while also integrating inherently 
multimodal, heterogeneous, and rapidly growing data from 
the energy infrastructure into (global) energy infrastructure 
models with high fidelity to provide trustworthy predictions. 

Non-proliferation / Decision Superiority (process / 
protocols). AI-based advanced property inference methods 
will revolutionize capabilities for detecting, analyzing, and 
strategically acting on potential proliferation activities; AI-
enhanced text and graph analytics tools will significantly 
improve our ability to locate proliferation information and 
identify disinformation, as well as to identify loosely coupled 
organizations involved in nuclear proliferation, disinformation, 
and weapons development. Similarly, AI models trained on 
data from facilities monitoring and remote sensing will 
strengthen our ability to rapidly detect anomalies and patterns 
of life analysis across multiple sources of information, 
including rare event detection characterizing rogue actors 
(nation states or non-nation states). Simply put, new AI 
methods as outlined in this report will lead to game-changing 
acceleration of data-driven, repeatable, and reliable decision-
making with archived pedigree, and a reduction in the time 
and resources needed for situational analysis buttressed by 
greater confidence and analytical rigor. 

04. AI-BASED DESIGN, PREDICTION, AND 
CONTROL OF COMPLEX ENGINEERED SYSTEMS 
The use of AI for prediction and control of complex 
engineered systems—ranging from energy distribution grids 
to scientific instruments and user facilities to fusion energy 
systems—requires faster-than-real-time modeling. In some 
cases, timescales that demand highly local decisions given 
even the small latencies involved in sending data across a 
campus (or building) are also required. The concept of digital 
twins captures key capabilities necessary for the use of AI 
here—complex, multimodal representations of complex 
systems that operate faster-than-system-time 
(e.g., leveraging surrogates) to support decision-support 
models, and that continuously learn from operational and 
model data. Effective use of AI in the design and control of 
complex engineered systems will revolutionize science and 
engineering, including significantly improving the efficiency, 
reliability, and robustness of the energy infrastructure in the 
U.S.; enabling next-generation facilities and autonomous 
laboratories for scientific advancement; reshaping the 
manufacturing infrastructure to improve competitiveness; and 
developing advanced systems for national defense. The 
development and use of AI capabilities of this nature will have 
impacts as detailed below. 
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High-rep Rate Laser. DOE experimental facilities—from 
giant lasers to light sources to robotic chemistry systems—
will greatly increase both the volume and quality of mission-
critical data obtained in experiments by developing and using 
AI systems to simultaneously predict experiment performance 
and control the experimental facility. Data from laser 
experiments, images from accelerator light sources, and 
semi-autonomous manufacturing systems are all critical for 
the NNSA stockpile stewardship mission, but also for 
fundamental science that is core to the entire DOE mission. 
Across DOE, current experiment setup uses large-scale 
simulation to predict the experimental conditions and to 
optimally configure diagnostics to observe those conditions. 
The execution of these experiments and the following 
analysis is currently limited by using slow, conventional 
control systems and high-latency remote access to HPC. AI 
control models that combine simulation-based knowledge of 
experimental conditions with an ability to command AI-ready 
diagnostics will free scientists to explore system behavior far 
faster and more thoroughly than with rate-limiting traditional 
methods. These semi-autonomous, or “self-driving,” facilities 
would allow subject matter experts to explore new scientific 
territory with unprecedented speed. Self-driving operations 
based on AI control models would revolutionize experimental 
science across an expansive array of applications. The 
repetition rate and quality of design discovery on laser 
facilities, from the scale of the National Ignition Facility (NIF) 
to university lasers, would increase dramatically. Advanced 
accelerator systems, such as the currently upgrading SLAC 
National Accelerator Laboratory’s Linac Coherent Light 
Source (LCLS), will see dramatic throughput gains from new, 
rapid self-tuning and new hyper-capable laser probes for 
helping break new ground in High Energy Density (HED) 
experiments aimed at increasing our fundamental 
understanding of materials at extreme pressures and 
temperatures. Other beneficiaries include self-driving robotic 
chemistry systems for accelerated material science and drug 
discovery, advanced manufacturing platforms able to deliver 
real-time corrections for manufacturing errors, and 
comprehensive metrology systems that can analyze critical 
parts with increased fidelity and speed. AI-driven acceleration 
in these key experimental systems will shorten the time to 
solution for the stockpile mission, advance the pace of 
fundamental scientific discovery, and continue to position 
DOE as the premier attractor of talent in applied and 
fundamental science. New capabilities in AI are proliferating 
at the same time that computing is advancing to edge/control 
systems, providing a potent combination to automate 
experimental configurations on timescales of microseconds 
versus human timescales. The combination of deep expertise 
in HPC and large-scale experiments has positioned DOE to 
take an early lead in these transformations to highly 
automated experimental facilities. To wait would be to cede 
expertise here to Europe or China, with Europe already 
ahead in the use of small-scale, high-rep lasers and China 

coming on strong in both manufacturing and fundamental 
science. 

Accelerators. Particle accelerators and accelerator-based 
photon sources are key components of scientific discovery 
and are used in applications across industry, national 
security, and medicine. Both extending the capabilities and 
reducing the size and cost of accelerators are important to 
progress in many areas of science, including for better 
understanding the structure of the universe through high-
energy particle physics; creating brilliant photon sources for 
basic energy sciences, materials, and industry; and exploring 
new states of matter. This requires ever more complex and 
precise systems for which AI/ML methods are starting to be 
applied in design, deployment, and operation, and will 
become ever more critical as AI/ML methods—and 
accelerator performance demands—advance. An especially 
crucial expected impact of AI/ML algorithms is their use in the 
control and parameters tuning for accelerators in real time, 
during operation, to maximize performance. Major challenges 
ideally suited to new AI/ML approaches include the ability to 
precisely control the properties of accelerated beams, which 
are a function of many device components and environmental 
fluctuations. Switching between different experiments—
requiring large changes in beam properties—presents 
additional challenges and can require hours of hands-on 
tuning. Although first-principles modeling based on the 
multitude of component settings is computationally intractable 
in many cases [13], promising initial results have been 
observed by developing customized AI/ML methods that 
automatically compensate for unknown time-varying changes 
to accelerator components (such as magnets, and to 
unknown changes in the accelerator’s input beam 
distribution) [14]. In a related aspect of using AI/ML for 
improving the efficient operation of accelerators, early results 
have exploited classification and anomaly detection 
algorithms, with the aim of preventing accelerator damage or 
beam loss in the case of abnormal operation. For example, 
ML techniques have recently been applied to the early 
detection and classification of quench precursors in 
superconducting magnets, where conditions can build up to a 
circumstance where the magnetic field is suddenly lost. And, 
they have reduced orbit deviations in a synchrotron light 
source by an order of magnitude [15]. Looking to the future, a 
combination of effective AI/ML models and fast feedback 
control look to hold the keys to new generations of 
accelerators, for example, current work has enabled a new 
generation of efficient laser drivers for accelerators by 
combining more than eighty fibers all controlled to a fraction 
of the wavelength of light [16]. Development and 
implementation of even more accurate models will routinely 
be important to a broad range of future accelerators, from 
extracting the maximum intensity, to developing new and 
more compact accelerators based on laser driven plasmas, to 
future particle colliders. 
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Reactors (Fusion and Fission). High Energy Density 
Physics (HEDP) and fusion physics rely on multiphysics 
codes that model radiation-magnetohydrodynamics 
(radMHD) and density functional theory (DFT) calculations. 
These are computationally expensive calculations that 
display low-dimensional emergent behavior. There are also 
expensive experiments with multiple diagnostic 
measurements that are designed to test and calibrate the 
physical models. This calibration underscores a critical need 
for methods that can construct efficient, high-fidelity 
surrogates of the physics; identify the low-dimensional sub-
manifold structure of the modeled physics and the data 
(reduced-order model or topology); and finally assimilate the 
data with the model to refine and extend the estimate of the 
sub-manifold structure. Simply put, the physics needs to 
incorporate its deep learning from the multiphysics codes and 
the experimental data. Solving this problem will have major 
impacts on the understanding, uncertainty quantification, and 
validation and verification of HEDP, inertial confinement 
fusion, magneto-inertial fusion, magnetic confined fusion, and 
the stockpile. This approach could also be applied to a broad 
range of other physical problems such as climate physics, 
geophysics, and astrophysics. For magneto-inertial fusion in 
particular, it would enable new designs and reduce the risk of 
designs not performing both at current scale and future 
scales. It would also enable a much-improved experimental 
design to understand the physics (hypothesis test) and to 
reduce the risk. Such an advance could lead to a commercial 
fusion energy breakthrough and a more reliable stockpile. 

05. AI AND ROBOTICS FOR AUTONOMOUS 
DISCOVERY 
The use of AI for automating discovery in laboratory and 
other processes, including advances in robotics, will leverage 
property inference and inverse design to improve each step 
of discovery processes, bringing AI models to bear on 
designs ranging from energy storage to explosives to disease 
treatments. Combining these with AI-enabled robotics, guided 
by self-learning digital twins, DOE has the opportunity to fully 
integrate AI computation, data, and instruments in 
laboratories and user facilities—including multi-instrument 
laboratory workflows. Additional impacts of autonomous 
discovery and robotics are described below. 

Nuclear Weapons Design Transformation. On average, a 
major NNSA Alteration or Life Extension Program (LEP) 
typically runs 3.5 years behind its initial baseline schedule. In 
no small part, the first developmental half of the product 
development lifecycle tends to be full of requirements, 
architecture, design, qualification, cost, schedule, and design 
for manufacturing/surveillance iterations—each iteration 
requiring a few months of re-baselining by the core weapons 
system realization teams. AI methods described in this report 
enable models to be trained using the entire historical and 
current nuclear weapons data corpus (e.g., detailed design, 
requirements, architecture, qualification, production, 

surveillance, and formal and informal programmatic and 
technical information both labeled and unlabeled). The 
resulting model will propose a detailed weapons system 
design given a new set of requirements / architecture / 
funding / schedule constraint (test) data. Subject matter 
experts will then integrate the proposed detailed concept and 
leverage the high-fidelity concept to rapidly re-baseline the 
weapons system’s detailed design. This design cycle 
acceleration could reduce staffing, time, cost, and scope, 
affording the nuclear security enterprise a high probability of 
successfully executing simultaneous modernization programs 
on time and on budget. 

Accelerated Discovery in Materials, Chemistry, and 
Biology. All possible natural and synthetic materials are 
formed from 3D atomic configurations of just a few dozen 
different chemical elements. Ab initio computational methods 
can accurately predict diverse properties at the nanoscale but 
not on the vastly larger meso- to macro-scales on which 
critical performance and processing behaviors emerge 
(e.g., photovoltaics, metal alloy glasses, multiferroics, 
memristors). An AI/ML workflow that can leverage exabytes 
of ab initio data at the nanoscale would address this 
challenge, producing quantitatively predictive simulations of 
material synthesis processes and resultant performance 
properties. An AI-enabled workflow leveraging, for instance, 
new learning techniques would be sufficiently fast and 
accurate on exascale platforms to allow exploration and 
exploitation of vast combinatorial spaces of chemical 
composition and processing conditions on a timescale of 
days to weeks rather than over many months. This 
acceleration would provide real-time guidance for 
experimental design campaigns, where many of the nation’s 
most urgent security challenges are attributable to limitations 
in current materials. Such areas include, for instance, carbon-
free nuclear fusion energy production using new materials 
that can withstand hot plasma conditions; solar power 
production through advances in materials for photon capture 
and energy storage; nuclear deterrence, military, and space 
exploration advances enabled with reliable high-performance 
materials for extreme environments; and similar advances in 
computation, transport, and medicine. 

Advanced Manufacturing. Direct-digital additive 
manufacturing (AM) platforms, while attractive from a design 
flexibility standpoint, are still plagued by the inability to 
achieve process and parts qualification for high-consequence 
applications. This is particularly true for metal powder-
feedstock-based AM modalities, such as laser-powder bed 
fusion and directed energy approaches. Variabilities in 
powder feedstocks, the stochastic nature of laser-melt-pool-
plasma interactions, heterogeneous polycrystal grain 
structures from solidification, and systematic and random 
defects in the form of porosity and distortion underpin the 
difficulties of achieving material and process qualification. 
Automating the process inputs to parts/performance 
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integration requires data-driven computational intelligence 
that addresses all these stochastic variabilities. AI methods 
including inverse design will support the creation of workflows 
that can traverse the digital thread from model-based design 
through build and final part inspection. Deep learning 
capabilities will further reduce risk associated with process-
variation through models that are trained on at-line and on-
line sensor data and process and performance models. This 
advance will provide routine qualification successes and 
more effective application of techniques, such as powder 
metal AM to enable disruptive part designs, unique materials, 
and form factors for high-consequence national security 
systems in DOE SC and NNSA that cannot be produced with 
conventional approaches. Moreover, the use of these and 
other AI enablers could reduce the typical 10-year timelines 
associated with the insertion of new (and certified) metal AM 
parts into NNSA systems, in turn improving modularity and 
agility. Ultimately, the AM enabled by these, and other AI 
methods is the only way to achieve a cycle-reduction that 
impacts future programs and new systems. Success will also 
allow optimized in-situ monitoring and post-build inspection to 
minimize cost while maintaining product confidence. 

06. AI FOR PROGRAMMING AND SOFTWARE 
ENGINEERING 
Throughout the DOE complex and underpinning every 
scientific and operational process are increasingly complex 
software systems. The growth in scale and complexity of 
these systems, combined with their roles in critical systems 
such as instrument or energy infrastructure control, has been 
a recognized challenge for several decades. This situation 
has been particularly emphasized, given that the networked 
nature of these critical systems also exposes them to 
cybersecurity risks. Tremendous progress has been made in 
the use of AI to assist programmers and even to develop 
programs. Impacts expected through the use of AI for 
programming and software engineering include those listed 
below. 

Adaptation of Codes for New Computational Targets. AI 
for Programming and Software Engineering promises to 
change how we adapt codes for new computational targets 
enabling the nation to answer some of our most pressing 
science, energy, and security questions in weeks rather than 
years. Using large-scale master models that are trained on 
both the corpus of general-purpose programming and 
optimization techniques alongside the wealth of DOE science 
and engineering algorithms, we will develop automated aids 
allowing computational scientists to rapidly implement and 
evaluate these methods for a scientific problem. These 
master models will also be trained with high-performance 
implementations of algorithms on a variety of hardware 
technologies and will conduct performance and robustness 
evaluation using an active learning approach. AI has 
demonstrated massive speedups in code development. What 
currently takes large teams of developers and scientists 

years to complete might be accomplished in months or less in 
the future. This will address what has become a concerning 
dilemma—the pace of hardware specialization has become 
faster than the ability of human programmers to adapt to the 
advances offered by industry. Innovation in everything from 
materials science to designing complex engineered systems 
will be improved by our ability to map applications to quickly 
changing hardware. 

Discovering Quality Control Algorithms and Quality 
Control Optimization. Existing digital controls and systems 
for high-consequence applications, some dating back 
generations, are vulnerable to natural faults and adversarial 
attack. This applies to a wide variety of software systems that 
ensure the safety of the nuclear enterprise (nuclear weapons 
and its infrastructure) and energy systems (nuclear reactors, 
dams, oil refineries/pipelines, and electrical generation / 
transmission). Discovering faults and vulnerabilities in control 
and system software governing these applications before 
they are exercised is critical. Performing the usual by-hand 
assessments is not tractable because the type, quantity, and 
diversity of these installations are vast. What is needed is a 
systematic and automatic methodology for discovering faults 
and vulnerabilities in black box digital systems. The ability to 
quickly diagnose issues with high-consequence controls in 
the nation’s nuclear deterrent and energy infrastructure is 
important today and will likely increase in the future. An 
automated way to reconstruct (learn) a digital system and 
then use it in a formal analysis to check safety, security, and 
reliability properties would go a long way to securing the 
nation’s assets. A robust AI model learning and proof-finding 
assistant could dramatically change the scope and 
applicability of formal verification for national defense 
systems, which is currently limited by the time required for 
human-driven proof search. By effectively automating the 
process of complex formal verification, this research would 
enable DOE and NNSA to verify more requirements for digital 
national defense systems and the energy infrastructure, and 
more complex properties, potentially including cybersecurity 
properties. This advance would reduce overall design time 
while increasing assurance that the resulting systems are 
safe and reliable. The past few years have seen a number of 
academic and industry efforts working on how to apply recent 
advances in deep learning to formal methods-based 
verification in general and proof search in particular 
[17][18][19][20]. These efforts have demonstrated the 
feasibility of the approach, but it remains to be shown that it 
can translate to success in practice for real-world problems 
such as those faced by NNSA. 

AI-driven Co-design. The exponentially growing demand for 
computing and the end of Moore’s Law in microelectronics 
have resulted in an urgent call for microelectronics-compute 
co-design, in which each level of the “stack” co-evolves, 
sometimes radically. The co-design knowledge space, 
however, is enormous, spanning materials to algorithms over 
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vastly different conceptual scales. Future HPC systems will 
benefit from leveraging a far more heterogeneous assortment 
of microelectronics technologies than today’s systems have, 
but achieving this increased diversity, which may include 
conventional complementary metal-oxide semiconductor 
(CMOS) accelerators, analog computing, quantum 
computing, and neuromorphic computing, presents several 
implementation challenges. DOE requires an ability to design 
such heterogeneous computing systems effectively with U.S. 
industry partners and needs the ability to jointly configure 
systems based on application requirements while tailoring the 
applications to these systems. For a given computational 
application (or assortment of applications), this 
heterogeneous design should be able to effectively identify a 
desirable customized combination of these computing 
technologies that implements desired functions while 
maximizing the advantages of each technology for maximal 
time, space, and energy efficiencies. Further, this approach 
should be able to forecast how these emerging technologies 
will evolve to make solutions flexible going forward. An AI 
system to solve this task would have to explore a very large 
combinatorial space of interactions between potential 
components, with the main data for this effort being 
simulation and benchmark data from different existing and 
proposed microelectronics platforms. The AI methods 
required for this problem could leverage recent advances in 
reinforcement learning (which has been used for optimizing 
circuit design, but not yet full computing systems), adaptive 
AI frameworks, model-based learning, and stochastic AI 
methods that make complex strategic decisions from a large 
search space. Solving this problem will provide a significant 
step forward in maintaining U.S. leadership in 
microelectronics technologies and will help reduce the energy 
requirements of computing systems. The growing challenges 
of improving conventional computing technology present a 
risk to U.S. leadership in microelectronics, which poses 
significant economic and national security challenges. By 
maximally leveraging these emerging computing 
technologies, the U.S. and DOE have an opportunity to 
extend their leadership in HPC technologies overall and 
achieve more impactful capabilities in computing for science, 
energy, and national security while meeting energy efficiency 
and cost requirements. 
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SECTION 01: AI APPROACHES 
 

This section details six new AI-empowered computing paradigms, or AI Approaches. 
These approaches form a set of building blocks combining and scaling fundamental 
AI functions, such as inference from large-scale and often unstructured and multi-
modal data sources, natural language processing, and object recognition. These 
building blocks create transformational capabilities, from surrogate and foundation 
models to digital twins to automate real-time control of instruments, experiments, or 
complex infrastructure; inverse design systems and ultimately autonomous 
experiments, laboratories, and instruments; and automated software engineering and 
programming. Making this report particularly timely are relatively recent discoveries of 
emergent capabilities that represent new classes of AI models, including foundation 
models and physics-informed ML surrogate models. 
 
 
Chapter 01: AI AND SURROGATE MODELS FOR SCIENTIFIC COMPUTING 

Chapter 02: AI FOUNDATION MODELS FOR SCIENTIFIC KNOWLEDGE 
DISCOVERY, INTEGRATION, AND SYNTHESIS 

Chapter 03: AI FOR ADVANCED PROPERTY INFERENCE AND INVERSE DESIGN 

Chapter 04: AI-BASED DESIGN, PREDICTION, AND CONTROL OF COMPLEX 
ENGINEERED SYSTEMS 

Chapter 05: AI AND ROBOTICS FOR AUTONOMOUS DISCOVERY 

Chapter 06: AI FOR PROGRAMMING AND SOFTWARE ENGINEERING 
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01. AI AND SURROGATE MODELS FOR SCIENTIFIC COMPUTING 
The U.S. Department of Energy (DOE) has been a world 
leader in scientific computing for decades. DOE’s use of 
scientific computing has helped the nation meet many 
mission challenges, advancing the state of the art in science, 
engineering, energy, and national and global security. 
Growing computing power has enabled increased complexity 
and fidelity in simulations and their expansion into new 
scientific frontiers. However, the computational cost to 
capture these details has grown to consume the largest 
supercomputing resources. While these full-scale simulations 
lead to important discoveries and enhanced understanding, 
only a limited number are possible given that they require the 
use of entire machines. This high computing cost significantly 
limits the questions we can ask and the science we can do.  

Advances in science and engineering require extensive use 
of “many-query applications” (e.g., parameter sweeps, 
inverse problems for parameter estimation, and model-based 
design optimization). These applications require multiple 
computationally expensive model invocations, often called 
sequentially rather than concurrently. This demands many 
simulations of a model in rapid succession. Simply put, while 
“hero” simulations are good demonstrations of results of 
many-simulation efforts, but they are often insufficient to drive 
large-scale scientific advancement, complex systems control, 
and autonomous science. 

Artificial intelligence (AI) and machine learning (ML) have 
demonstrated the ability to create accurate, fast-running 
surrogate models for computationally expensive simulations. 
Using a limited number of evaluations of the simulation, 
AI/ML methods learn to accurately predict the output for new 
scenarios with quantification of the prediction uncertainty, 
allowing researchers to get an accurate approximation of the 
full simulation in a fraction of the time. Early work by many 
groups has demonstrated the enormous potential of using 
these methods to accelerate scientific computing 
applications. Groups have demonstrated speedups from 
100 times to over one billion times in diverse applications, 
such as Density Functional Theory (DFT) simulations of 
electronic structure, molecular dynamics of protein 
complexes, cosmology, earthquakes, and computational fluid 
dynamics. AI-based surrogate models have unlocked new 
frontiers in prediction and are trained with complex, diverse 
data structures such as images, text, and networks. This has 
catalyzed new opportunities for scientific impact for DOE 
computing capabilities. 

The increase in speed, which will result in evaluations in 
fractions of a second instead of in days, is critical to 
leveraging DOE’s world-class computing capabilities to meet 
grand challenges. The utility of surrogate models is best 

highlighted by the answer to the question: “What could 
happen with world-class simulations if they could be 
evaluated in fractions of a second instead of days or weeks?” 
This chapter outlines how surrogate models will be a key 
component in the integration of AI into DOE scientific and 
engineering workflows. These workflows may range from 
(a) learning control laws and providing data augmentation for 
AI-enhanced real-time controllers of engineered systems to 
(b) embedding surrogates in real-time monitoring, 
forecasting, and data assimilation of digital twins of complex 
systems to (c) integrating a hierarchy of surrogates as 
“closures” or “constitutive models” in multi-scale, full-system 
simulations to represent unresolved physical processes. 
Such AI/ML applications will ensure that the highest-quality 
information generated by high-fidelity scientific simulations 
can be shared transparently across scales in practical 
engineering simulations. Advancing our ability to connect 
surrogates of complex data from simulations to similar data 
structures generated by experimental diagnostics will be 
critical for allowing surrogate-simulator-AI systems to be 
integrated into experimental workflows to meet autonomous 
science goals. 

This chapter addresses opportunities across the DOE 
mission space for acceleration; the needs for future computer 
architectures to support AI-accelerated, high-performance 
computing (HPC); and needed advances in applied 
mathematics, algorithms, AI, and software frameworks.  

 

PROJECT SPOTLIGHT 
Project Name: Black-box optimization for scientific 
machine learning models 

PI: Guannan Zhang 

Organizations Involved: Oak Ridge National Laboratory 

Goal: Develop black-box optimization methods for 
inverse problems that involves non-automatically 
differentiable simulators. 

Significant Accomplishment: Application of our 
surrogate-based black-box optimization method to 
calibrate a constitutive material model (mercury) for a 
neutron target.  

In the News: Radaideh, M., Tran, H., Lin, L., Jiang, H., 
Winder, D., Gorti, S., Zhang, G., Mach, J., and 
Cousineau, S., 2022. Model calibration of the liquid 
mercury spallation target using evolutionary neural 
networks and sparse polynomial expansions, Nuclear 
Instruments and Methods in Physics Research B, 
525(15), pp. 41–54. 
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1.1 State of the Art 
Surrogate models are data-driven, AI/ML-based 
approximations of physical, chemical, or biological processes, 
trained on measured data and/or data generated by 
executing high-fidelity (and computationally expensive) 
simulation models. Although AI-based surrogates can be 
used for many purposes (e.g., to discover unknown 
constitutive laws), the most straightforward use of AI-based 
surrogates for HPC is to serve as fast-running, accurate 
proxies of computationally expensive, high-fidelity models. 
These proxies can then be used in many-query applications 
(e.g., design optimization, uncertainty quantification, real-time 
control, and digital twins), without compromising on the 
fidelity of the calculations. Using AI-based surrogates 
enhances the reliability and realism of decision-making 
applications. Many have been successfully applied to various 
physical simulations. For example, Figure 1-1 shows 
examples of an open-source code for AI-based surrogates 
[1], applied to many different physics codes to accurately 
accelerate physical simulations.  

The different types of AI-based surrogates can be 
categorized by their incorporation of physics constraints and 
their interpretability (i.e., by their sophistication and physical 
realism). Surrogate models with no physics-based 
constraints, typically known as black box models, do not 
explicitly incorporate the underlying governing equations but 
instead relate input and output (I/O) data directly using 
statistical or machine-learned relationships. Some examples 
are Gaussian process or neural network models. On the 
other hand, physics-informed surrogates take advantage of 
both known governing equations and data. Between the black 
box and physics-informed surrogates, interpretable 
surrogates have been developed, in which I/O data are 
related by well-understood forms, such as differential 
equations, or explainable AI algorithms, such as linear 
models.  

Black Box Models. Examples of the black box approach 
include the Gaussian process [2, 3, 4, 5, 6], radial basis 
functions [7, 8], Kriging [9, 10], and neural networks [11, 12, 
13]. The black box approach is attractive because it requires 
no prior knowledge in the AI/ML model regarding how HPC-
based physical simulations are implemented. Black box 
models are quick and easy to train and can be applied to any 
field, providing that sufficient data are available. Examples 
are numerous, including porous media simulations [13, 14, 
15], nuclear DFT [4, 5], cosmology [16], turbulence modeling 

in compressible flow [17], and climate science [18]. Despite 
the popularity of black box approaches, model accuracy 
depends heavily on the quality and amount of data used for 
training the model (henceforth, “training data”). Note that the 
generation of training data can itself be very computationally 
expensive, requiring sweeps through the parameter space of 
the high-fidelity model, although many sparse sampling 
schemes (e.g., Clenshaw-Curtis grids [19]) and approaches 
to active learning have been invented to reduce the 
computational burden. Sole dependence on training data, 
with no inclusion of scientific “smarts” in the black box model, 
is the crux of such models’ limitations. For example, if a 
prediction is required outside of the region covered by the 
training data, (i.e., extrapolation), model accuracy tends to be 
poor. In addition, physics constraints (e.g., symmetry, 
positivity, or conservation) are not typically satisfied by black 
box approaches. Also, although they generally perform well, 
when these models fail, it is hard to analyze when and why 
because of their black box nature.  

Interpretable Surrogate Models. To overcome these issues, 
interpretable surrogates have emerged, in which I/O data are 
related by known forms—typically differential equations—
which are easier to analyze than neural networks. For 
example, eigenvalue analysis of the underlying system tells 
us whether the dynamics will be stable or not. The governing 
differential equations can be discovered by means of several 
mechanisms (e.g., using sparse or dense regression [20, 21, 
22, 23], symbolic regression [24, 25], or Koopman operators 
[26, 27], and neural networks [28]). These approaches have 
shown promising results. For instance, they have accurately 
identified some known partial differential equations, such as 
Lorenz equations, using noisy data (i.e., simulation data 
corrupted by synthetically generated noise). 

Physics-Informed Surrogate Models. Recently, advances 
in physics-constrained, data-driven modeling have emerged. 
Physics-informed neural networks [29], for example, embed 
the underlying differential equations within the training of a 
neural network by adding the residual term in the objective 
function. This innovative method of solving inverse problems 
does not rely on forward simulations. However, training the 
neural network is computationally expensive, is not very 
scalable across processors, and requires significant human 
intervention. The method’s accuracy is also not as robust 
as that of classical numerical methods. Developing a 
deeper understanding of the convergence behavior of 
physics-informed neural networks is a critical and active 

     
Figure 1-1. AI-based surrogates can accelerate computational fluid dynamics, plasma physics, particle transport, and multiphysics simulations 
with a high accuracy. 



 

01. AI AND SURROGATE MODELS FOR SCIENTIFIC COMPUTING 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY  

19 

research area [30, 31, 32]. Another approach to physics-
constrained, data-driven modeling is to directly learn infinite 
dimensional operators with neural networks, such as 
DeepONet [33] and the Fourier neural operator [34]. 
However, for problems with complex spatial domains and 
those of a multi-scale or multiphysics nature, classical 
numerical discretization methods provide more robust and 
accurate solutions.  

Closures (or constitutive models) are a special type of 
physics-informed surrogate model that are used to simulate 
the effect of fine-scale physical processes in system-level 
models. Because large-scale, system-level simulations (e.g., 
complex engineered systems and Earth-system simulations) 
cannot afford the high computational cost of modeling fine-
scale physics, closures are used to approximate them. 
Several theories regarding the structure of closures have 
been proposed, but they include unspecified constants, which 
are traditionally calibrated to simple experiments but tend to 
be inaccurate in realistic situations. Recently, these closures 
have been learned from high-fidelity simulations (as well as 
experimental data), with the constants replaced by functions 
(usually neural networks) of the state of system-level 
simulations. The innovation lies in devising transformations of 
the state so that the inputs into the neural network preserve 
invariance properties [35, 36, 37, 38]. It is also possible to 
reconstruct the fine-scale processes (and not just their effect) 
from the system-level information using spatial patterns 
learned from training data [39].  

Reduced-Order Models. The next natural category of 
physics-constrained, data-driven methods consists of 
projection-based reduced-order models (ROMs), in which the 
known physics constraints are explicitly used to relate data by 
projecting high-fidelity governing equations to a low-
dimensional manifold. These approaches take advantage of 
not only the available first principles, but also the classical 
numerical discretization of the governing equations. Because 
of the explicit use of first principles, each step of a ROM 
systematically builds on the previous steps, exposing all 
relationships. Therefore, as a final product, ROMs can deliver 
tunable accuracy with adjustable speed-up, providing great 
flexibility and robustness. However, the development time for 
a projection-based ROM is longer than that for a black box 
approach because such models require significant human 
ingenuity to architect prior to training, and the training is 
computationally expensive.  

Projection-based ROMs have been used for Euler equations 
[40, 41, 42, 43], Navier–Stokes equations [44, 45, 46], large-
scale Boltzmann problems [47], lattice-type structure 
response problems [48, 49], digital twins of a fixed-wing 
unmanned aerial vehicle [50], and design optimization 
problems [51, 52, 53, 54, 48, 49]. However, these traditional 
linear subspace-projection-based ROMs are often inaccurate 
in low-dimensional solution representation for problems with 
slowly decaying Kolmogorov’s width (e.g., advection-

dominated moving-shock problems). To overcome this issue, 
efficient nonlinear manifold ROMs [55, 56] have been 
developed, in which the nonlinear manifold solution 
representation through neural networks is used to effectively 
capture solution dynamics with low-dimensional latent 
spaces. Figure 1-2 illustrates the accuracy and robustness in 
extrapolation and speed-up trends measured against the level 
of physics embedded in the ROM. 

 
Figure 1-2. Categorization of surrogates according to their incorporation 
of physics-constraints (the underlying governing equation or the existing 
numerical discretization methods for the governing equation). Having 
more physics constraints often means increased accuracy and 
robustness in extrapolation. Conversely, it also means decreased 
speed-up. 

Researchers have completed deep theoretical work over the 
past several decades to develop projection-based ROMs. 
With the emergence of ML, projection-based ROMs and AI 
are expected to merge and improve the field of surrogates for 
HPC simulations.  

To summarize, surrogate models can be categorized by their 
sophistication and adherence to physics (by construction). 
The simplest type, black box models, are purely statistical 
and machine-learned constructs, without any physics/ 
scientific “smarts” built into them. They are easier to train, but 
their failures are difficult to diagnose and fix. “Interpretable” 
surrogate models introduce a degree of causality and 
physical constraint in the surrogate model’s architecture, 
allowing easier diagnoses of failures. Physics-informed 
surrogate models are statistical constructs that honor 
(approximately) the governing equations of the phenomena 
being modeled but are very difficult to train and use. ROMs, 
the last category, are not statistical models but they are 
rather derived from the governing equations via controllable 
approximations. They are difficult to formulate, but once 
trained, allow users to trade off complexity (and 
computational speed) versus approximation error. 

DOE has been a world leader in construction and integration 
of surrogates into various applications, particularly for 
uncertainty quantification (UQ). However, there is fertile 
ground for improved surrogate methods using AI and for 
surrogate integration into AI workflows to meet future needs. 
The experience from these early adoptions allows us to chart 
a course over the next decade to integrate surrogate model 
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approaches to address computational challenges throughout 
DOE mission areas. 

1.2 Grand Challenges 
In order to meet the next generation of its mission challenges, 
DOE must establish world leadership in development and use 
of AI surrogates. This will mean (1) building general purpose, 
multi-simulator surrogate models for specific domains, 
(2) establishing self-guided surrogate model construction 
from highly complex data structures and with physical 
constraints, and (3) developing infrastructure to smoothly 
plug surrogate models into HPC simulations, AI training 
workflows for autonomous systems, and monitoring/digital 
twins for seamless integration, agnostic to the software 
frameworks used to build the surrogate. 

Building general purpose, domain meta-surrogates to 
combine data from across scales, from diverse models, 
and of varying fidelities. Predominantly, state-of-art, 
simulation-based science is at a point where substantial 
progress relies on the development of surrogates for specific 
applications, often relying on single models of a fixed fidelity. 
This fails to fully leverage the modeling capabilities in 
DOE science. 

For many DOE applications, there are competing simulation 
models, each of which may exist for different levels of 
cost/fidelity trade-off. Typically, independent surrogate 
models are built for single simulators on specific problems, 
even for very similar tasks. This “siloed” behavior is inefficient 
and costly. Instead, building general purpose domain 
surrogates that can learn from data and sub-surrogates from 
all models, across fidelities, will make more accurate and 
robust predictions. This will reduce the impact of model-form 
error in individual codes.  

An example would be a meta-surrogate for high-energy-
density (HED) hydrodynamic systems that can take in data 
from simulating heterogeneous HED systems with multiple 
codes (i.e., xRAGE and Hydra) and can build a meta-
surrogate that can give accurate prediction of individual code 
output for new cases, but also give a prediction for the 
physical system leveraging information from all 
codes simultaneously. 

Establishing self-guided meta-surrogate model 
construction from complex data structures and with 
physics constraints. Building high-quality surrogate models 
is data-expensive and requires both detailed understanding 
of the problem structure and substantial effort to identify 
weaknesses in simulator or surrogate predictive capability 
with iterative model refinement. Research advances in AI for 
surrogate models will lead to AI-driven, intelligent data 
collection for adaptive training of surrogate models and 
iterative model criticism and improvement for stronger 
surrogate predictive capability. Advances in cost-aware active 
learning will allow meta-surrogates to: 

a. Dynamically identify and collect data across models and 
experimental space to ensure predictions are accurate 
with controlled uncertainties. 

b. Test and improve model structure to reduce model-form 
error in simulation and surrogate performance.  

c. Dynamically expand and contract the model parameter 
space to adapt to effect sparsity for insensitive model 
inputs while growing to handle prediction for new 
scenarios and system designs. 

Developing infrastructure to smoothly integrate 
surrogate models into HPC simulations, AI training 
workflows for autonomous systems, and 
monitoring/digital twins that are agnostic to the software 
frameworks used to build the surrogate. To fully utilize 
surrogates to meet the needs of the other AI building blocks 
and for the domain goals, surrogates must be smoothly, 
easily integrated into DOE workflows. The software and 
hardware infrastructure to make a portable, performant, 
platform-agnostic framework for composing, combining, and 
adapting AI surrogates will enable their smooth assimilation 
and allow for quick incorporation and testing of new methods 
and approaches as surrogate technology advances. 

For example, as mentioned in 2.1, large-scale HPC 
simulation can benefit from leveraging surrogate models as 
“closures.” The communication layer to easily incorporate 
surrogates of specific closure models or meta-surrogates 
encompassing multiple closure models, regardless of the 
framework for the trained surrogate, does not currently exist 
but would be critical for wide-spread adoption of closure 
surrogates. 

Even further, this infrastructure will allow multi-scale 
surrogate-simulator-AI systems to meet DOE goals. 
Figure 1-3 shows an abstracted diagram of a multi-scale 
system where the full system is used for monitoring and 
control with a micro-scale closure model that also allows for 
micro-scale system monitoring. Integrating the full micro-
scale simulator into the full-scale code would be infeasible, as 
would running the full-scale simulation in the monitoring and 
control loop. A surrogate of the micro-scale, using active 
learning to guide evaluation of the micro-scale simulation, 
then is used as a full-scale closure. The full-scale surrogate is 
used for fast-querying for control and monitoring tasks. This 
diagram shows a general form of multi-scale surrogate-
simulation-AI system that would be unlocked by the 
development of this infrastructure. 

Meeting these grand challenges is fundamental to other AI 
building blocks described in this section as well as domain 
needs. Composable surrogate models are necessary for 
capturing all scales for building a full-scale digital twin of the 
power grid for monitoring, testing “what-if” scenarios, and 
generating AI strategies for handling disruptions in real time 
(these are further discussed in Chapters 03 and 04). 



 

01. AI AND SURROGATE MODELS FOR SCIENTIFIC COMPUTING 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY  

21 

Multi-scale simulation for DOE applications, from stockpile 
management to fusion energy systems to climate science, is 
founded upon modeling heterogeneous processes at high 
fidelities. Doing so, while leveraging the best DOE scientific 
computing capabilities, requires surrogate models to provide 
fast, accurate prediction with well-quantified uncertainties for 
sub-scale physics to large-scale models. 

Surrogate models are also critical for fast iteration to guide 
optimal, autonomous design across the DOE mission space, 
from National Nuclear Security Administration (NNSA) 
interests to energy production and storage, to Energy 
Earthshots (see Section 02 of this report). 

1.3 Advances in the Next Decade 
These Grand Challenges motivate three surrogate-specific 
capabilities that we seek to develop within the DOE 
community in the next decade. Underlying these are 
additional requirements for advances in cross-cutting 
technologies: data management infrastructure for large 
training data and hardware platforms for heterogeneous 
workflows. Thus, we follow with a set of challenges organized 
by the five crosscutting technologies outlined in Section 03 of 
this report. 

1.3.1 SURROGATE-SPECIFIC CAPABILITIES 
1. Building AI-enhanced surrogate models that handle 

complex data structures into technical workflows: 
Future workflows will require the capability to handle 
complex image, natural language, and graph/network data 
structures while mixing surrogate models with conventional 
models in the form of networks or hierarchies. New 
research incorporating advances in AI with these data 
modalities as well as new workflow tools to assist with the 
assembly handling the disparity in scales will be required. 

2. Constructing trusted surrogate models: DOE’s 
established practice of making critical decisions based on 
model predictions requires understanding and 
communicating bounds on model-based predictions. This 
problem becomes exponentially more difficult with the 
development of a networked hierarchy of models in meta-

surrogates. Building the foundations to provide meaningful 
UQ bounds when the assumptions of traditional methods 
must be violated and when generalizing to data beyond 
that previously seen in training will be critical to building 
trust in AI surrogate use. 

3. Training surrogate models in a scalable and 
sustainable manner: The capability to scalably (in terms 
of processors, platforms, and users) train surrogate 
models will require a new AI-enhanced, multi-platform 
software framework. Such a framework does not exist and 
will require significant research to define an appropriate 
architecture before it can be implemented and tested. 

We expand on these three surrogate-specific decadal 
advances next.  

Building AI-enhanced surrogate models that handle 
complex data structures into technical workflows. 
Scientific workflows consist of a series of transitions to data 
by modules. These modules have traditionally consisted of 
physics-based models or post-processing scripts. The 
workflows are shallow, and workflow automation tools such 
as Sandia Analysis Workbench (SAW, [57]) can address 
them. In the future, however, some modules may be entirely 
AI/ML-based, while others may be hierarchies of surrogate 
models or have closures embedded in a physics-based 
model. Such hybrid networks of surrogates, which may 
embody physics at disparate time/length scales, are 
invariably “stiff” systems; no scalable methods can address 
them. Advances in fundamental mathematics that can either 
address the contrast in scales or smooth them over will be a 
prerequisite for achieving this capability. 

Inference from observation (i.e., inverse problems, property 
inference, inverse design) plays a large role in scientific 
research; the existence of (networks of) fast-running 
surrogate models can enable the solution of high-dimensional 
inverse problems (e.g., estimation of multi-dimensional fields 
rather than scalar parameters). However, in many DOE 
applications, observations are sparse, and scientific research 
in DOE has typically employed Bayesian methods that 
quantify uncertainty in the outputs of such inverse problems. 
However, scalable, high-dimensional Bayesian inversion 

 
Figure 1-3. Diagram of infrastructure allowing surrogate model integration into a multi-scale monitoring and control problem with multiple HPC 
simulations and real-world data integrated into a single system. 
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solvers that are performant are rare, and fundamental 
research in Bayesian mathematics will be required to exploit 
the power of composable networks of surrogate models. 

The Idea of composable surrogates also raises several 
challenges: how to achieve the compositions; how to detect 
and avoid surrogate-to-surrogate incompatibilities during 
assembly; and how to compile, maintain, and integrate a 
repository of composable surrogates with tools that compose 
a scientific workflow. Constructing such mix-and-match 
workflows will require concepts borrowed from component-
based software design, which DOE has explored in the past 
[58], but which have not been widely accepted in scientific 
simulations. Scientific workflows of the future, with a mixture 
of physics-based and data-driven models, will thus require 
workflow tools that do not exist today.  

Recent advances in generative models for text, images, 
video, and networks hint at the great potential for surrogate 
modeling of complex data structures generated by big 
physics facilities—radiograph images, temporally and 
spatially-resolved spectroscopy, etc.—that are currently 
converted to scalar or low-dimensional vector summaries for 
surrogate modeling. Advances in connecting surrogates of 
complex data from simulations to similar data structures 
generated by experimental diagnostics will be critical for 
allowing surrogate-simulator-AI systems to connect into 
experimental workflows to meet autonomous science goals. 

Constructing trusted surrogate models. Despite their 
predictive skill, surrogate models are approximate and can 
fail in myriad ways, the most common being out-of-
distribution (OOD) use (i.e., outside the feature space 
spanned by the training dataset). This affects the 
generalization ability, uncertainty assessment, and 
robustness of surrogate models. One strategy to improve the 
trustworthiness of surrogate modeling results is to impose 
physical realizability constraints, either during model 
construction or training. The discovery of causal relationships 
in training data, by assembling/integrating fundamental 
relationships predicted by physics (in contrast to relying on 
correlations discovered in data) can also be called “trust by 
construction” (see example in [59]). Such assembly will be 
necessary for AI-enhanced control laws used in complex 
engineered systems such as scientific instruments or 
autonomous vehicles, which may have to function in 
contested environments in which they may encounter 
scenarios outside their training data (see Chapter 04). Today 
there are no general methods by which physics can be 
included in the architecture of an arbitrary surrogate model, 
although much work has been done for specific types of 
surrogates such as closures [35, 38]. Thus, endowing 
surrogate models with trust during construction will require 
further work in the mathematics of OOD detection, causality, 
and other aspects of surrogate modeling. 

A second approach to building trust in surrogate models is to 
provide uncertainty bounds with their predictions. Minimizing 

uncertainties increases the requirements for the quantity and 
diversity of training data. An example of this approach is to 
assemble training data from various sensing modalities 
(e.g., images, time series, and tensors). However, this is not 
currently used because of our fundamental ignorance of how 
multimodal data may be assimilated into surrogate models, 
given that there will be wide disparities in their fidelities, 
quantities, and forms. Transfer learning could potentially 
address this problem, but we currently lack the mathematical 
basis for learning from multimodal data. 

The crudest—but perhaps the most effective—way of 
endowing surrogate models with trustworthiness is to qualify 
them (i.e., determine the types of physics/processes present 
in their training data and demarcate the feature-space where 
the surrogate model may be used). However, such 
qualification requires that developers create unsupervised or 
semi-supervised methods to characterize the training dataset, 
which in turn necessitates that they incorporate 
physics/domain information into the unsupervised methods. 
Some preliminary work has been done [60], but general 
techniques that will scale to multiple types of physics have 
not been developed. Fundamental algorithmic research is 
thus necessary to enable developers to qualify surrogate 
models, as well as to construct the software frameworks with 
such hybrid unsupervised learning methods. 

Training surrogate models in a scalable and sustainable 
manner. The widespread use of surrogate models across the 
DOE complex will require automating their construction, likely 
via AI/ML agents. Because surrogate models are first trained 
on traditional simulation model-generated data (and in some 
cases further tuned using experimental data), automation of 
the (adaptive) sampling of the input space (to generate 
informative datasets) and selection and tuning of the 
surrogate model architecture will be required. The training 
process may also span multiple hardware architectures, each 
optimized for the disparate tasks involved in constructing the 
surrogate. Significant research has gone into specific tasks 
such as active learning and adaptive design of experiments 
to efficiently generate training data, and automated tuning of 
machine-learned model architectures. But other key tasks 
remain, including AI-based orchestration of the training 
process and embedding those orchestration tools in an AI-
enhanced software framework that constructs surrogates.  

Such a software framework, supporting the multiple platforms 
where the training process is executed, must be designed 
and developed. Preliminary work suggests that such a 
framework is possible. Dakota [61] automates the process of 
sampling an input space, running simulations to generate 
training data and training a surrogate on these data, but is 
limited to conventional surrogate models and does not span 
platforms. SAW [57] is a workflow automation tool that 
maintains the provenance of all simulations within its purview 
and integrates with Dakota, but it is limited to conventional 
platforms. In both Dakota and SAW, the workflow is 
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automated via expert-driven scripts rather than AI. Thus, 
although they may form the starting points of the AI-
enhanced software framework we envision, the final product 
will require significant research in the appropriate framework 
architecture and design, followed by implementation and 
evaluation. 

1.3.2 CROSSCUTTING TECHNOLOGY 
CAPABILITIES 
To meet the challenges outlined above, advancements must 
also be made in the technical crosscuts detailed in the 
chapters comprising Section 03 of this report. These include 
(1) the fundamental mathematical underpinnings of surrogate 
modeling; (2) the software frameworks for building and 
training surrogates; (3) corresponding frameworks for 
integrating surrogates into workflows; (4) data handling for 
implementation and integration of surrogates and AI into DOE 
infrastructure; and (5) hardware architectures that provide 
scalability, flexibility, and composability—from HPC to edge. 
Next, we outline priority directions in these areas that will 
bridge the technological gap previously discussed regarding 
the development and application of surrogate models. 

Mathematics and fundamental research. Research to 
address the current shortcomings of surrogate models, as 
identified above, will require advances along four fronts. First, 
we need a new theory of surrogate models to establish when 
such a model is ready for production use. This theory would 
be similar in character to proofs of convergence of statistical 
models, replacing the standard notions of convergence in 
some metric with some quantitative measure of correctness 
and consistency. Proofs of consistency and correctness [62, 
63] would also facilitate detection of outliers and rare events. 
The mathematical properties of surrogates (e.g., stiffness), 
and restrictions on their use cases (e.g., detection of OOD 
use) that bound their generalizability, must also be identified 
and quantified.  

Second, research is needed to create a new framework that 
extracts surrogate models from multimodal data without 
imposing a fixed architecture. This will require methods to 
impose priors/constraints/regularizations in such a setting 
(e.g., to embed physical models, conservation laws) with the 
algorithm that discovers the model. It is currently unclear how 
this might be done, beyond the obvious method of including 
the constraints in the loss function. 

Third, we need training algorithms that can fit models to data 
under prescribed requirements for accuracy, cost, and 
resources. These algorithms must learn and exploit the 
geometry of the training data and select training samples 
where needed (i.e., active learning), requiring research on 
how a finite set of samples needs to be distributed within a 
high-dimensional feature space to maximize the extraction of 
information [64, 65].  

The final mathematics and fundamental research thrust 
regards the development of verification and validation 
methods for surrogate models, so that they will be 
trustworthy. This must encompass new methods for 
explainability [66, 67] and interpretability, as well as 
unsupervised/semi-supervised methods that quantify the 
information content of a training dataset (e.g., identify the 
types of physics it has). Methods that extract a set of 
representative prototypes from a training dataset (to allow 
deep dives) are part and parcel of the methods for 
trustworthy AI [60].  
Software frameworks for training AI surrogates. In order 
to meet the software needs for AI-surrogate modeling and to 
leverage the power of surrogates in DOE computing, we 
need to invest in software development for (1) a portable, 
performant, platform-agnostic framework for composing, 
combining, and adapting AI surrogates; (2) a software 
framework for deploying reproducible, verified, and validated 
surrogate libraries; and (3) software for AI-driven, automated 
surrogate construction with a high-level front end to enable 
domain scientists to build surrogates without requiring 
extensive AI expertise. Together, these three priority 
research directions impact all aspects of leveraging surrogate 
modeling to achieve autonomous and AI-accelerated 
scientific discovery. The framework for composing, 
combining, and adapting AI surrogates will ensure that 
advances in surrogate modeling can be integrated with 
heterogeneous codes and executed on diverse hardware for 
AI and autonomous systems. An infrastructure for verified 
and validated surrogate libraries will ensure trustworthy, 
reliable deployment of surrogates across domains, while AI-
driven surrogate construction will reduce barrier-to-entry for 
domain experts to utilize surrogate model technologies to 
make scientific advancements. Further, these advancements 
will integrate smoothly into autonomous workflows to 
accelerate experimentation and discovery by minimizing 
human-in-the-loop factors, as we discuss next.  

Workflows for integrating surrogates and AI. Making 
these software advances will facilitate necessary 
advancements in building AI workflows for DOE science. 
Leveraging the power of AI to create workflow composition 
assistants that translate scientific problems into workflows 
without requiring complex domain or computational 
knowledge will streamline the paths to solutions, leveraging 
DOE’s diverse leadership computing architectures and 
experimental facilities. Moreover, it will broaden and diversify 
participation in the DOE science mission, catalyzing new 
ideas and strategies. As we advance autonomous science 
across the DOE complex, self-healing workflows that auto-
detect and correct errors (malicious or unintentional) at scale 
will be necessary to ensure robust operation. Such workflows 
will include automated detection of surrogate failure and 
degradation (e.g., when surrogate systems leave domains of 
trustworthiness) to ensure that the AI agents are relying on 



 

01. AI AND SURROGATE MODELS FOR SCIENTIFIC COMPUTING 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY  

24 

accurate approximations of computational science models 
and not untrusted extrapolations. By the end of the decade, 
we foresee an intelligent, AI-driven, federated workflow 
scheduler that dynamically executes workflows from the exa-
cluster to the edge, integrating scientific instruments and self-
driving laboratories (as discussed in Chapter 05) to 
accelerate science and engineering breakthroughs across 
the DOE. 

Data management for integration of surrogates. Advances 
in data management will also be critical to the next decade of 
AI research and development toward AI-enabled science. 
Data wrangling (e.g., finding, cleaning, feature engineering) 
represents a significant fraction of the process of building, 
training, and improving surrogates. The use of AI systems to 
reduce human involvement is urgently needed to dramatically 
reduce the time and cost of data wrangling. Investment in 
methods for storing, sharing, and finding heterogeneous data 
sources, along with automated data preparation and 
augmentation, will ensure data availability with high 
throughput for AI training, testing, and operational tasks. Fully 
leveraging the wealth of data generated by the DOE scientific 
enterprise, will demand infrastructure for efficiently sharing 
data, including real-time continuous data, using intuitive 
queries both across the DOE complex and with academic 
and industry partners. Beyond simply making the data 
available, leveraging AI to interrogate available data for data 
selection, recommendation, classification/labeling, and 
generating configurable data preparation and augmentation 
pipelines will reduce the data processing overhead necessary 
in AI workflows. 

Hardware architectures for AI surrogate integration. 
Operating AI systems across the computational continuum of 
exascale to edge will require not only advances in software 
and workflows to bridge the heterogeneous scales, but new 
frontiers in flexible, composable hardware to reach the 
potential that autonomous science offers. Investment in 
composable hardware accelerators will ensure that 
surrogates can be built, trained, and tested throughout the AI 
pipelines, allowing adaptive scalability as requirements for 
model size and resource vary. Large computational facilities 
will be critical for providing data from world-class simulation 
for training surrogate models, as well as providing “exascale 
as a service” capability for AI surrogates to execute high-
fidelity simulations “as needed” for active learning. It will also 
be essential to develop hardware features to deploy trained 
AI agents seamlessly and robustly from leadership-class 
HPC with bespoke accelerators to low-power edge devices 
sensitive to SWAP (size, weight, and power). These 
advanced hardware architectures will require native support 
for UQ, and they must be built for robustness (physical 
robustness for edge devices, and for long, stable operation 
for training surrogates). 

1.4 Accelerating Development 
To enable the long-term achievement of the research thrusts 
described above, we propose several candidate pilot projects 
that have the potential to jump-start some of the theoretical 
and algorithmic development outlined, using existing data 
and incremental extensions of existing tools. These pilots 
illustrate a pathway to immediately begin making progress 
toward achieving the identified grand challenges. 

 ML closures for plasma turbulence for fusion learned from 
high-fidelity sub-scale simulation and experimental training 
datasets: This pilot will require the development of (1) high-
dimensional, high-order, scalable optimization algorithms 
for fitting ML surrogate models, and (2) development of 
composable infrastructure between sub-scale simulation, 
full-scale simulation, and inference using experimental 
data. These directly connect to the first and third grand 
challenges. 

 ML surrogate for the ocean model in Earth system models 
to accelerate spin-up: This pilot could develop techniques 
to impose stability in networks of surrogates operating at 
different length and/or time scales in multiphysics and/or 
multi-fidelity networks, and efficient design and training of 
surrogates relevant to the second and third grand 
challenges. 

 Discover biological mechanisms that link environmental 
forcing (hyperspectral data) to biological response (omics 
data): This pilot would investigate how surrogates could be 
trained by assimilating multimodal data (hyperspectral data 
and omics data). In addition, the pilot could investigate 
whether the architecture of the surrogate model could be 
discovered from data. These goals would be applicable to 
the first and second grand challenges. 

 Generative ML surrogate for large-scale cosmology 
simulations: This pilot includes ML-accelerated subgrid 
physics and AI/ML methods for increasing dynamic range 
by incorporating learning from high-resolution simulations 
(“super-resolution”). This pilot essentially involves 
construction of AI-enhanced closures for cosmological 
simulations and embedding them in a physics model that is 
part of a complex cosmological simulation workflow 
relevant to the third grand challenge. 

1.5 Expected Outcomes 
Advancements in AI surrogate models and their integration 
into science, engineering, and autonomous workflows will 
accelerate science and engineering to meet the grand 
challenges we face, many of which are detailed in Section 02 
of this report. Building surrogates into AI workflows will 
ensure that trained AI agents are able to explore and learn 
from the highest-quality computational approximations to 
physical systems, unlocking the potential of autonomous 
systems and AI for DOE science. These capabilities can 
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revolutionize power generation, storage, and delivery for the 
21st century; manage the nation’s nuclear stockpile so 
experts can evaluate weapons performance with confidence 
and make informed decisions without relying on nuclear 
testing; drive advancement in fusion energy science, 
ensuring that the U.S. leads the way to fusion power 
generation; and provide insights needed to address a rapidly 
changing climate and avoid or mitigate environmental 
catastrophes. 

DOE has invested over decades to become the world’s 
leader in scientific computing, creating physics simulations 
that can represent complex processes in real-world systems 
with unmatched fidelity. AI surrogates represent a unique 
opportunity to increase the impact of these investments by 
enabling improvements in model execution time by factors 
ranging from 100 to 1B. By investing in research and 
development for AI surrogate technology and building 
surrogate models of high-performance physics simulation into 
AI workflows, we will leverage DOE’s expertise to solve the 
big problems that impact our nation and the world. 
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02. AI FOUNDATION MODELS FOR SCIENTIFIC KNOWLEDGE 
DISCOVERY, INTEGRATION, AND SYNTHESIS 

Many of the U.S. Department of Energy (DOE) scientific 
domains and mission spaces contain precious few samples 
of interest that are properly labeled by subject matter experts 
(SMEs) but have vast troves of unlabeled datasets. To apply 
artificial intelligence (AI) methods in these areas will require 
breakthroughs in the field of low- or zero-shot learning to 
overcome the challenge of sparse labels. We define the 
concept of a master model as a class of models that 
demonstrate emergent behavior and can solve new tasks 
after “seeing” only a limited number of examples. Foundation 
models are a cutting-edge approach to developing master 
models. 

Foundation models—built specifically for DOE missions—
hold impressive promise for transforming both the way the 
DOE does its science and the impact and reach of that 
science. The concept of a foundation model is one of the 
most significant AI approaches derived from the scale of 
computation and data combined with the new computing and 
data systems being deployed through the DOE Exascale 
Computing Project (ECP), which are ideally suited for it. Per 
[1], a foundation model is one that is “trained on broad data 
(generally using self-supervision at scale) that can be 
adapted to a wide range of downstream tasks.” 

Foundation models are intended to become the digital 
equivalent of an SME; they will have a deep understanding of 
a particular domain, displaying the ability to develop keen 
insight and discover meaningful patterns in vast troves of 
data, that may initially seem uncorrelatable. The significance 
of foundation models cannot be overstated, as they “are 
based on standard ideas in transfer learning and recent 
advances in deep learning and computer systems applied at 
a very large scale, demonstrate surprising emergent 
capabilities [2] and substantially improve performance on a 
wide range of downstream tasks” [3]. 

Foundation models should be seen as a critical piece of a 
national science transformation, driven by the DOE AI for 
science, energy, and security mission areas, that will 
accelerate our pace of discovery for basic science, applied 
science, national security, and broader economic impact. 
Foundation models represent a pinnacle in inductive 
reasoning (models learned from data), and provide a 
significant, complementary asset to the standard deductive 
reasoning that is used to create the DOE’s traditional 
modeling and simulation capability. Constructed using a 
transformer model architecture (Figure 2-1) [4], the key 
promise of foundation models is that they offer to extract 
previously unseen correlations and patterns within existing 

datasets, and to span the gap for application domains where 
there are no explicit governing equations or physical rules. As 
the term “foundation” implies, the DOE science community 
has the opportunity to create models analogous to large-
scale instruments, enabling many individual teams to work 
together with many other teams to contribute data and 
expertise to build, and then incrementally train, a shared 
foundation model for their downstream tasks. 

DOE has a clear mission-driven need to produce foundation 
models for science, energy, and national security. Across 
DOE missions, these models are likely to transform what is 
scientifically achievable. We expect that the combination of 
wide, downstream functionality with emergent capabilities will 
allow researchers to incorporate wide ranges of scientific 
knowledge and correlation, synthesize that knowledge to 
formulate profound new questions to set scientific scope, and 
rapidly find answers to previously unsolvable questions. 

PROJECT SPOTLIGHT 
Project Name: Transfer learning for inertial confinement 
fusion 

PI: Luc Peterson 

Organizations Involved: Lawrence Livermore National 
Laboratory, Weapons and Complex Integration – Inertial 
Confinement Fusion (ICF) and Advanced Simulation and 
Computing programs 

Goal: Evaluate transfer learning as a method of 
calibrating a simulation-based neural network to 
experimental data, creating a model that is predictive of 
ICF experiments. 

Significant Accomplishment: Leveraging just 
19 Omega ICF experiments and 30,000 low-fidelity 
simulations in a 9D design space, we were able to create 
transfer learning neural network models that could predict 
the outcome of future experiments with significantly lower 
error than the simulations alone. 

In the News: Humbird, K. D., Peterson, J. L., Spears, 
B. K., and McClarren, R. G., 2020, “Transfer learning to 
model inertial confinement fusion experiments,” in IEEE 
Transactions on Plasma Science 48 (1), pp. 61–70, Jan. 
doi: 10.1109/TPS.2019.2955098. This paper was a 2022 
IEEE Transactions on Plasma Science (TPS) Best Paper 
Award winner. 
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Mature foundation models will be able to ingest a large range 
of data types—images, time series, scalars, and more—to 
produce a concise and never-before-seen representation of 
scientific phenomena. These representations will enable 
vastly improved predictive capabilities, greatly deepen the 
insight extracted from observations, again enabling scientists 
to ask and answer questions that are intractable today. 

For example, a foundation model could be built on broad 
datasets, both experimental and simulated, from the 
spectrum of fusion energy research to answer fundamental 
questions essential to fusion energy production, such as 
building on recent DOE breakthroughs toward sustainably 
achieving and surpassing “breakeven” with respect to energy 
produced versus energy used to drive the experiment [5]. In 
fact, we might expect such a model to suggest and evaluate 
a range of strategies: from preventing energy-sapping 
instabilities, to guiding safe device and complex system 
operation, to expediting the design of commercially viable 
systems in public–private partnerships. 

In addition to the missions that motivate a need for foundation 
models, no entity exists—other than DOE—that is fully 
positioned to undertake such an endeavor in nationally critical 
sciences including fusion science, nuclear stockpile 
stewardship, climate preparedness, bio-responsiveness, 
and many others, such as those described in Section 02 of 
this report.  

DOE also has clear advantages for building world-leading 
applied-science foundation models by virtue of its key 

structural and cultural features: mature interdisciplinary teams 
spanning the computational and physical/life sciences, 
enormous amounts of data (simulated and empirical), and 
world-leading high-performance computing (HPC) 
capabilities—in full display with the >1000-person ECP. This 
combination of enterprise resources, human capacity, and 
scientific mission is unique to DOE. To create and exploit 
foundation models will require intentional and deliberate 
government investment in building the AI excellence that 
must accompany the teams, data, and compute power. 

We detail below the current status of foundation models while 
emphasizing the bold, nation-scale challenges that can be 
launched and completed with the assistance of strong DOE 
investment and guidance. 

2.1 State of the Art 
Foundation models are being researched in a variety of 
scientific areas such as computer vision [6], protein structure 
prediction [7], organic molecules [8], biological literature 
mining [9], and DNA sequence analysis [10]. Simultaneously, 

 
Figure 2-1. Transformer model architecture underlying foundation 
models [4]. 

GAME-CHANGING OPPORTUNITY 
Advances in natural language processing demonstrate 
the potential for generative AI models—those that can 
design and create systems—to be built and trained with 
an unprecedented scale of data and computation. 
GPT-3, a large language model (LLM) created by 
OpenAI.com, generates text based on user prompts. 

Prompt: Write a paragraph on the importance of AI to 
the future of the United States and the Department of 
Energy's mission. 

GPT-3 AI Model Response: Artificial intelligence (AI) is 
rapidly transforming our economy, society, and 
environment. AI has the potential to revolutionize the 
way the Department of Energy works, from energy 
efficiency to renewable energy to national security. AI 
can be used to improve prediction models, automate 
data analysis and decision-making, and provide insights 
into energy markets and other complex systems. AI can 
also be used to develop better predictive models of 
energy supply and demand and to enable more efficient 
and cost-effective energy management. This could help 
the Department of Energy manage energy efficiency 
and renewable energy programs more effectively and 
efficiently, helping to reduce energy costs and 
emissions. AI could also help the Department of Energy 
monitor and protect the nation’s energy infrastructure 
from physical and cyber attacks. AI has the potential to 
be a powerful tool for the Department of Energy in its 
mission to secure, clean, and affordable energy for all 
Americans. 

 

 

 

http://proceedings.mlr.press/v119/chen20s.html
https://www.pnas.org/content/118/15/e2016239118
https://arxiv.org/abs/2108.10307
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in industry, several startups are heavily prioritizing these 
models (e.g., Hugging Face [11], AI21 Labs [12], Cohere [13], 
Aleph Alpha [14]); and big tech companies such as Google 
[15], Facebook [16], and Microsoft [17] are increasingly 
investing in developing and using these models in products 
that impact billions of people. Given the scale at which these 
models are being created—current foundation models have 
hundreds of billions, or even trillions, of parameters and they 
are trained on gigabytes or terabytes of data—their 
development is only possible for a few.  

Global crises such as the COVID-19 pandemic, climate 
change, and international conflicts highlight the urgent need 
to find innovative AI-enabled solutions that can sift through 
vast amounts of diverse data from multiple sources to quickly 
find patterns, detect threats, identify correlations, make 
predictions, develop new vaccines and materials, and 
allocate and optimize resources. Furthermore, they can 
interact with external sources and self-update, thus taking 
advantage of the continuously expanding and increasing 
scale of diverse data sources. 

As illustrated in Section 01 of the report, foundation models 
will be part of a constellation of interrelated technologies that 
will be leveraged to advance multiple aspects of national 
security, from material design to climate change, to 
healthcare, to food production, to power distribution. They 
have already shown promise in compressing large amounts 
of data and deriving new information from the knowledge they 
ingest. These capabilities pose an important opportunity to 
drive and accelerate national security, and their successful 
adoption will determine how quickly the United States can 
respond to disasters and drive economic and strategic 
competitiveness for the future. 

The critical property of foundation models—support for many 
different downstream tasks, including those not initially 
contemplated—can be illustrated in materials science. Here, 
the difficulty of integrating diverse data sources (e.g., material 
properties, natural language, chemical structures, process 
flows) in forms consumable by neural networks, has 
confounded the adoption of machine learning (ML) in the 
field, because individual models can typically predict only 
several parameters. In 2020, scientists at Waseda University 
developed and applied a graph-based data representation 
approach to overcome this limitation, using 14 data sources 
from 10 individual material science project teams to train a 
single (large) neural network to predict more than 40 
parameters [18]. More recently, a team at Microsoft Research 
developed a foundation model for climate and weather 
modeling [19]. The potential for such shared models—
developed, trained, and used by dozens of scientific teams—
illustrates the role that very large models can play in 
revolutionizing DOE’s traditional modeling and simulation 
approaches. 

Once trained, foundation models will provide new tools for 
rapid and targeted multimodal data acquisition, integration of 

private and public data, and modeling and decision support 
analysis within their domain. Possible sources of integrated 
multimodal data will include large-scale scientific experiments 
coupled with exascale modeling and simulation campaigns, 
molecular design for advanced manufacturing and drug 
design, public health mitigations, delivery of care, satellite 
imagery, communications signals, social and environmental 
indicators, social media data, and other large sources of 
information. 

 

2.2 Grand Challenges 
We propose two grand challenge problems that will greatly 
advance the state of play for AI in applied science while also 
capitalizing on existing DOE strengths. Together, these two 
challenges will advance the state of the art for foundation 
models in applied science, drive critical infrastructure and 
techniques to keep these models current and valid, and build 
key controls to ensure responsible use, to limit risk, and to 
detect security/accuracy threats. They are to: 

1. Build a set of carefully selected world-class, 
transformational foundation models for key scientific 
domains with expertise similar to that of an SME 
(e.g., materials, high-energy-density physics [HEDP]). 
Each model instance would be a massive multi-task, 
broad-spectrum applied science foundation model based 
on a broad swath of DOE data associated with a particular 
set of mission challenges (e.g., biology, nuclear stockpile). 

2. Deploy an AI system leveraging multiple foundation 
models in conjunction with traditional scientific 
modeling and simulations. This will demonstrate the 
end-to-end integration of this approach and would 
represent a blending of the standard deductive reasoning 
with the emerging inductive reasoning of AI methods. 

Each of these Grand Challenges is discussed below. 

“Given this potential, we see foundation models as the 
subject of a growing paradigm shift, where many AI 
systems across domains will directly build upon or 
heavily integrate foundation models. Foundation models 
incentivize homogenization: the same few models are 
repeatedly reused as the basis for many applications. 
Such consolidation is a double-edged sword: 
centralization allows us to concentrate and amortize our 
efforts (e.g., to improve robustness, to reduce bias) on a 
small collection of models that can be repeatedly applied 
across applications to reap these benefits (akin to 
societal infrastructure), but centralization also pinpoints 
these models as singular points of failure that can radiate 
harms (e.g., security risks, inequities) to countless 
downstream applications.” R. Bommasani et al [1] on the 
opportunities and challenges of creating and using 
foundation models. 

https://huggingface.co/transformers/
https://www.ai21.com/blog/announcing-ai21-studio-and-jurassic-1
https://www.fastcompany.com/90670635/ex-googlers-raise-40-million-to-democratize-natural-language-ai
https://www.fastcompany.com/90683767/powered-by-cloud-self-learning-ai-models-are-turning-programming-on-its-head
https://blog.google/products/search/search-language-understanding-bert/
https://ai.facebook.com/blog/ai-advances-to-better-detect-hate-speech/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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2.2.1 BUILD A SET OF CAREFULLY SELECTED 
WORLD-CLASS, TRANSFORMATIONAL 
FOUNDATION MODELS FOR KEY SCIENTIFIC 
DOMAINS WITH EXPERTISE SIMILAR TO THAT OF 
AN SME 
Foundation models excel at combining streams of disparate 
data to produce novel, sometimes emergent, predictions 
based on the inherent correlations in that data. The inductive 
reasoning driven by these models provides a significant 
complement to the traditional deductive reasoning that 
underpins the world of scientific modeling and simulation. The 
DOE hosts some of the world’s most valuable and high-
precision scientific data across a vast number of applications. 

We propose here a grand challenge problem to build a set of 
digital SMEs by training foundation models for multiple 
domains of interest to the DOE, based on all of DOE’s 
available applied-science data within each domain. These 
data can include simulation output from enormous 
supercomputer simulations, experimental data from singular 
experimental facilities, legacy datasets from historical 
experiments, simulation code and programming input from a 
wide array of scientific computer programs, and even the 
totality of a field’s published scientific literature. 

These rich streams of data can be combined in a uniform and 
distilled representation that allows a number of novel tasks to 
be performed by the resulting foundation model, effectively 
creating a digital SME that can complement existing SMEs 
and serve as a catalyst for knowledge transfer to early-career 
staff. These foundation models will also serve as master 
models within their domain, providing a nexus for integrating 
multiple related data modalities that, to date, have been 
largely inaccessible by significant swaths of each DOE 
community. Foundation models, acting as digital SMEs, can 
be imagined for any, and perhaps all, of the following 
purposes: 

 Make detailed predictions of physical system evolution 
based on synthesis of experiment data, simulation data, 
and even potentially codes; 

 Illuminate previously undiscovered phenomena that 
emerge from the integration of scales and scientific 
disciplines; 

 Detect inconsistencies in published results and 
measurements based on combinations of theory and 
observation across disciplines; 

 Enable rapid design or inverse design of new systems, 
devices, chemicals, materials, and processes; and 

 Identify and predict rare events or anomalous behavior 
within complex systems. 

The research and development required here is substantial. It 
requires national-scale investment, and leverages the DOE’s 
workforce, infrastructure, and expertise. The challenge would 
require: 

 Development of new methods to represent multiple 
disparate sources of data in a robust and meaningful way 
for ingestion into foundation models. To successfully 
accomplish this for scientific applications, the DOE will 
need to shift from a primary focus on data representations 
for languages and natural images to structures such as K-
dimensional vector fields, large and small graphs, and a 
greater consideration for sparse information, all of which 
provide a more robust encoding of complex scientific 
phenomena. 

 Creation of self-supervised learning tasks and supervised 
domain adaptation tasks for scientific and national security 
use cases. For each new scientific data type being 
included as input into the foundation model, it is necessary 
to develop semantically meaningful learning tasks that are 
elevated from the simple task of auto-encoding. For 
language models, the task of predicting the missing word 
from a properly constructed sentence is a powerful, self-
supervised task that allows models to autonomously learn 
significant components of a language’s structure, grammar, 
and other elements. Developing analogous tasks for 
material design, hydrodynamics simulations, and other 
tasks is a necessary, but challenging task that is uniquely 
suited to the multidisciplinary research expertise of the 
DOE and will not be adequately addressed by the 
commercial community. 

 Advances in data curation and pan-DOE connectivity. 

 Qualitative leaps in foundation model development, 
representation learning, and transfer learning. Key 
opportunities abound in the ability to develop new learning 
methods that can combine the current results of 
experiments, traditional HPC modeling, and simulation with 
traditional scientific literature. 

 Transformations of HPC-scale computing to train and 
deploy models with billions to trillions of free parameters. 
To date, the training of foundation models is the exclusive 
domain of a select number of organizations and national 
institutes. Each model represents a heroic training run that 
is the culmination of hundreds to thousands of staff hours. 
The DOE’s investment in advanced- and leadership-class 
exascale computing places the national labs within this 
domain, but it will require significant investments in 
workforce and research and development to make the 
training of these models accessible to multiple research 
teams—and no longer the exclusive province of “hero” 
runs. In short, the DOE will need to democratize exaflop 
days of training for deep-learning models to broaden their 
accessibility. 

 Updates of experimental and production facilities to 
become AI-ready in order to integrate foundation models 
into their operations. 

These foundation models would also require associated 
theory with respect to learning objectives and methods so 
they could be specialized for targeted and critical missions. 
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Specifically, while large language models have evolved into 
today’s foundation models, outside of natural imagery and 
text, the existence of these foundation models for scientific 
and national security applications has yet to be 
demonstrated. The ability to develop this emergent behavior 
with respect to zero- or low-shot learning is unproven, and a 
technical moonshot will be required to demonstrate this 
capability across multiple domains. To begin, we recommend 
that models based on broad, pan-DOE data be used to 
create models that will be trained and fine-tuned to execute 
important tasks for multiple DOE domain areas. 

We describe three examples that leverage considerable DOE 
research in AI to date: molecular design, cancer treatment 
discovery, and national security. 

1. Foundation models specialized to molecular design 

The development of a master model that has the ability to 
generate complex molecular compounds, polymers, crystals, 
proteins, or synthesizable drug compounds would be 
revolutionary. The demands for such a model would require 
new representational learning that preserves both structure 
and function of complex three-dimensional (3-D) objects that 
are governed by local properties (i.e., bonds), but also micro- 
and macroscopic structure (e.g., folding and periodic 
structure). The learning tasks that are required to train these 
models from a self-supervised and domain adaptation 
perspective are unknown, as is the most appropriate 
representation for developing these models. Fundamental 
research around the characterization of known compounds is 
crucial to preserving a sufficient amount of information while 
preserving computational efficiency. 

Despite the challenges, the ability for a foundation model to 
generate novel compounds that are optimized for user-driven 
specifications and properties would have significant impact 
on both the national economy, but also the agility of the DOE 
and the U.S. Government to respond to emerging threads. 
Such a model would impact core components of the National 
Nuclear Security Administration (NNSA) stockpile 
stewardship efforts, lead to new drug discovery, and 
fundamentally differentiate advanced additive manufacturing, 
which would in turn have impacts across the board from 
national security to new designs for green energy solutions. 

2. Foundation model for cancer treatment 

The seminal paper on foundation models [1] uses healthcare 
and biomedical research as a key illustration of the 
opportunities and challenges for these models. Foundation 
models built by DOE on broad-spectrum applied-science data 
can be specialized by ingesting the wide array of healthcare 
data available across the world. They can become the central 
reservoir of the medical and relevant non-medical knowledge 
needed to integrate and connect varied disciplines and 
diverse sources/modalities of data, distill their information into 
a multifaceted representation, and—if properly developed—
provide an acceptable, safe way to disseminate knowledge 
with a proper level of encryption and de-biasing of the data. 

These models have the potential to optimize the feedback 
loop between healthcare experts and real-world information, 
leading to improved decision making. They can be finely 
tuned for specific tasks in healthcare and biomedicine and 
then used by the government (e.g., for pandemics and 
security), medical professionals (e.g., healthcare providers 
and biomedical researchers), and the public. Thus, they can 
support multiple points of contact that efficiently connect data, 
tasks, and people. 

Foundation models, with their ability to integrate enormous 
amounts of ever-increasing multimodal data at rates 
surpassing human expertise, could dramatically accelerate 
biomedical research and facilitate more effective and efficient 
healthcare. Expediting the development of medicines, 
identifying who will develop cardiovascular disease or 
diabetes in advance, identifying who will benefit from a highly 
expensive and/or toxic and/or life-changing cancer treatment, 
and predicting areas of high vulnerability for the next 
pandemic are only a few examples that could save millions of 
lives and dollars, and put our country at the forefront of bio-
preparedness. 

3. Foundation model specialized for national security 

Although foundation models are being developed in a wide 
range of disciplines, foundation models such as those for 
security, biomedicine, and healthcare also have the potential 
to spread harm and pose a national threat, and they should 
only be developed as a joint effort leveraging expertise from 
government agencies. For example, they could be used to 
counterattack a pathogen specifically engineered by AI for 
lethality or to target a genetic profile. 

DOE labs have the secure computing power, AI and decision 
support expertise, and interagency collaborations in place to 
start unlocking capabilities across science, climate, 
healthcare, infrastructure, manufacturing, agriculture, 
development of new materials, and countless other sectors. 
In fact, national security requires DOE to urgently develop 
this capability to prepare for future societal crises. 

Furthermore, partnerships must be developed with multiple 
healthcare, energy, and climate systems, including the 
national Veterans Healthcare Administration, the Centers for 
Disease Control and Prevention, U.S. Department of 
Homeland Security, U.S. Department of Health and Human 
Services, universities, industry, and international partners to 
securely curate, store, and integrate relevant data streams 
and to accurately quantify requirements on crisis response. 
This will allow them to be addressed with the interrelated 
healthcare foundation model, climate foundation model, 
materials foundation model, or smart grid foundation model, 
among others, as shown in Figure 2-2. 
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2.2.2 DEPLOY AN AI SYSTEM LEVERAGING 
MULTIPLE FOUNDATION MODELS IN 
CONJUNCTION WITH TRADITIONAL SCIENTIFIC 
MODELING AND SIMULATIONS 
A pilot AI system that leverages multiple foundation models 
should be developed in conjunction with traditional scientific 
modeling and simulations to demonstrate the end-to-end 
integration of this approach involving a blending of the 
standard deductive reasoning with the emerging inductive 
reasoning of AI methods (these concepts are detailed in 
Chapter 03). 

The integration of emerging foundation models with existing 
HPC modeling and simulation approaches defines the next-
generation workflow that has been described as cognitive 
simulation. Fundamentally, there is a significant challenge 
when integrating foundation models with billions to trillions of 
trained neural network weights, all of which can be executed 
at lower precision than traditional modeling and simulation 
workloads (ModSim). As a result, the interface between these 
two domains is emerging and requires a significant 
demonstration. 

Within the cognitive simulation workflow, we expect that 
traditional ModSim applications will integrate responses from 
trained foundation models in multiple capacities, such as 
surrogates for in-the-loop physics calculations or generative 
model-driven design space exploration. In these use cases, 
the demands for low-latency, high-bandwidth execution of 
trained foundation models will become a significant 
percentage of the compute budget. Research into next-
generation AI accelerators, novel hardware architectures, and 
efficient execution of large, complex neural network models 

will be critical to enabling these cognitive simulation 
workflows. 

Finally, as foundation models offer an inductive approach to 
developing emergent behavior on new and challenging tasks, 
this will place an increased burden on both the interpretability 
and validation of trained models. All of these topics are 
covered in Chapters 01, 03, and 04. 

2.3 Advances in the Next Decade 
Over the next 1–3 years, promising data representation and 
self-supervised learning techniques will be identified for 
multiple modalities within one or two SME domain areas. 
Current parallel training techniques will be extended to 
enable scalable training of foundation models for scientific 
applications. Prototype, small- to moderate-scale (million- to 
billion-parameter) foundation models will be developed for a 
few domain areas. Multi-modal scientific datasets will be 
curated that are suitable for training combined self-
supervised foundation models and supervised training for 
multi-task adaptation. 

Over the next 3–5 years, proof of principal applications and 
theory will be developed for robust training of scientific 
foundation models. The research identified from the cross-
cutting methods chapters such as Chapter 12 (Mathematics 
and Foundations) and 13 (AI Workflows) will be combined to 
improve the interpretability and robustness of model training. 
The size of foundation models that can be trained on a 
regular basis will increase. 

Over the next 10 years, robust training of large foundation 
models will demonstrate emergent behavior across multiple 
modalities for several domains—essentially first-generation  

 
Figure 2-2. Data from multiple agencies, DOE computing and experimental facilities, and expertise connected in an 
ecosystem that supports the creation and deployment of foundation models that are readily available for decision making. 
Figure courtesy of Silvia Crivelli, Lawrence Berkeley National Laboratory. 



 

02. AI FOUNDATION MODELS FOR SCIENTIFIC KNOWLEDGE DISCOVERY, INTEGRATION, AND SYNTHESIS 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY  

34 

digital SMEs. Multiple digital SMEs will be integrated at scale 
into a cognitive simulation workflow to demonstrate the end-
to-end coupling of both deductive and inductive reasoning 
approaches involving a combination of automated as well as 
assisted reasoning tools. Initial deployments of security 
applications leveraging foundation models will be made. 

Over the next 20 years, there will be widespread adoption of 
assured, sustainable, auditable offensive/defensive 
applications of foundation models. Practices and tools will 
become well established for developing new foundation 
models in new domain areas, and digital SMEs will be 
deployed across the DOE complex. 

2.4 Accelerating Development 
Along with advancements in autonomous discovery, 
foundation models promise to deliver novel insight into 
complex national security and scientific areas that are 
underserved by traditional deductive-based modeling and 
simulation, because they are not well characterized by first-
principles equations, are too complex to be modeled and 
simulated at sufficient scale and fidelity, or are subject to 
constraints that are not yet well understood. 

Regardless of the source, development of inductive, data-
driven foundation models leveraging advancements in 
autonomous discovery (see Chapter 03) that can act as 
master models for significant domain areas of science, 
energy, and security offers a revolutionary approach to 
engaging both the data and challenges in these fields. 
However, to unlock this promise, the DOE must have the 
ability to train and deploy these models at scale, in 
multiplicity, and without requiring extraordinary “heroic” effort 
for each and every model. In short, the DOE must 
democratize exascale computing for AI-ready modeling and 
simulation workflows as well as training and deployment of 
these foundation models. Furthermore, novel research and 
development will be required to adapt academic and industry 
practices to the unique science, energy, and security 
applications that are in the DOE’s areas of stewardship. 

2.5 Expected Outcomes 
Much as precision medicine promises personalized medicine 
for each patient, the development of foundation models will 
offer tailored and scalable subject matter expertise in the 
form of digital SMEs for science, energy, and security 
applications. 

Fundamentally, the ability to create a foundation model for a 
domain area will allow the DOE to bring an unprecedented 
amount of domain knowledge to bear on a multitude of 
problems. Foundation models can harness vast troves of 
crucial, yet unlabeled, data within the DOE complex to bring 
new insight to scientists, analysts, engineers, and policy 
makers. This insight will be available to spur U.S. economic 

competitiveness and accelerate the DOE’s ability to discover, 
design, manufacture, and deploy novel innovations and new 
solutions to the challenges faced by our country and the 
world. 
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03. AI FOR ADVANCED PROPERTY INFERENCE 
AND INVERSE DESIGN 

Many scientific problems can be cast as design problems, in 
which a model or structure is optimized to achieve certain 
desired behavior or characteristics. For example, the 
discovery of new materials that lead to solar cells with 
increased efficiency, better chemical processes that require 
less energy to produce essential industrial chemicals or can 
more efficiently purify water, new proteins and pathways for 
synthetic biology to efficiently make biofuels or new drugs, or 
new devices and architecture for microelectronics leading to 
more efficient and faster chips in products we use every day 
(phones, cars) can all be solved as design problems 
Likewise, complex experiments with many parameters can be 
“designed” to achieve a specific result. This process is 
sometimes called inverse design, whereby scientists “invert” 
specified (or desirable) properties to recover a new design for 
a complex system (e.g., a new material or a chemical 
process), and is fundamental in both science and 
engineering.  

Property inference is related to inverse design, where the 
scientists attempt to “design” a model’s parameters and 
properties to closely match an observation. It allows scientists 
to rigorously characterize a system (engineered or natural) as 
observed “in the wild,” as opposed to its idealization obtained 
from purely theoretical approaches. For instance, a material 
property might not be directly measurable, but by “designing” 
a model to match an observation, the property can be 
inferred from data. This basis in realism allows a very direct 
route to predictive models and underpins fields like 
uncertainty quantification (UQ).  

An inverse design process allows a more robust and 
automated approach to discovering optimal design 
configurations; the alternative (relying on human ingenuity 
and/or trial and error) does not scale to large design spaces. 
This means that experts must limit their design searches to 
relatively few possibilities. However, the use of innovative 
artificial intelligence (AI) methods in advanced property 
inference and inverse design has the potential to accelerate 
by orders of magnitude the traditional model computations 
and/or experiments that can take hours, weeks, or months.  

Discussed here is an integrated roadmap for how advances 
in AI can enable us to model and analyze more complex 
systems, specifically toward creating capabilities and 
frameworks to drive design—and, in particular, inverse 
design—that can be used to advance and accelerate the 
science and engineering of Department of Energy (DOE) 
mission areas, including materials, chemistry, biology, 
physics, microelectronics, energy technologies, and other 
engineered systems.  

3.1 State of the Art 
Inference’s fundamental goal is to reconstruct the conditions 
or parameters that give rise to data, observations, and/or 
signals. In simpler cases, exploration of this parameter space 
can be driven by expert scientific knowledge, by trial-and-
error, or by systematic exploration using a combination of 
experimentation and forward models (e.g., simulations). 
Pushing the boundaries of modern science are cases with 
ever larger parameter counts, for which researchers are 
increasingly exploring AI approaches.  

Machine learning (ML) and AI have been used for physical 
property inference in the sciences for some time. For 
example, they have been used in classification or regression 
based on supervised learning on simulated or experimental 
datasets. More recently, they have exploited deep learning to 
move to higher dimensionality and larger datasets [1]. 
However, there are limitations in the availability of data from 
experiments and computationally expensive high-
performance computing (HPC) simulations, as well as in 
techniques to reliably extrapolate into new regimes that lack 
data. Self-supervised learning is used to address these 
issues in some cases [2] but more remains to be explored. 

PROJECT SPOTLIGHT 
Project Name: Molecular and strain design through 
machine learning 

PIs: Hector Garcia Martin and Hans Johansen 

Organizations Involved: Lawrence Berkeley National 
Laboratory 

Goal: Create tools able to recommend molecules and 
bioengineered strains which meet a desired specification.  

Significant Accomplishment: Created two 
computational tools (Macaw and A.R.T) that use novel 
approaches to generate molecules predicted to meet a 
desired property specification (e.g., a binding affinity of 
50 nM which is a critical metric for the design of new 
medical drugs, or an octane number of 90 for the design 
of novel biofuels), and strain designs that optimize a 
desired goal (e.g., tryptophan productivity, which is 
critical for the economical production of animal feed).  

In the News: News feature in Berkeley Lab News 
(https://newscenter.lbl.gov/2020/09/25/machine-learning-
takes-on-synthetic-biology-algorithms-can-bioengineer-
cells-for-you/), publications in Nature Communications 
(https://www.nature.com/articles/s41467-020-18008-4, 
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Furthermore, obtaining uncertainties in inferred parameters is 
crucial in many areas of science, with newer methods being 
applied, including Bayesian deep learning [3] and likelihood-
free inference [4]. 

Inverse design is a relatively new research direction in 
science and engineering. Unlike widely used design 
processes, which are often driven by human knowledge and 
intuition of the science and engineering problem, the goal of 
inverse design is for a scientist or process engineer to specify 
desired properties, behavior, or performance and then find 
the best available solution using an optimization algorithm 
that explores the design space. Current inverse design 
approaches rely on a random or pseudo-systematic search of 
the design space or a slightly more systematic search 
through the parameter space, for instance using genetic 
algorithms or Monte-Carlo Tree Search (as used by Google 
LLC in the AlphaFold [5] protein folding project). In addition to 
protein folding, early efforts to utilize inverse design have 
been explored in a variety of fields, from materials and 
chemical research to engineering and high energy density 
physics. These approaches are executed in an automated 
way until a solution that meets the specified target is found. A 
critical aspect of inverse design is that the assessment of a 
potential solution is fast, so that a large parameter space can 
be explored rapidly and accurately.  

A fundamental obstacle to broad application of inverse design 
is that many scientific data are expensive to acquire (for 
instance a large computer simulation or costly experiment). 
Additionally, this process can be noisy and involve dozens or 
hundreds of parameters. By automating, expanding, and 
accelerating the design-search process, advances in AI, and 
its concentrated application to the problem of inverse design, 
could have far-reaching implications and transform several 
important science, engineering, energy, and security DOE 
missions. 

1. Creating Biomolecules On-Demand. In nature, biological 
systems such as microbes or cells- have the innate ability 
to efficiently create new materials and molecules or absorb 
hazardous materials for internal use. AI-enhanced inverse 
design could achieve full control of biological systems and 
harness their abilities for producing new products or 
converting waste products.  

Industry has used the natural abilities of biological systems 
to make products for over a century. For example, industry 
has exploited the fermentation process for penicillin 
production. The birth of biogenetic engineering opened 
doors to modifying microbes or cells to create new 
materials and molecules not naturally produced but 
desired by industry at a higher yield or reduced cost. 
Examples for DOE missions include the conversion of 
plant-based materials into ethanol or fuels, and biodefense 
against new pathogens for national security. Biological 
systems can also be engineered to extract hazardous 
materials, such as radioactive materials or toxic metals, or 

to break down plastics. Modifying biological systems is 
extremely complex and requires a detailed understanding 
and precise control of a system’s functions. Models of 
biological systems are complex, often incomplete, and 
computationally expensive. The potential efficacy of AI and 
inverse design in biomolecular design has been show in 
recent work, for example generating molecules [6] and 
functional protein sequences with specific target properties 
[7]. Engineering the desired behavior of a biological 
system requires the exploration of an exponentially large 
parameter space. Here, AI-enabled forward acceleration 
through inference and inverse design has the potential to 
dramatically advance the field [8]. 

2. Materials by Design. Developing next-generation 
materials is critical to DOE missions, national security, and 
U.S. technological competitiveness and leadership. AI-
enhanced design that harnesses the physics of materials 
would greatly accelerate the discovery and production of 
new materials with required properties.  

The U.S. can increase its competitive advantage by 
designing materials that (1) eliminate use of rare and 
expensive elements not readily available domestically, 
(2) can easily be manufactured and require minimal 
energy sources, (3) are readily recycled and upcycled as 
part of the material lifecycle, and/or (4) have properties 
that are optimal for specific applications, from energy 
storage to safer explosives. Machine learning and simple 
inverse design approaches are already being explored for 
specific problems in materials research [9, 10]. For 
example, there are 1050 possible combinations to create 
alloys from nickel, ion, cobalt, and copper. Such materials 
are needed in multiple variations, from steel and concrete 
to plastics and catalysis used in the manufacturing of 
chemicals and fuels. Materials research and development, 
engineering, and manufacturing form a vast combinatorial 
design space that overwhelms current practices involving 
large-scale simulations and time-consuming experiments. 
The scientific community and industry have adopted AI 
approaches to accelerate the simulations of specific 
properties through inference. However, significant 
challenges remain in the adoption of AI, such as accuracy 
in the face of limited training data and the need for AI 
models that accurately describe many properties 
simultaneously. Exploration of the use of inverse design 
methods accelerated by simulation and AI inference 
models is typically limited to a single property in a given 
design space. The key to accelerating the design of new 
materials lies in developing new inverse design 
approaches that can explore the full design space, from 
fundamental materials properties to stability and 
manufacturability.  

3. Design of Microelectronics. Building next-generation 
microelectronics also requires the exploration of an 
immense design space of relevant physical parameters. 
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These range from the choice of materials and quantum 
properties to macroscopic 3D geometry and continuum 
(electromagnetic) behavior to practical factors such as 
manufacturability [11]. AI would drastically accelerate the 
optimal design and production of novel but practical 
microelectronics in critical mission areas.  

Examples include designing for radiation hardness in 
aerospace applications and nuclear deterrence and 
designing improved materials or geometric design for core 
components (such as memory, 6G communication, or 
computing chips). Fabrication of each microelectronics 
design is expensive and time-consuming, which limits 
opportunities for experimentation. Moving beyond the 
limits of human knowledge and the timeframes and costs 
of these design processes will demand AI models that 
accurately infer properties of microelectronic systems at 
multiple scales, from the atomic and microscopic scales to 
the macroscopic scale involving complex multiphysics 
behaviors. Combining AI models that accurately and 
rapidly infer essential and often multiscale properties of 
the microelectronics system with inverse design 
approaches will be imperative if the U.S. is to maintain 
leadership in the design and manufacturing of next-
generation microelectronics.  

4. Stockpile Modernization and Nuclear Deterrence. 
Developing and maintaining a safe, secure, and 
operationally ready nuclear stockpile for nuclear 
deterrence is of utmost importance to national security. AI-
enhanced design would enable a fast modernization 
program that minimizes cost, is safe, greatly reduces the 
time from design to “First Production Unit,” and is capable 
of rapidly responding to evolving threats.  

Without a return to nuclear testing and with only limited 
experimental data upon which to build models, much of 
the design optimization of nuclear weapons, their 
manufacturing, and stability during environmental 
conditions over decades relies on large and complex 
multiscale and multiphysics simulations commanding large 
HPC resources, including exascale computing platforms. 
These simulations must be highly accurate, with extremely 
well-defined and well-understood error bounds to ensure 
that new designs pass the extremely rigorous certification 
and qualification processes for nuclear technology. High 
accuracy and fidelity from property inference will be 
essential to either replace or accelerate traditional large-
scale simulations. Novel inverse design approaches will be 
needed to guide and speed up the complex multi-scale 
multiphysics design optimization processes inherent to 
nuclear stockpile modernization.  

5. Accelerating Manufacturing with Automated Design. 
Rapid and innovative design and the manufacturing of 
complex systems or machines are critical to ensure 
U.S. competitiveness. Decision-making in design and 
manufacturing is driven by human experience and 

knowledge and supported by computer simulations and 
experiments [12]. AI methods could significantly accelerate 
the production of complex systems by automating design 
and manufacturing processes.  

For example, next-generation hybrid or electric aircraft 
with intercontinental range would require radically new 
designs, yet the design and manufacturing of a new type 
of aircraft can take 10 to 15 years. Additive manufacturing 
(also known as 3D printing) has been transforming the 
industrial production of parts, enabling rapid prototyping, 
on-demand manufacturing, and creation of new parts that 
would not be manufacturable with traditional tooling 
methods. The aviation industry is an early adopter of 
additive manufacturing, as are the automotive and 
renewable energy industries. The DOE scientific 
community is also using additive manufacturing to build 
innovative new instruments. 

Utilization of AI with uncertainty quantification to better 
explore the design space with higher fidelity has the 
potential to accelerate these optimal design and 
manufacturing processes. For example, accelerating 
expensive computational fluid dynamics simulations with 
inference from accurate AI models—critical in many 
industrial design processes—will lead to reduced costs 
and a faster time-to-solution. Inverse design is critical to 
support and substantially accelerate the decision-making 
process in the design and manufacturing of complex 
systems, and it will help determine what is printable with 
additive manufacturing for aircraft and other machines. 
Manufacturing through AI requires a new breed of AI 
methods that are physics-informed, optimization-aware, 
capable of mitigating uncertainty, computationally efficient, 
able to address calibration through online experimental 
and field data, and advanced enough to enable system-
level, automatic decision-making. 

6. Robust Energy Infrastructure. Our nation is highly 
dependent on reliable and secure energy supply. An AI-
designed comprehensive and accurate model of the 
nation’s energy infrastructure would enable the U.S. to 
make critical decisions in real-time, as well as develop 
medium- and long-term policy decisions that will ensure a 
stable energy supply now and in the future.  

The energy infrastructure is one of the most complex ever 
built, and it must be managed today in terms of its 
unprecedented spatial and temporal extent, complexity, 
and interconnectedness of energy generation, storage, 
and transmission capabilities. Despite this interconnected 
complexity, control and information exist only at the local 
or regional levels, with limited sharing of information. 
Large-scale simulation models are used for decision 
support and control at the regional level, but even with 
exascale computing systems, large-scale heterogeneous 
coupled systems models encompassing the national grid 
remain intractable computationally. Moreover, the 
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U.S. energy infrastructure is rapidly changing in 
fundamental ways, becoming more complex as new types 
of energy sources are integrated into the system, such as 
large- and small-scale renewables, variable energy 
resources (e.g., wind and solar), and energy storage, 
including batteries, and buildings that shift loads and feed 
renewable energy back to the energy infrastructure.  

This complexity, in combination with the increased 
prevalence of extreme weather events and the inadequate 
tools to manage, monitor, and control these systems, is 
leading to more frequent disruptions of our energy supply. 
The status quo—even apart from rapidly increasing 
complexity and disruptors—leads to poor, costly decision 
making, wasted resources, slow recovery from events, 
suboptimal planning of new resources such as additional 
energy storage, and greater susceptibility to catastrophic 
disturbances [13]. It also prevents decision makers from 
developing effective strategies toward a carbon-neutral 
energy infrastructure. Advances in AI are needed to 
replace larger simulation models with inference from AI 
models and support real-time decision and control through 
inverse design and optimization processes, while also 
integrating inherently multi-modal, heterogeneous, and 
rapidly growing data from the energy infrastructure into 
(global) energy infrastructure models with high fidelity to 
provide trustworthy predictions. Inverse design based on 
accurate inference AI models will allow stakeholders to 
make informed decisions, leading both to more stable 
energy infrastructure and to lower energy costs. 

7. Intelligent Water and Agriculture Infrastructure. Water 
and agricultural products are the backbone of the U.S. 
They form an intricately connected complex system that is 
poorly coordinated due to the large numbers of 
stakeholders, distributed data with different ownership, 
and lack of spatial and temporal resolution needed for 
decision-making. An AI-enabled global model of the water 
infrastructure that incorporates predictions of weather 
extremes and trends from climate models would support 
both short-term and long-term informed decision-making.  

Such a model would serve as a building block for 
agriculture models and be of critical value to the energy 
infrastructure component that relies on hydropower. Yet no 
comprehensive water model exists today. Essential 
U.S. water data are fragmented, undermining our ability to 
effectively plan and act in the near- and long-term. Large 
climate models use supercomputing resources and could 
be accelerated with inference from AI models to allow for 
time-sensitive and decadal modeling to support decision-
making and planning. Inverse design and related 
optimization approaches could be developed to optimize 
waterflows across the country and minimize resources 
needed to grow crops. Water-climate models incorporating 
AI could integrate data from heterogeneous data sources, 
satellites, sensors, and simulation models. This kind of 

water-climate model would be instrumental in the 
optimization of agricultural processes and the 
development of actionable precision agriculture 
(e.g., optimized seed placement for maximization of 
production, minimization of fertilizer use, and the reduction 
of waste). The water and agriculture infrastructure are 
emergent fields when it comes to the use of AI, with some 
early demonstrations underway [14]. 

3.2 Grand Challenges 
Across the domains outlined above, vast and accurate 
inference from AI models will be critical to rapidly exploring 
the high-dimensional parameter spaces in design and 
operation of complex, multi-scale systems. Property inference 
from AI-based surrogate (Chapter 01) or foundation models 
(Chapter 02) is a fundamental building block of AI as well as 
a key ingredient for inverse design. Next-generation inverse 
design methods will rely on accurate and trusted AI models to 
accelerate and optimally search the parameter space for 
property optimization or decision-making.  

Six key grand challenges that need to be addressed to 
enable mainstream adoption of AI for inverse design are 
outlined below. 

1. Inference with High Accuracy and Uncertainty 
Quantification. Highly reliable inference of properties 
from trained models is an essential requirement for wide-
scale adoption of AI in science and engineering [5]. The 
grand challenge is to be able to build next-generation 
trust-worthy AI models that respect the accuracy of 
underlying experimental or computational training data and 
reliably provide uncertainty estimates of their predictions. 
Such models can then be used as trusted sources for the 
simultaneous inference of multiple properties needed to 
meet design requirements. AI models that quantify 
uncertainty and fidelity of inferred properties, including at 
the edges/tails of the parameter space for which the model 
has been trained, will be vital to earning confidence and 
trust from industry adopters and regulators. 

2. Learning with Limited, Heterogeneous Data. In many 
critical science and engineering domains, the data 
available to train AI models for property inference are 
limited, often spanning only subsets of the desired 
parameter space. Additionally, the data are 
heterogeneous, created by physical experiments, 
observations, and computational simulations (each with 
their own uncertainties) that must be integrated. For 
example, only a small fraction of the possible biomolecules 
and materials have been studied experimentally or 
computationally, but one would want the AI model to 
generalize across the whole structural space. The grand 
challenge is to build accurate AI models for property 
inference that require minimal information to learn, 
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incorporate domain knowledge, and seamlessly assimilate 
diverse datasets. 

3. Adaptive Learning with a Deluge of Heterogeneous 
Data. Some science and engineering domains are 
confronted with a deluge of multi-modal data, which places 
very different constraints on the training of AI models for 
the inference of properties. For example, the energy 
infrastructure is instrumented with multitudes of sensors 
that are distributed across the country and that rapidly 
generate and return massive amounts of data across 
diverse temporal and spatial scales. These same 
challenges also manifest in water and agriculture systems, 
as the growing need for intelligent decision-making drives 
the need for more detailed monitoring and data integration. 
Furthermore, with the arrival of exascale computing, large-
scale simulations have the ability to rapidly generate 
petabytes of data. The grand challenge is to acquire, 
secure, curate, and contextualize data to train or update AI 
models needed for accurate property inference in real-
time. Solving this grand challenge will be essential for 
science and engineering to take full advantage of AI. 

4. Physics-Constrained Inference across Scales. Many of 
the complex systems referenced are driven by multiple 
fundamental governing equations, predominantly physics, 
which span many spatial and temporal scales. For 
example, inference models describing the nuclear 
stockpile or microelectronics cover length scales from 
atoms to the whole system and timescales from 
milliseconds to days. The grand challenge is to ensure AI 
models infer information consistent with governing 
equations, such as the laws of physics. Advances are 
needed to properly and simultaneously account for physics 
and multiphysics constraints across a hierarchy of scales. 
An additional advantage of physics-constrained AI is that it 
will reduce the parameter space that must be explored for 
optimal or inverse design. This will be of great benefit for 
domains with scarce data for inference model training. The 
development of AI approaches that can self-learn the 
behavior of the laws of physics across multiple scales will 
be important for systems where the coupling of 
mathematical equations at different scales is not well 
defined, but where the flow of information across scales is 
critical for the accuracy of the model. 

5. Explainable, Interpretable and Trusted Inference. Most 
of the AI models for property inference currently available 
are “black box” in that neither its developers nor users can 
explain why the model arrived at a specific decision. The 
grand challenge is to build AI models that are explainable 
and interpretable, and in which humans can understand 
the decisions, predictions, and inferences made by the AI 
model as well as quantify the trustworthiness of the AI 
model for a given problem. Trustworthy and 
understandable AI inference and predictions will drive 
actionable design processes and decisions for domains 

such as precision agriculture and energy system control 
[15], but only to the extent that trust in AI models can be 
reliably quantified. 

6. Inverse Design in Complex Design Spaces with 
Actionable Outcomes. Fast and accurate inference with 
AI models will markedly accelerate the search for optimal 
designs in science and engineering domains, particularly 
where the parameter optimization space is exponentially 
large. The grand challenge is to develop methods that 
rapidly search large parameter design spaces in a 
systematic and rational way, supported by domain or 
physics knowledge. Solutions for this grand challenge 
should be capable of handling complex, often competing 
objectives and constraints, such as desired material 
property versus manufacturability, cost, safety, and 
recyclability. That is, advanced AI inverse design systems 
must make decisions based on the full process cycle. This 
will require the development of representation learning to 
constrain and create more flexible design spaces and 
novel reward functions capable of handling the complexity 
and interactions among diverse requirements, from 
physics to business constraints. 

3.3 Advances in the Next Decade 
To tackle the grand challenges of advanced property 
inference and inverse design, significant investment and 
progress in AI mathematics, algorithms, software, and 
infrastructure is required in multiple, cross-cutting technology 
areas. 

1. Mathematics and Algorithms. The most important 
requirement for widespread adoption of advanced 
property inference and inverse design methods is the 
ability to build highly accurate uncertainty-aware AI-based 
surrogate (Chapter 01) and foundation (Chapter 02) 
models. Mathematical approaches and algorithms will 
need to be developed to seamlessly merge diverse 
heterogeneous datasets and train AI models that achieve 
the desired accuracy. New developments are needed to 
integrate uncertainty quantification with property inference 
to enable reliable decision-making for control and design.  

DOE science, engineering, energy, and security mission 
areas generate data from multiple modalities, with vastly 
different acquisition rates and fidelities [16]. For many 
mission areas, the available data are limited, and the rate 
of data generation is low. This sparsity of data drives the 
need for new ML algorithms that can infer accurately from 
minimal information and can be rapidly updated when new 
data become available through active or adaptive learning 
approaches.  

Significant development efforts will be needed for data 
representations and AI models that can properly encode 
and operate across multiple length and time scales, 
including the hierarchical and multiphysics information 



 

03. AI FOR ADVANCED PROPERTY INFERENCE AND INVERSE DESIGN 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY  

41 

characteristic of DOE mission areas. Finding optimal 
representations is prerequisite to making AI models 
explainable, interpretable, and trusted by humans. 
Explainable AI (XAI) has been pursued by the Defense 
Advanced Research Projects Agency (DARPA) [17] as 
well as the National Science Foundation (NSF) [18, 19], 
yet with only partial overlap with DOE mission areas. 
Major advances are also critically important in the ability 
of AI models to discover data representations themselves, 
and to adapt the model in concert with the data 
representation [20]. 

New mathematical approaches and algorithms are also 
needed to enable inverse design approaches that can 
explore the design/parameter space rapidly and 
intelligently, producing optimal solutions and control 
decisions at scales not presently tractable. Optimal 
representations, combined with the integration of domain 
knowledge, can create essential constraints and flexible 
design spaces. New approaches are needed to design 
complex reward functions for AI system optimizers that 
take into account often conflicting constraints ranging from 
desired properties to manufacturability, cost, and safety. 

2. Data Infrastructure. Progress in the DOE science, 
engineering, energy, and security mission areas 
increasingly requires large multi-disciplinary teams at 
experimental facilities, in the field (e.g., energy, water, and 
agricultural infrastructures, or urban integrated field 
laboratories), and/or at computational centers. These 
teams and facilities create complex multi-modal datasets 
with hundreds of different data types, with varying size, 
and many acquisition rates. New development is needed 
to create data infrastructure that can acquire, curate, and 
manage this data in an automated fashion [21]. It will be 
important to develop comprehensive and inclusive data 
standards that can facilitate the integration of these 
diverse data sources into training sets for AI models, such 
as the surrogate and foundation models discussed in 
Chapters 01 and 02.  

For many mission areas where movement of data is 
precluded, data privacy and security are important. 
Advances in the development of federated data and 
learning systems will be needed to address these 
challenges. 

3. AI Software and Workflows. Development will be 
needed to develop robust, modular, composable software 
and workflow components that can manage evolving, 
heterogeneous datasets that are inherently distributed 
and, in many cases, constrained in movement and access 
by privacy and security requirements. Advances are 
needed to ensure that robust workflows can incorporate 
active/adaptive learning within such ecosystems and 
integrate advanced property inference and inverse design 
approaches with uncertainty quantifications to analysis. 

4. AI Hardware. A major driver for the inference and inverse 
design building blocks driving DOE science, engineering, 
energy, and security mission areas is the need for data 
infrastructures and workflows that can leverage near real-
time performance of emerging hardware infrastructure. 
New hardware components must be explored and 
developed to rapidly and continuously ingest data from 
multiple modalities, update AI models, and provide real-
time inference for inverse design, decision-making or 
high-speed control of complex systems. Research is 
needed to evaluate AI hardware accelerator technologies 
on data acquisition latencies and time-to-solution for AI 
model training and inference. 

3.4 Accelerating Development 
Pilot projects over the next decade will drive the development 
of and demonstrate the utility of newly developed 
mathematics, algorithms, and data, software, and hardware 
infrastructure. The success of these pilots will provide a 
framework for advancements in other DOE mission areas.  

Pilots that could be used to accelerate progress with respect 
to the grand challenges and advances needed in the next 
decade are described below.  

1. Rational Design in Biochemistry, Chemistry, and 
Materials. Several national laboratories have projects 
developing ML approaches for materials and biochemical 
process discovery, with singular or narrow 
application/property areas. A pilot in each of the 
biochemistry, chemistry, and materials domains will drive 
urgently needed progress in adaptive learning from multi-
modal data and build foundation models for inferring a 
wide range of properties with experimental accuracy; 
develop models that span multiple application domains 
and couple these models with inverse optimization 
approaches for end-to-end rational design. 

2. Automated Design and Optimization of Engineered 
and Manufacturable Systems. An initial series of small-
scale pilots should focus on the development of physics-
informed AI models that are optimization-aware, capable 
of mitigating uncertainty, computationally efficient, able to 
address calibration through online experimental and field 
data, and capable of enabling system-level algorithms for 
key application targets. Building on the accurate, 
trustworthy, proof-of-principle AI models resulting from 
this pilot, the next phase will be to enable the automated 
design of specific engineered and manufacturable 
systems.  

3. AI for Energy Resilient Infrastructure. This DOE 
mission area can be used to demonstrate AI inference at 
multiple time and length scales as well as the integration 
of various models for optimization with inverse design 
approaches. A pilot should build a carefully selected set of 
AI-based surrogate and foundation models for control, 
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optimal design, and inverse optimization at scales not 
tractable by current energy system models. Such models 
should integrate transient models in decadal design for 
cost efficiency, resilience, and reliability. The AI models 
developed by this pilot should capture the challenge of 
utilizing high order multi-modal datasets (>100 different 
data types) from local, regional, and national levels. Trust, 
data privacy and security, federated data approaches, and 
real-time data generation, such as from increasingly 
powerful measurement systems using edge computing, 
should be considered in the AI model development. 

4. Resilient Water and Agriculture Resources. No 
comprehensive regional, much less national, water model 
exists, and such types of models would require integration 
of fragmented, distributed data sources. An initial pilot 
should focus on the development of a federated data 
capability with workflows and data formats from 
multimodal data, providing mechanisms to ensure data 
security and privacy. This data capability should in turn be 
combined with the development and training of a 
comprehensive and dynamic AI water model such as at 
the scales of the major metropolitan areas targeted by 
DOE’s Urban Integrated Field Laboratories program. The 
outcomes of this water model, which should be 
trustworthy, will form a foundation for the next series of 
pilots and the integration of water and climate models for 
optimization and decision-making on water management, 
such as to address severe weather-related flooding in 
vulnerable urban communities. Eventually, this model 
should also enable the integration of agriculture models to 
design precision agriculture strategies that optimize 
resource utilization. 

3.5 Expected Outcomes 
Advanced property inference and inverse design are 
essential components to accelerating design and optimizing 
control in science, security, engineering, and manufacturing 
with AI. Advanced AI models that are accurate, optimally use 
available data, and are explainable and trustworthy will be 
interrogated and used for “what if” scenarios in design 
processes and decision-making. Inverse design with reduced 
(or even without) humans-in-the-loop interaction will have a 
transformational impact on the U.S. economy as it will 
accelerate the development of new products and processes 
both directly and by enabling critical infrastructure—
particularly energy—to operate more reliably, with greater 
resilience, and at lower cost. 

The use of AI will accelerate the pace and turnaround of the 
design of new, sustainable products and processes with 
greatly reduced cost. This will secure U.S. leadership in key 
economic growth areas spanning biomolecular and materials 
engineering and manufacturing. It will also help the nation 
secure a modern and safe nuclear stockpile, rapid response 

capabilities against future biological threats, and stable and 
integrated electric, water, and agriculture infrastructures. 
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04. AI-BASED DESIGN, PREDICTION, AND CONTROL OF 
COMPLEX ENGINEERED SYSTEMS 

Complex engineered systems refer to systems designed and 
constructed by people and comprising many subsystems 
whose behaviors cannot be separated or isolated from the full 
system or the environment in which the system operates. 
Complex systems are characterized by nonlinearities, 
interactions, connected multiscale components, sensitivity to 
initial conditions, and emergent behaviors [1]. 

Complex engineered systems underpin much of the critical 
infrastructure in the U.S., ranging from the energy network 
(encompassing power generation, distribution, storage, and 
consumption) to transportation systems to supply chains. 
Complex engineered systems can also include those that 
must operate in and/or interact with complex environments, 
such as autonomous vehicles, the U.S. Department of 
Energy’s (DOE’s) leadership-class computing environments, 
nuclear power (including fusion power) systems, large-scale 
scientific instruments (such as light sources or accelerators), 
advanced manufacturing facilities [2, 3, 4], and advanced 
turbine engines. Biological systems display many of the same 
behaviors and challenges as complex engineered systems 
and are covered more extensively in Section 02: Domains. 

4.1 State of the Art 
Changing contexts in recent years (for example, changing 
climate conditions, evolving population dynamics, and water 
availability) are creating stresses in the nation’s critical 
infrastructure. There is a real and urgent need to understand 
the impacts of these changes on our infrastructure and to 
quantitatively assess and deploy solutions (e.g., control 
systems) to mitigate current and projected negative 
impacts—while being flexible enough to adapt to future 
demands on these complex systems. These infrastructure 
systems must be designed to incorporate new capabilities 
based on predicted changes (prognostics) as well as 
observed status. While the scale of the challenges may differ 
from system to system, each system faces a growing number 
of demands beyond those that the system was initially 
designed to support. 

Three examples of complex engineered systems illustrate 
their centrality within the DOE mission: the electricity grid, 
including generation, distribution, storage, and consumption; 
large-scale science facilities, including high-performance 
computing and accelerator facilities; and magnetic 
confinement fusion (tokamak) reactors. 

1. U.S. power infrastructure. Electricity is a visible and 
critical part of the U.S. power infrastructure and includes 
generation, distribution, storage, and consumption. Key 

components of this infrastructure are highlighted below. 
The power (electricity) grid integrates these components 
and is designed to deliver electricity reliably from 
generators to consumers. 

a. Distribution. The grid must balance base load 
generation—each source being a complex engineered 
system in its own right—with load demand at all times, 
with very limited capabilities for centralized control. 
Effective grid management must integrate capabilities 
across many scales, from individual homes (including 
electric vehicles, home energy storage, and micro-
generation) to large-scale generation facilities. The grid 
must also respond to wide variations in demand and 
changing environmental conditions while also being 
robust and resilient to disruptions, such as cyber threats 
and space weather (Figure 4-1). Today’s electricity grid 
is aging, which presents new opportunities to 

PROJECT SPOTLIGHT 
Project Name: Deep learning progress 
in fusion research 

PI: William Tang 

Organizations Involved: Princeton University, Princeton 
Plasma Physics Laboratory 

Goal: Deliver AI/HP–enabled advanced warning for 
avoidance/mitigation of dangerous disruptions before 
critical damage can be done to the international burning 
plasma experiment scheduled to begin in 2028 for the 
International Thermonuclear Experimental Reactor. 

Significant Accomplishment: We’ve moved beyond 
passive prediction of disruption for huge observational 
databases to active control; the key to the advance is the 
introduction of an innovative deep-learning surrogate 
model capable of carrying out validated first-principles 
simulations as a “real-time simulator” leading to a “digital 
twin” for tokamaks. 

In the News: The PI received the 2018 NVIDIA Global 
Impact Award with citation “for groundbreaking work in 
using GPU-accelerated computing to unleash deep 
learning neural networks for dramatically increasing the 
accuracy and speed in predicting dangerous disruptions 
in fusion systems” and subsequently published the work 
in Nature (Kates-Harbeck, J., Svyatkovskiy, A., and Tang, 
W., 2019, Predicting disruptive instabilities in controlled 
fusion plasmas through deep learning, Nature, 568, 526–
531, https://doi.org/10.1038/s41586-019-1116-4). 

https://doi.org/10.1038/s41586-019-1116-4
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incorporate advanced artificial intelligence (AI) 
capabilities, including advanced system designs, new 
modeling and prediction capabilities, AI-based control 
and decision making, and improved robustness to 
severe disruptions—whether related to natural forces 
(e.g., weather, wildfire, earthquake, flood) or human 
adversaries. Additionally, the underlying composition of 
the electricity grid is evolving, for example, through the 
addition of distributed generation (e.g., private 
photovoltaic panels) and storage (e.g., whole-home 
batteries), as are the dynamics of use (e.g., electric 
vehicles, their associated charging loads, and capacity 
to support storage for other uses). These facets of the 
evolution of energy technology bring even greater 
complexity and nonlinearity to the electricity grid.  

 
Figure 4-1. AI-based design, prediction, and control are 
critical for the U.S. electricity infrastructure. 

b. Generation. The electricity infrastructure also includes 
inertial-based generation, such as nuclear power 
plants, and inverter-based generation, such as wind 
and photovoltaics. Baseload generation systems 
(fission, gas turbine)—operating as peaking systems—
require new control paradigms to maximize efficiency 
and economics. Each of these generation systems 
(subsystems within the overall electric infrastructure) is 
a complex system in its own right. That is, they exhibit 
nonlinearities, with feedback both internal to the system 
and through its interaction with the grid. 

Nuclear power plants are one of the few zero-carbon 
options for electricity generation that can also support 
process heat applications. As such, nuclear power 
systems are important for district heating, water 
desalination, and hydrogen production. Future nuclear 
power systems include microreactors, which are 
expected to solve local or regional short-term energy 

needs, such as for electric power after natural disasters 
or at forward operating bases. AI systems, such as 
inverse design and property inference (Chapter 03), will 
be critical for the design of future plants, as will 
surrogate and foundation models (Chapters 01 and 02) 
for control and maintenance. These AI capabilities will 
also be critical in extending the life of the current 
nuclear power facilities through better prognostics and 
monitoring of health, fuels, and components. These and 
similar challenges are predominantly driven by the high 
cost of construction and operation, along with lifecycle 
issues such as the disposition of used fuel. Individually 
and collectively, these challenges affect the nation’s 
ability to advance and rapidly deploy future nuclear 
power systems, including small modular reactors and 
microreactors. They also present opportunities to 
incorporate advanced AI-based capabilities across the 
nuclear power lifecycle (from design through licensing, 
construction, operations, and maintenance, to 
decommissioning and fuel disposition). 

Inertial-based generation also encompasses gas 
turbines. In these systems, the occurrence of low-
probability but high-impact rare (abnormal) events 
poses critical challenges to performance and reliability. 
For example, in these energy systems combustion 
instabilities (such as lean blowout, flashback, and 
thermoacoustic instabilities) can cause catastrophic 
failure and damage. These risks are further 
exacerbated when gas turbine engines are operated on 
low/zero carbon fuels (hydrogen, sustainable aviation 
fuels) as opposed to regular jet fuels or natural gas. It is 
of great importance to understand and predict such rare 
events in order to avert their occurrence. 

AI offers capabilities for automated discovery and 
assessment of the underlying precursors and 
causalities governing rare events encountered in 
energy systems. Such capabilities are essential for the 
development of prognostic and control strategies to 
enable safe operation of these engines in high-
efficiency mode while preventing rare combustion 
events. 

c. Consumption. Advanced heating and cooling systems 
for high-performance buildings have become 
increasingly complex. Decarbonizing them requires 
new design and operational approaches that must be 
deployed in millions of buildings. Transformational 
approaches are needed as buildings move from being 
passive energy consumers to being not only active 
consumers in a dynamic energy market—in which they 
need to provide reliable and dispatchable load flexibility 
to the grid—but also active prosumers—a role where 
they provide heating, cooling, and energy storage for 
district-scale systems that integrate buildings, 
manufacturing infrastructure, and mobility systems. 
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Artificial intelligence methods and approaches 
discussed here and in previous chapters have the 
potential to streamline design approaches, support 
system-aware operational optimization, and automate 
deployment of advanced analytics and control 
methods. 

2. Large-scale science facilities. DOE’s Office of Science 
is responsible for designing, building, and operating large-
scale facilities for scientific discovery. Such facilities 
include, for example, leadership (high-performance) 
computing facilities and their internal and international 
connectivity; accelerators; light sources; and instruments, 
facilities, and field laboratories supporting nanoscale 
science (e.g., electron microscopes), bioscience 
(e.g., plant phenotyping), and earth systems monitoring. 

a. High-performance computing (HPC) facilities and 
their connectivity. AI capabilities described throughout 
this report will rely on next-generation HPC capabilities 
for scientific and engineering research and 
development. The current exaflop-class facilities require 
millions of dollars of infrastructure investment, tens of 
megawatts of energy for power and cooling, and 
include millions of electronic components ranging from 
computational cores and accelerators to storage 
devices to communications infrastructure. Overlying 
these components are millions of lines of software, 
including complex application codes, operating 
systems, runtime systems, input/output controllers, 
workflow frameworks, data management utilities, and 
scientific simulation models. These components are 
interconnected at every scale, from the system 
networks that interconnect processor nodes to 
machine-room networks integrating storage to the 
national ESnet infrastructure and its domestic and 
international connections. Current challenges for AI in 
managing HPC facilities include performance modeling, 
performance optimization, scheduling, power manage-
ment, prognostics and maintenance management, and 
proactive resource management. The critical 
importance of each of these will increase significantly 
as the next generation of HPC facilities is increasingly 
tightly integrated over campus and wide-area ESnet 
networks (themselves complex engineered systems) 
with edge devices, including scientific instruments, and 
with other complex engineered systems that will be 
connected through different modes, such as dedicated 
wired networks, beyond-fifth-generation (5G) networks, 
and quantum networks. Effective use of AI will also be 
critically important for exaflop and larger systems, 
where power optimization and management at the 
application level can translate to a significant difference 
in operational costs. Concurrently, the scale and 
complexity of these HPC systems introduces 

nonlinearities and system availability challenges that 
will require AI methods for control and optimization.  

b. Particle accelerators. Particle accelerators are 
complex multisystem machines that include many 
variables with nonlinear dynamics. DOE has invested 
hundreds of millions of dollars in the design, 
construction, supporting infrastructure, and operations 
of multiple accelerator facilities, which are integral to 
many aspects of the DOE scientific mission, from 
exploring fundamental physics to material studies. In 
recent years, the use of machine learning for particle 
accelerators has grown to include, but is not limited to, 
diagnostics, anomaly detection, forecasting, and AI-
based controls. Integrating these methods into a 
comprehensive DOE effort for advance AI-based 
controls—including synergies with similar challenges 
faced by HPC facilities—will be necessary to enable 
better use of the facilities, including more efficient 
operations and improved/accelerated science 
discovery.  

3. Magnetic confinement fusion (tokamak) reactors. 
Tokamak reactors use extremely powerful magnetic fields 
to confine plasmas that are a potential means of 
sustaining and controlling fusion in power plants. The 
$25B International Thermonuclear Experimental Reactor 
(ITER) [5] burning plasma experiment is the clearest 
example. These complex devices involve physics at many 
scales. Challenges include the development of efficient 
surrogate models for use in design, control, and 
prognostics; the avoidance or mitigation of plasma 
disruptions (to avoid damage to the device); and control of 
the power generation process [6, 7]. Deploying AI to 
control the plasma is the most promising strategy to 
increase the chance of sustained energy generation within 
two decades.  

These examples highlight the different temporal and spatial 
scales inherent in complex systems and the complexity of 
individual components that make up most complex systems. 
Improving the design and control of such systems will require 
the ability to model the individual components and 
understand the interactions that occur within and among 
components across these scales. Time scales, for example, 
cover microseconds to decades and spatial scales include 
anything from single components to regions or nations. 
Although traditional modeling and simulation can provide 
insights, models at the necessary resolution are effectively 
computationally intractable, especially when considering the 
need for real-time control. Traditional models, constrained by 
computational capacity, also fail to adequately capture 
temporal and spatial interactions between subsystems and 
between the system and the environment. Moreover, even 
with these compromises, the models lack sufficient speed 
and accuracy to allow users to understand these systems, 
predict system behavior, or build control systems. For these 
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reasons, traditional approaches to modeling each part of a 
connected system separately are no longer sufficient when 
dealing with changing contexts (for instance, changing 
climate and population dynamics) and their interactions. 
Wholistic, first-principles modeling is not feasible even with 
the exascale computing resources recently delivered by 
DOE. Indeed, the nature of a complex engineered system is 
such that modeling its components alone is insufficient (even 
if it were computationally feasible) because system behavior 
is driven not only by components themselves but also by 
nonlinear interactions and associated dynamics among the 
components. 

AI building blocks discussed in earlier chapters, such as 
surrogate and foundation models and capabilities such as 
inverse design, provide the keys to the successful design, 
prognostics, and control of complex engineered systems. 
Initial AI tools are already pervasive in many such systems, 
including those used in science and engineering, but despite 
their impact to date, the full potential of AI in this context 
remains unrealized in the face of challenges such as those 
described next. Specifically, the effective application of AI to 
complex engineered systems is reliant on advances in both 
data acquisition and computing.  

1. Data. Sensors are becoming ubiquitous and can provide 
accurate, real-time information about complex systems 
and an ever-expanding volume of historical data on 
system behavior, from which new AI models can be 
created and trained. In the next decade, advances in 
intelligent and autonomous sensors will amplify the need 
and impact of AI systems for data management and 
analysis, creating orders of magnitude more (and more 
complex) data. The introduction of AI in sensors creates a 
computational continuum from edge to HPC systems, 
which will both catalyze new AI capabilities for optimization 
and control while also generating new, larger, and more 
complex datasets. The models developed and trained with 
these new data sources will also be instrumental in 
addressing inherent uncertainties and errors in sensor data.  

2. Computing. Even as true exascale has been reached in 
centralized HPC facilities, other advances, including the 
computing continuum just discussed, have leveraged 
powerful, energy-efficient, and cost-efficient computing 
capabilities that can be embedded in facilities and edge 
devices. The continuum bounded by these two very 
different computing modes—centralized and edge 
computing—also introduces opportunities for AI models 
(built and trained using HPC facilities) that implement 
lifelong AI-enabled learning (executed across the 
continuum) to provide AI-supported real-time control and 
prognostics in complex systems. 

The vision of AI-enabled design, prediction, and control of 
complex engineered systems is captured effectively by the 
concept of the digital twin (DT). This term has been used in 
many contexts but can be generically defined as a digital 

representation of an engineered system having the ability to 
respond to a current or predicted state of a physical system, 
where this representation is specifically used to facilitate 
better control, prognostics, and maintenance of the complex 
system over its lifecycle (Figure 4-2). These characteristics, 
in particular the ability to control complex systems, mean that 
digital twin must operate several orders of magnitude faster 
than the physical system. Thus, the challenges of developing 
and integrating the necessary AI capabilities for complex 
engineered systems can be described in the context of the 
creation, optimization, and use of digital twins.  

The DT concept is one that many companies have embraced 
over the past decade, particularly in the context of 
manufacturing and assembly. However, these investments 
are generally focused narrowly on individual systems 
(e.g., an assembly line) and for specific products. In contrast, 
the development of DT systems encompassing experimental 
facilities or national-scale infrastructure, or those required for 
national security, have not been sufficient developed with 
regard to the use of AI and machine learning [8]. 

 
Figure 4-2. Conceptual flow diagram for a digital twin. 

4.2 Grand Challenges 
The following six research challenges, presented in the 
context of digital twins, must be addressed in order to 
leverage the promise of AI capabilities in the design, 
prediction, and control of complex engineered systems [7, 8, 
9, 10, 11]. These six challenges are not independent of each 
other, nor are they independent of the other approaches 
described in this section, such as the development of AI-
based surrogates (Chapter 01). 

1. Assurance. The complex engineered systems most 
visible within the DOE mission space involve critical 
infrastructures. Here, assurance of the correctness of AI 
models used for the design and control of these systems is 
a central grand challenge. At an intuitive level, assurance 
addresses the question of whether an AI is making the 
right decision for the right reason, ensuring 
trustworthiness. Assurance encompasses many more 
factors, however, from uncertainty quantification to causal 
inference [12, 13]. Five facets of assurance are essential: 
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a. Uncertainty quantification. Uncertainty is an intrinsic 
part of both the data and the model built and trained by 
the data. Rigorous bounds must be computed to 
guarantee a robust and reliable DT and, by extension, a 
robust and reliable complex engineered system. The 
capability for uncertainty quantification will help users 
know when to trust the predictions from the model and 
greatly enhance the correct use of the AI system.  

b. Validation. Validation of a DT considers the 
appropriateness of the model and can only be 
considered in the context of the intended application. 
Validation must be a continuous process that follows 
the evolving state of the physical system. Any validation 
process must consider the appropriateness of training 
and inference data, the specific model form and 
hyperparameter choices for the AI model, and the 
training process. 

c. Robustness. Robustness can be characterized as how 
the machine-learning model responds to small changes 
in the data. Robustness for the DT and for AI models 
more generally depends as much on the selection of 
the data and measures of closeness as on the model 
design and training. For the DT, provision for 
robustness must be expanded to consider the full 
workflow, adversarial attacks, and unexpected 
occurrences in the environment or the data. The control 
system must respond robustly to noisy data, distribution 
shift in the data, and other normal fluctuations, while 
identifying anomalies that need to be investigated 
further and addressed. 

d. Explainability and causal analysis. Explainability is 
the ability of an AI system or DT to explicitly associate a 
decision with a specific meaningful correlation identified 
in the data. Developing explainable AI models is a 
challenge that must be addressed before an DT can be 
fully deployed in the operation of many, if not most, 
engineered systems, particularly those associated with 
critical infrastructure. Causal analysis goes beyond 
correlation to identify the causal relationships that 
underlie the identified correlations. Causal analysis 
gives the system the ability to respond appropriately to 
disruptions; establishing these relationships will require 
the ability to test hypotheses by running experiments on 
the physical system. Explainability should not be an 
afterthought but rather should be built as a part of the 
AI systems in a DT. The DT should also provide 
mechanisms to incorporate physics knowledge and 
domain constraints. 

e. Anomaly detection. Anomaly detection is the ability to 
identify or predict system behaviors or environments 
that were not considered “normal” or “usual” in 
designing or training the DT. Examples include system 
failures, system state shift, and adversarial attacks 
against the physical system (e.g., a cybersecurity 

intrusion, as distinct from adversarial attacks against 
the training and operation of the DT). Detection of 
anomalies is a critical part of any assurance effort but is 
identified as a separate area here because of the 
challenge of detecting and identifying system states 
that do not appear in training data. 

2. Model construction and the machine learning process. 
The core of the DT is a model (or a set of models) that is 
built and updated on the basis of data from the physical 
system and the environment in which it operates. These 
systems span multiple spatial and temporal scales, data 
from many measurement modes, and large numbers of 
parameters, many of which cannot be measured directly. 
Furthermore, the process of creating the model itself 
entails significant challenges in data reduction, a process 
that focuses on identifying and representing the 
information contained in data. AI models are often updated 
continually and thus require continual or lifelong learning 
capability, in contrast to many existing modalities, in which 
sufficient training data is available prior to training the 
model. This challenge also includes federated learning, 
mechanisms to protect privacy or intellectual property or to 
reduce data transfer bandwidth requirements by 
distributing training to include edge devices. Challenges 
include identifying the model form, the training data and 
training process, and the appropriate prior information 
needed to construct the DT.  

3. AI-based control systems. Control is a mature area of 
research, and most engineered systems have effective 
control systems. Nevertheless, AI presents new 
possibilities, many of which are increasingly important 
given the complexity of today’s complex systems and the 
demands placed on them by changing technology, 
environmental conditions, and usage patterns. Exploiting 
these possibilities will require advances in AI approaches, 
such as reinforcement learning and neuromorphic 
systems. There are many technical challenges, including 
the use of data-efficient learning, incorporating physical 
constraints, learning in partially observable large-scale 
complex systems, data and learning methods for 
distributed control, decision making under uncertainty, 
transfer learning, and power and speed requirements for 
real-time control, as well as the challenges in assurance 
presented previously and discussed by Sutton and 
Barto [14]. 

4. Co-designed software and hardware ecosystem and 
workflow. This challenge has three aspects. First, the 
physical system must be engineered to interact with the 
DT. This aspect of integration includes sensor design and 
placement, power management, and incorporation of 
edge-based, resource-efficient, and energy-efficient 
computational capabilities and control systems that can 
interface with the DT. Integrating the physical system with 
its digital representation also includes designing the 
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capability to deal with robustness and resilience issues, 
including data issues and adversarial attacks that could be 
introduced through the DT. Second, the DT itself 
introduces challenges for the hardware and software 
ecosystem, including issues of communication and 
bandwidth and the challenge of DT hierarchies (DTs for 
components and overall systems) and federation 
(i.e., when many instances of a physical system—each 
with an individualized DT—are deployed). Third, the 
ecosystem must include hardware that is embedded in the 
physical systems, which often imposes severe power, 
latency, bandwidth, and speed constraints [3, 15]. 

5. Data quality, availability, and governance. One 
challenge is the quality of data, which can be approached 
from a technical perspective. Specifically, improved 
sensors, combined with algorithmic advances in the 
placement of these sensors and processing of their data, 
will do much to address this challenge. The availability and 
accessibility of data is also a significant challenge, 
particularly because many of these systems are distributed 
(both geographically and across diverse businesses). In 
many, if not most, engineered systems, the availability of 
data can be severely restricted by the regulatory 
environment, privacy concerns, and intellectual property 
concerns. This challenge can be partially addressed 
through the development of an improved workflow, 
supported by technical solutions to issues such as privacy 
and equity. Digital twins and simulators that can take 
advantage of the DOE supercomputers can be used to 
generate synthetic data. However, regulations and 
requirements will also play a major role in making data 
available. Data constraints also pose a challenge to the 
efficiency of AI learning. Provenance of data used to train 
AI systems, particularly DTs associated with operational 
systems, will also be important, for instance to mitigate 
adversarial attacks through “poison” data schemes [16]. 

6. Standardization and metrics. The development and 
deployment of control systems with DTs is currently very 
system- and application-specific. As DTs become common 
in engineered systems, standard protocols for their design, 
production, deployment, certification, and maintenance will 
become necessary. Safety issues that arise when using 
DTs will drive a regulatory environment that will require 
standardization and guarantees. In addition to being 
necessary for safety and regulatory purposes, 
standardization and metrics will improve interoperability 
and performance and enable an overall increase in 
efficiency in the design and deployment of DTs, while also 
enabling the rapid growth of an industrial base to support 
this emerging technical area. Moreover, as complex 
systems are formed through vertical and horizontal 
composition of subsystems, DTs must be constructed in a 
way that allows DT-equipped components and 
subsystems can be composed in the same hierarchy as 

the engineered physical systems. This requires 
standardization and advances in composability. 

4.3 Advances in the Next Decade 
To realize the vision of robust and reliable control of the 
nation’s critical infrastructure and other complex engineered 
systems, such as DOE facilities and instruments, significant 
investment and progress will be required in each of the 
crosscutting technology areas (see Section 02). 

Mathematics and algorithms. The most immediate need for 
implementing a DT approach is to have robust and reliable 
surrogate models that can be used to construct and train 
control systems and on which DTs can be based. Surrogate 
models are described at length in Chapter 01, and for the 
prediction and control of complex engineered systems, 
knowledge-informed models and encodings for partially 
observed systems are the highest immediate priority, with 
significant progress expected in the next five years. 
Application- and use-specific surrogate models must be 
developed while addressing severe power, accuracy, and 
speed requirements in real-time control applications.  

In addition to physics-informed surrogates, robust, data-
efficient, and distributed reinforcement learning (e.g., for 
control algorithms) methods must be developed. 
Reinforcement learning is notorious for being a 
computationally difficult problem for complex systems, 
requiring significant volumes of data and robust test 
environments. Here, challenges include large state spaces, 
effective data representation and transformation approaches, 
widely varying time scales between control signals and 
system response, reinforcement learning that incorporates 
constraints, continual learning with the ability to update 
control policies, and robustness to limited or missing data. 
From a foundational perspective, the ability to generate 
theoretically sound convergence guarantees of optimality in 
online setting and verification is among the critical 
challenges. Significant progress must be made in each of 
these areas within the next 10 years to enable effective use 
of AI in the robust control of complex engineered systems.  

To move DTs from demonstration to operation, there must be 
an explicit focus on assurance, with significant progress 
specifically in the areas of validation, causal inference, and 
security and privacy. Simply put, there must be an 
evidence-based methodology for assuring that AI can be 
used securely and robustly in control systems for critical 
infrastructure. 

Data infrastructure. Data are the key to machine learning, 
and several challenges have been described. Within a 
decade, there should be common, secure data infrastructures 
for systems critical to our nation’s infrastructure, such as the 
electricity grid and for DOE science and security 
infrastructure, including complex engineered instruments and 
facilities. This agreed structure would include standard data 
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formats and expectations regarding provenance, availability, 
security, and privacy of data. Technical progress is also 
needed in providing a distributed infrastructure and tools for 
curation and maintenance of data throughout its lifecycle. In 
addition to providing a data infrastructure, DOE must work 
with industry to make critical data available for training the 
models necessary to enable DTs for the nation’s critical 
infrastructure, from the components level to the local and 
regional grids operated by private entities.  

AI software and workflow. Two technology crosscuts are 
combined into this topic. The focus for the next decade must 
be research as described in this chapter and pilot projects 
with preliminary demonstrations of validated control systems. 
Progress will be needed in software and workflows, with an 
explicit focus on validation, security, privacy, and the 
management of data and models. New software design 
paradigms that are secure, robust, resilient, composable, and 
analyzable by design are needed. 

AI hardware. Successful deployment of AI for the control of 
complex engineered systems will require embedded, AI-
specific hardware deployed in control systems “at the edge,” 
as well as significant computational resources in the form of 
either dedicated, AI-specific HPC or HPC with AI 
accelerators. Existing and future AI hardware accelerators, 
such as graphics processing units, tensor processing units, 
and field-programmable gate arrays, are diverse and provide 
different characteristics with respect to training time, 
inference time, latency, power, and energy demands. A 
promising avenue in improving AI hardware is in customizing 
DT models to the given hardware platform. During the next 
decade, it will be necessary to leverage recent investment in 
semiconductor technology and to work with industry to 
develop and evaluate both embedded controllers and HPC 
capabilities. New sensors and actuators, and the computing 
and communications hardware necessary for edge AI 
computation, must be hardened and packaged to function 
reliably in extreme environmental and operating conditions 
common to most complex engineered systems, from particle 
accelerators to the power grid. As with the models and data, 
there is a need over the next 10 years to develop and 
evaluate methods to provide assurance on AI hardware 
as well.  

4.4 Accelerating Development 
Significant investments will be needed to achieve the decadal 
advancements described above, and these must be matched 
with investments in pilot projects and demonstrations. Five 
areas in which significant pilot demonstrations could be used 
to accelerate progress are described below. These pilots will 
drive specific technology advances both in the general areas 
described above and in specific application needs. 

Potential research activities to accelerate development might 
focus on achieving the following outcomes: 

1–3 years: 

 Common data infrastructure solutions 

 Foundations of assurance—knowledge-informed models at 
scale; metrics and validation 

3–5 years: 

 Demonstration of AI-based control at a pilot scale, 
including single-facility and local (e.g., single 
“neighborhood”) demonstrations.  

5–10 years: 

 Scale up of algorithms/models to incorporate distributed 
control and the use of HPC resources. 

 Scale-up demonstrations to manage critical infrastructure 
at the regional or national level. 

In addition to these target outcomes, there is an immediate 
need to develop the basic infrastructure required to develop 
and demonstrate new capabilities. This infrastructure will 
range from the assembly and curation of datasets to the 
design and deployment of various scales of test beds, 
including instrumentation of existing test infrastructure to 
support the integration of new sensors, edge computation, 
and actuation associated with DT systems. 

These capabilities could be demonstrated by the following 
potential pilots. 

1. The U.S. power grid. This is a high-priority target 
application for accelerated research, development, and 
demonstration of AI for robust forecast and control. A pilot 
should involve a significant geographic area that includes 
both business and residential users, features significant 
penetration of generating capacity (including, for example, 
residential solar generation), and is susceptible to 
weather-related outages. The pilot will also need to be 
defined in terms of integration phases with respect to 
scope (moving from small district to regions) and 
functionality (e.g., initially limited to providing advisory 
information and gradually incorporating operational 
decisions and ultimately control actions). 

2. Control, including resource management, of a DOE 
leadership computing facility and/or scientific 
instrument. The objective of this pilot would be to 
increase overall facility throughput and availability for a 
scientific workload. There are a limited number of 
possibilities, ranging from control of an individual DOE 
leadership-class computing center to a pilot involving the 
integration (over ESnet) of a distributed system connecting 
a DOE instrument (e.g., a light source) with a leadership-
class machine. 

3. Transportation and mobility systems. Several national 
laboratories have established projects in transportation 
systems. For example, Oak Ridge National Laboratory has 
already deployed optimized signal controllers in 
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Chattanooga, Tennessee, and Argonne National 
Laboratory has developed and demonstrated technology in 
Chicago, Illinois, to gather detailed traffic flow and vehicle 
mix data to train transportation models. A pilot would 
expand beyond these capabilities to provide system-wide 
optimization by coupling autonomous connected vehicles 
with traffic signal control in a major metropolitan area and 
providing data to supply-chain operations to allow 
improved fleet planning.  

4. Control of a tokamak fusion reactor. A key goal 
associated with the 21st-century grand challenge for 
magnetic fusion energy concerns the control of the 
international ITER burning plasma experiment scheduled 
to begin in 2028. The need is to deliver advance warning 
for avoidance/mitigation of dangerous disruptions before 
critical damage occurs. A forward-looking pilot would build 
on the ability to use AI for passive prediction of disruption 
and to extend this capability to active control using a DT 
for a tokamak [17].  

5. Early detection of rare events in turbine engines. As 
part of DOE’s deep decarbonization goals for the 
transportation and land-based stationary power generation 
sectors, a major focus is on demonstrating high-efficiency 
and safe gas turbine operation on 100% renewable fuels 
(hydrogen and sustainable aviation fuels). A pilot project, 
in this regard, would develop and demonstrate a robust 
AI/ML framework, coupled with either high-fidelity 
simulations or real-time experiments, that is capable of 
causal representation learning and prognostics of rare 
events. 

4.5 Expected Outcomes 
Engineered systems are becoming more complex and 
interconnected. While this evolution presents tremendous 
possibilities for improved efficiency and effectiveness leading 
to economic competitiveness, it also makes such systems 
more susceptible to disruption, whether through adversarial 
attacks (e.g., cyber-attacks), environmental events, or 
component failure. 

The use of AI for control of complex engineered systems will 
advance U.S. economic competitiveness in a number of 
critical areas, such as manufacturing, computing, renewable 
and green energy generation, and energy storage. These 
advances will also support U.S. energy security in the face of 
emerging threats. Critical to these advances are a research 
agenda developing the fundamental advances in AI and 
demonstrating these advances in multiple pilot-scale projects 
on an accelerated timeline. 
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05. AI AND ROBOTICS FOR AUTONOMOUS DISCOVERY 
Evidence-based science demands a coupling between 
observation, analysis, experiment, and synthesis. This 
alignment represents a potential inflection point for the 
modern scientific process where automation and robotics, 
enabled with artificial intelligence (AI) and machine learning 
(ML) models, can accelerate experimental science in a 
similar fashion to the way that modern AI/ML have 
accelerated data analysis. Data has been acknowledged as 
the fourth paradigm [1], and the combined use of AI/ML and 
automation is positioned to become a fifth paradigm, enabling 
us to infer complex patterns from experimental and simulation 
datasets and to derive new knowledge that can be tested 
using subsequent experimental design(s). Advances in AI/ML 
approaches, including deep generative models, surrogate 
models, active learning, and reinforcement learning, are 
already enabling new discoveries across a variety of fields, 
including materials sciences, chemistry, physics, and biology. 
AI/ML methods applied to the design and optimization of 
high-throughput laboratory experiments, enabled by these 
advances in AI/ML techniques, offer new means to probe 
matter and understand complex phenomena in 
unprecedented detail. However, meaningful progress is 
impeded by the lack of connection between computing and 
high-throughput laboratory instruments and experiments. We 
posit that automation and robotics can accelerate the 
progress and increase the throughput of large-scale scientific 
experimentation, while driving novel means to investigate 
complex, emergent phenomena in scientific domains relevant 
to the U.S. Department of Energy (DOE). 

For this report, the definition of autonomous discovery is 
borrowed from King, et al. (2009) [2], where it is envisaged as 
an independent robotic scientist that “automatically originates 
hypotheses to explain observations, devises experiments to 
test these hypotheses, physically runs the experiments by 
using laboratory robotics, interprets the results, and then 
repeats the cycle.” King et al. demonstrated this vision, not 
surprisingly in biology, by designing ADAM (Figure 5-1), a 
robot that could automatically generate functional genomic 
hypotheses about yeast. The vision of harnessing AI/ML 
capabilities (including those described earlier in this section 
of the report) to create autonomous robotic scientists (or even 
robotic facilities) has been seen as being of high benefit and 
high risk, with the latter impacting investment levels and 
limiting our ability to prototype, much less realize, such 
specialized autonomous discovery facilities. 

New AI/ML approaches during the past several years, such 
as outlined in the previous two chapters, significantly reduce 
the perceived risk of autonomous laboratories, offering 
opportunity to reinvent each step in this discovery loop (data 
analysis→hypothesis→experiment/observe), as well as to 

speed the iteration of that loop, fundamentally accelerating 
the discovery process. We discuss these opportunities as 
well as the role that automation/robotics will play in tightening 
the integration of theoretical, experimental, and 
computational processes. 

 
Figure 5-1. A schematic of the robot scientist ADAM that was used to 
generate novel hypotheses in examining yeast functional genomics [2]. 

In the observation stage, scientists use instruments (including 
microscopes, telescopes, sensor networks, etc.) to capture 
data representing diverse phenomena. Novel experimental 
instrumentation and the increasing resolution of these 

PROJECT SPOTLIGHT 
Project Name: Autonomous platform (Polybot) for 
electronic polymers discovery 

PI: Jie Xu 

Organizations Involved: Argonne National Laboratory 

Goal: Accelerate the development of a new class of 
polymer-based electronic materials that are flexible, 
durable, degradable/recyclable and easy-to-manufacture 
for our future electronics 

Significant Accomplishment: Developed a new 
experimental platform (Polybot, 
https://www.anl.gov/cnm/polybot) that combines the 
strengths of rapid and robust experiment acquisition from 
robotic technologies with fast analysis of complex 
datasets using ML, which enables autonomously 
electronic polymer engineering toward targeted 
structures for desired solid-state properties. 

In the News: Significant feature in Newsweek 
magazine: “America’s Greatest Disruptors: Budding 
Disruptors,” available at: 
https://www.newsweek.com/2021/12/24/americas-
greatest-disruptors-budding-disruptors-1659089.html, 
accessed December 5, 2022. 

https://www.anl.gov/cnm/polybot
https://www.newsweek.com/2021/12/24/americas-greatest-disruptors-budding-disruptors-1659089.html
https://www.newsweek.com/2021/12/24/americas-greatest-disruptors-budding-disruptors-1659089.html
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instruments rapidly expand observation space and the 
resulting hypothesis space. Researchers can prove/disprove 
these hypotheses through the application of accepted 
research methods and experimental design. But these 
advanced instruments are expensive and in high demand, 
limiting access and consequently the number of hypotheses 
that can be tested and similarly confounding scientists’ ability 
to reproduce, assess, and expand on research driven by 
these new advancements. The ability to automate scientific 
processes in the lab will also entail significant reduction in 
costs while enabling higher reproducibility and productivity for 
individual scientists as well as large team-science projects.  

Increasingly, advances in AI and computing are necessary to 
enable exploration and access that are simply intractable 
today due to demands for large-scale laboratory instruments 
and/or computational demands. In biology, for example, new 
phenotypes within bacterial strains, such as to increase the 
production of threonine, are important subcomponents of 
bioproduction processes (including biofuels production). Yet 
engineering these strains involves a massive design space 
(Figure 5-2). Designs must optimize across at least 
10 different genes, including several transcription factors, 
enzyme complexes, and other factors. Assuming even a 
single gene (which is translated to a protein product) with 
about 100 amino-acid positions, exhaustive mutagenesis and 
evaluation can exceed 20100 calculations. In addition, with 
various other components interacting, this problem can easily 
exceed 10160 considerations in the design space. Indeed, the 
number of potential factors to explore expands with every 
new discovery of novel pathways, gene interactions, and 
even epigenetic factors influencing phenotypes. Concurrently, 
as our knowledge expands around alternate effects, the 

number of potential factors to explore also expands (e.g., the 
bacteria’s ability to thrive in specific environmental 
conditions). Similar design space scales affect protein design, 
where human-guided design can at best explore extremely 
narrow subsets of the design space. AI/ML techniques offer 
the means to navigate the combinatorial complexity of these 
vast hypothesis spaces by, for instance by identifying novel 
patterns or potential designs based on inference models 
trained on the experimental and computational results from 
similar experiments. However, carrying out even 
105 experiments exceeds the capacity of today’s fully human-
in-the-loop laboratory processes, even with modern 
instruments. Simply put, automation/robotics offers the only 
viable and practical means to address the combinatorial 
complexity of experimental design, and ultimately to 
accelerate scientific discovery. 

Experimental design for observation and experimentation is 
also paced by human observations, decisions, and actions in 
the laboratory. Domains including biology, materials design, 
earth-systems modeling, ecological systems, and high-
energy physics have these limitations in common. As with the 
biological systems design space discussed above, the 
combinatorics of computational or laboratory experiment 
design parameters are significant in even relatively simple 
physical, natural, or engineered systems. 

Remote access and robot-assisted automation constitute the 
first step toward AI-driven laboratories (discussed below), as 
illustrated by many laboratory prototyping activities combating 
the COVID-19 pandemic. Scientists, forced to work remotely 
due to pandemic restrictions, used robotic instrumentation 
and automated instrument controls to perform critical 
research such as high-throughput screening of small 

 
Figure 5-2. A schematic of how protocols can be automatically extracted from a methods section of scientific 
literature. This example is contextualized for engineering bacterial systems that can produce excess threonine 
(as the end phenotype). Various experimental steps such as DNA transformation, amplification, etc., and 
conditions are evaluated and automatically “coded” such that we can implement them on our robotic systems. 
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molecules/drugs and X-ray crystallography/cryo-electron 
microscopy or genetic sequencing of SARS-CoV-2 samples. 
In fact, the urgency of the pandemic combined with the use of 
robotics illustrated the democratization benefits with respect 
to accelerating science. 

Automation, robotics, and AI/ML also offer a potential solution 
to a growing scientific crisis: reproducibility. More than 70% of 
researchers surveyed in 2016 failed to reproduce the results 
of another scientist, with 52% recognizing this as a significant 
crisis [3]. One estimate suggests that nearly one-third of 
published data may need to be re-evaluated because of poor 
reproducibility of these experiments; similar estimates are 
corroborative in other disciplines as well. Challenges in 
scientific reproducibility can stem from ambiguity in method 
and protocol, lack of specification of inputs and outputs, and 
faulty data analysis. Data generated via many experimental 
techniques are still difficult to reproduce, and human-
implemented protocols are often tedious and error-prone, 
requiring specialized training (and technicians). Studies can 
require specialized equipment that can become obsolete or 
inaccessible, and protocols may have ambiguities or gaps, 
such as undocumented calibration parameters. Here again, 
the urgency of the COVID-19 pandemic led to increased 
sharing of protocols and, due to urgency, improvements in 
the precision and completeness of protocols. Addressing 
these challenges narrowed the gap that currently obstructs 
the development of AI-driven robotics that execute and 
eventually improve laboratory protocols. 

Data management progress in recent years such as enabling 
access to AI/ML-related data and methods using the FAIR 
(findable, accessible, interoperable, reusable) principles has 
been promising but remains nascent. This is particularly 
challenging for laboratory data and will be even more 
daunting with the explosion in experimental data resulting 
from AI/ML and automated/robotic experiments.  

The use of abstractions and programming languages has 
enabled scientific computation with codes that readily 
execute on different hardware platforms, workflow 
frameworks to combine resources across multiple platforms, 
and tools to migrate through multiple generations of hardware 
architectures. These abstractions, languages, and 
frameworks used with large-scale systems built today 
(including Cloud, high-performance computing [HPC] 
systems, and custom hardware such as accelerators) are a 
result of investing with a focus on the productivity, usability, 
verifiability, and validation of the written computer code (using 
compilers, model checking software, etc.). These tools grew 
organically across multiple hardware and software vendors 
and still maintained a level of interoperability and 
compatibility that allowed bespoke solutions to remain viable 
over many years of development and across multiple 
computing architectures. These abstractions, languages, 
compilers, and other tools are lacking across the laboratory 
instrument (scientific) domains, locking the scientific 

community into bespoke, labor-intensive, and largely non-
reproducible experiments. Absent a comprehensive 
approach, much of discovery science will continue to be 
dependent purely on human intuition and technical abilities—
limiting experimental throughput and reproducibility, while 
continuing to be plagued with errors and quality control 
issues within the scientific process. 

These challenges span the thousands of individual laboratory 
experiments and their instruments but are equally 
consequential to the productivity and capacity of experiments 
using large-scale instruments at user facilities. Throughout 
the DOE complex, upgrades to various large-scale 
experimental and computing facilities are driving a notable 
increase in the volume of data collected and analyzed, 
straining the already limited capacity of fully “human in the 
loop” experiments. For example, the upgrade to the 
Advanced Photon Source at Argonne National Laboratory 
promises to improve the brightness of the X-ray beamlines by 
500 times, implying that measurements that once took 
several days to weeks will produce at least as much data 
within only a few minutes to hours, dramatically accelerating 
the rates at which data accumulates. Combined with new 
capabilities in scalable workflow management, which directly 
enables access and analyses of data in situ through edge-
enabled computing devices, the time-to-solution for analyzing 
generated datasets is being compressed such that the 
bottleneck is transferred to the “human-in-the-loop” decision-
making. This outcome can potentially impede scientific 
progress if the data are not analyzed in a timely manner. 

Automation and robotics within the scientific enterprise will 
democratize the scientific process, wherein participation from 
a variety of under-represented scientists and citizens can be 
evolved more organically and driven via engagement across 
disciplines. As noted earlier, increases in remote laboratory 
work necessitated by the COVID-19 pandemic—no longer 
limiting participation to those physically in the laboratory—
opened the entire discovery process to more collaborators, 
increasing the diversity and inclusivity of many COVID-19 
research projects [4–7]. 

5.1 State of the Art 
Robotics has a long history in manufacturing, providing many 
examples for adaptation to scientific laboratory experiments. 
Until recently, AI capabilities limited the extent to which 
automation could be implemented. In the 1960s, one of the 
first deployments of robotics was in the General Motors 
production lines. The Unimate (from universal automation) 
robot automated the movement of high-temperature metal 
parts onto cooling water baths [8]. A decade later, the AI 
Center at the Stanford Research Institute (SRI) built Shakey, 
one of the first autonomous robots that was able to break 
down commands into a series of simple actions needed to 
achieve a particular goal with logic [9]. Beyond this, there 
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have been several developments mostly focused on 
anthropomorphic systems that can interact and work with 
different instructions. The introduction of such automated 
systems drastically changed the face of modern 
manufacturing of cars (and other consumer products). 

Today, in industry and defense we also see extremely 
advanced remote control and semi-autonomous robots, for 
example, from Boston Dynamics, which rely on AI capabilities 
for basic operational movement capabilities such as balance, 
reflex, adaptive locomotion, and fine movements. But for the 
most part, these robots, like their autonomous vehicle cousin 
AI systems, do not yet use AI models for higher-level, more 
complex activities such as problem-solving or adaptation 
beyond navigation. Similarly, the autonomy/robotics industry 
solutions are proprietary, closed systems, limiting the 
integration of multiple components to those from a single 
company. The potential, however, to combine the advances 
in AI model capabilities—including generalization and 
emergent properties—with such advanced robotic systems 
creates an unprecedented opportunity to transform scientific 
experimentation and discovery. 

Within the scientific community, some of the first attempts at 
building a fully robotic scientist involved analyses of yeast 
genomes to characterize 13 orphan genes and their functions 
through a robot scientist called ADAM [2, 10], as well as to 
propose new small molecules (or drug candidates) for 
malaria using another automated system called EVE [11]. 
Since then, a number of studies have demonstrated robotic 
automation in laboratories to design new materials for energy 
storage [12, 13], for additive manufacturing to explore the 
toughness of a parametric family of structures [14], inorganic 
materials [15], two-dimensional (2D) crystal superlattices [16], 
novel biosystems [17], biocatalysts, de novo drugs [18], 
synthesis planning of small molecules [19], and many others. 
While an extensive list of articles covering autonomous 
discovery/self-driving labs is beyond the scope of this report, 
we refer the interested reader to [20]. 

Further, recent industry progress with cloud laboratories 
(remotely programmable and usable) such as Emerald Cloud, 
Strateos, and automated bioprocess/synthetic biology 
laboratories such as Ginkgo Bioworks and Zymergen, have 
demonstrated that automation/robotics can clearly accelerate 
industrial processes, from high-throughput screening (for 
biomedical applications and biomaterials design) to other 
allied areas. For DOE-specific applications, these industry-
demonstrated approaches also bring opportunity to 
accelerate progress in other fields such as bio-catalysis, 
advanced manufacturing, climate sciences, high-energy 
physics, and beyond—if there is synergistic growth across 
integrated facilities (as we discuss in section 3.2, Grand 
Challenges). Recent investments in public-private 
partnerships focused on laboratory process automation in 
chemistry, materials, advanced manufacturing, and synthetic 
biology, along with DOE investments in Bioenergy Research 

Centers and the Agile BioFoundry, also imply that these 
AI/robotics approaches can catalyze broad-reaching benefits 
in improving productivity and reproducibility, managing and 
optimizing experimental resources, and ultimately driving and 
accelerating scientific innovation. 

Despite their wide applicability and promise, AI-enabled 
automated labs face a consistent set of challenges that are 
common across multiple domains (biology, chemistry, 
physics, material science, etc.). Today, most high-throughput 
experiments are operated by a highly educated workforce 
(including PhD-level scientists) across DOE facilities—a need 
that has mostly emerged because of the robotic industry’s 
bespoke, complex solutions. For example, while several 
companies have developed proprietary robotics/control 
systems, there is a lack of open standards or community-
based development, including scalable application 
programming interfaces (APIs) for ensuring easy integration 
across such robotics/control systems. In terms of the 
computational ecosystem discussed above, the automated 
laboratory mirrors computing in the 1960s and 1970s, where 
each computer had unique, proprietary programming 
languages, operating systems, and architectures whose 
fundamental storage and operating units might be 8, 16, or 
24-bits. As in the early days of computing, this proprietary 
diversity in automated laboratory systems has led to a 
proliferation of ad hoc solutions even for the most common 
laboratory activities and procedures, requiring proprietary 
integration tools and software and adding to the cost and 
complexity of maintaining such systems. For scientific 
experiments, both the repetitive/common and bespoke 
solutions must co-exist and work seamlessly for automated 
execution of experimental steps to be achieved. 

Advances in AI/ML techniques discussed in earlier chapters 
of this report are poised to revolutionize this landscape, and 
with tangible impacts that will also prove motivating for 
industry to move toward more open systems, accelerating the 
development of automated laboratories. For example, 
developments in large-language models (or foundation 
models, discussed in Chapter 02) are now enabling robotic 
systems to automatically understand and infer the “steps” 
involved within a particular task (e.g., inferring choice of 
“healthy” snacks after a workout or creating procedures for 
complex tasks), and similar extensions are enabling robots to 
often mimic human behaviors by just watching. Advances 
such as with surrogate models (Chapter 01) will enable the 
near-real-time operational decisions necessary for robotic 
laboratory work, while the inverse design capabilities 
discussed in Chapter 03 will further extend the capabilities of 
foundation models. Given the strides made in visual systems 
and language models, we posit that these technologies are 
ripe for advancing automated laboratories as well. 
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5.2 Grand Challenges 
We highlight three grand challenges that exemplify the 
application of significant advances in AI and robotics to 
support autonomous discovery: 

 Building a robot scientist to accelerate scientific discovery. 

 Building a high-throughput automated facility for scientific 
discovery. 

 Developing smart integration for connected scientific 
facilities. 

5.2.1 BUILDING A ROBOT SCIENTIST TO 
ACCELERATE SCIENTIFIC DISCOVERY 
A central goal for automated discovery is to improve the 
efficiency and speed of repetitive actions within scientific 
processes (e.g., DNA transformation). Each experiment is 
typically conceived based on prior knowledge; refined based 
on observations; and optimized through iterative executions, 
evaluations, and adjustments, to eventually be distilled into a 
discrete set of steps that are then executed in the laboratory 
by some combination of humans and instruments (a 
“protocol”). Near-term advances in AI and robotics will enable 
these protocols to be executed more efficiently and quickly, 
but the development of a robotic scientist that can design and 
optimize the protocol itself is a grand challenge. This 
experiment design process may involve accruing and/or 
assembling a set of instruments (or designing new ones), as 
well as other intermediate steps that are documented for 
further downstream use. Thus, any scientific experiment may 
be viewed as an iterative workflow involving multiple steps, 
captured as a protocol (analogous to a computer program, 
but executed by humans and instruments rather than a 
computer). While human intuition for designing such 
experiments is synthesized from existing knowledge and 
experience, automation (via robotic scientists) requires 
learning this experience and synthesizing knowledge from 
structured and unstructured data sources—which is quite 
different from how humans learn scientific experimental 
processes. Hence, the automation of scientific process 
design with robotic scientists requires advances in knowledge 
distillation and synthesis that go beyond current approaches 
(that mostly include structured data within datastores, or 
information represented via ontologies). With advances in 
foundation models, there is an opportunity to capture implicit 
representations of knowledge both in a domain-specific and 
domain-agnostic manner. 

A robot scientist must be able to synthesize vast amounts of 
scientific knowledge and data, and then develop ways to 
incorporate prior(s) and generate new hypotheses based on 
current experimental observables. The aspect of constructing 
new hypotheses is dependent on an inner AI loop, which is 
dominated by fast analyses of existing data (e.g., exploiting 
surrogate models) and relating this analysis to scientific 
evidence drawn from distilled knowledge in prior literature 

and current observations. The outer AI loop will then provide 
a way to evaluate these hypotheses and select the “most 
promising” ones for experimentation. This outer AI loop will 
leverage active and reinforcement learning approaches.  

Further, robot scientists will require extensive automated 
planning for designing experiments. This need will demand 
rigorous statistical techniques such as optimal experimental 
design or via robotic planning approaches that have been 
targeted for self-driving vehicles or automated design 
capabilities such as discussed in Chapter 03. Although 
limited prototypes foreshadowing robot scientists exist for 
specific domains such as in manufacturing, generalizing such 
robot scientists for domain-agnostic scientific experiment 
design is a grand challenge. 

5.2.2 BUILDING A HIGH-THROUGHPUT 
AUTOMATED FACILITY FOR SCIENTIFIC 
DISCOVERY 
A fully automated experimental facility will be essential to 
enabling human and/or robot scientists to connect and 
collaborate on multiple experiments simultaneously, or to 
facilitate the adaptation and translation of experiments and 
protocols from one domain to another. This concept of an 
autonomous scientific facility will also require capabilities for 
robot scientists to be modeled as an assembly of connected 
work cells (Figure 5-3a) consisting of closely related 
instruments; or for a robot scientist to be assembled on 
demand to implement an experimental protocol (Figure 5-3b). 
Eventually, such connected robotic platforms could be used 
to execute larger experiments (or even ensembles of 
experiments) based on a common operating environment. 
One of the key challenges for implementing such high-
throughput automated facilities for scientific discovery is in 
enabling integration of DOE infrastructure, which 
comprises some of the nation’s large scientific instruments, 
with ad-hoc robotic instruments for specialized disciplines. 

Advances in the use of AI for control and optimization of 
complex engineered systems (Chapter 04) will be critical for 
the necessary modeling of such large-scale facilities, 
including the use of advanced simulation toolkits that provide 
not only system schematics and visualizations but also 
simulate instrument self-assembly (to execute a scientific 
experiment) and overall operation for specific classes of 
experiments. This will require significant investment in the 
development of “digital twins” and associated virtual 
environments (e.g., with augmented/ virtual reality) to support 
the full range of design and operation, including interactive 
instrument design, scaling, and the modeling and prototyping 
of experiments at scale.  

Similarly, different experimental techniques (e.g., neutron 
scattering, X-ray tomography, cryo-electron 
microscopy/electron tomography [EM/ET]) are often 
combined with computational simulations to characterize 
material properties at multiple temporal and spatial scales. 
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AI/ML techniques (specifically, surrogate models and active 
steering of experiments) can act as a “glue,” providing a 
significant leap in how such complex/emergent phenomena 
are measured. In addition, by creating a digital twin of each 
experiment, which is used to constrain systematics to a much 
finer degree than currently possible and where the twin is 
better characterized by AI/ML than any person could 
replicate, we have the potential to self-calibrate simulations 
and digital twins for dynamically changing systematics. 

A second challenge in this area is the development of self-
calibrating facilities, as illustrated in the processes being 
developed for future sky-mapping telescopes [21]. We posit 
that combining the execution and in situ analysis of multiple 
experiments and simulations via AI systems can improve 
upon instrument/experiment measurements by at least an 
order of magnitude, without redesigning the instruments. For 
example, in climate monitoring, edge AI and automation have 
enabled the controlling of scientific instruments (such as 
weather LIDAR) to detect features of interest in low-resolution 
scanning mode, then automatically adjust to high-resolution 
data collection with fixed aim at the detected feature.  

5.2.3 DEVELOPING SMART INTEGRATION FOR 
CONNECTED SCIENTIFIC FACILITIES 
DOE runs some of the nation’s large scientific instruments, 
including particle accelerators, synchrotron light sources, 
high-energy laser systems, HPC environments, and other 
instruments that are integral to the scientific enterprise not 
only within DOE but also across universities and industry. 
However, these facilities run primarily as independent 
systems. This is in sharp contrast to our routine ability to 
combine multiple, distributed computing, data, and sensing 
resources into coherent experimental configurations through 
the use of workflows and high-performance networks 
including the Energy Sciences Network (ESnet). 

DOE facilities and instruments are currently run at a scale 
that supports largely automated sample processing and 
loading conditions. Moreover, new instruments as well as 

upgrades to existing instruments introduce improved 
automation capabilities. These include partial (in situ) data 
processing and analyses that can provide operators with 
support for decision making (about the experiments to be 
conducted or even how they can troubleshoot some 
experiments). However, the automated sample processing 
utilizes robotics in a way that is largely driven by the 
motivation to increase the throughput and is less focused on 
creating smart interconnected experimentation. For instance, 
AI and interconnected experimentation can enable queued 
experiments to be combined with others to increase 
efficiency, reduce redundant work across facilities, and even 
include possible follow-up experiments in downtime. In these 
situations, AI/ML techniques can play an enabling role in not 
only improving the throughput but also in designing, 
optimizing, controlling, and executing experiments at 
unprecedented scale. With developments in active learning 
and reinforcement learning techniques and automation, these 
facilities could execute experiments autonomously with little 
human intervention needed for scheduling and operation.  

The combination of autonomous laboratories with new robotic 
and sensing technologies and advances in HPC sets the 
groundwork to create connected scientific instruments of 
the future: where federated experimental and computing 
facilities can “collaborate” on specific scientific tasks, 
providing significant acceleration (> at least an order-of-
magnitude speedups) than currently enabled by automated 
laboratories. While present-day laboratory automation 
focuses on siloed throughput, there are synergies from 
considering many large-scale instruments collectively as a 
federated network alongside expanding DOE supercomputing 
infrastructure. In addition, edge computing technologies 
including sensor networks and novel hardware architectures 
can enable high-throughput data analysis, which can then be 
fed into HPC-enabled simulations. The complexity of such 
integrated instruments—with diverse computational, sensing, 
measurement, and other resources—will demand AI 
capabilities to guide the configuration, optimization, and 
operation of experiments. 

 
Figure 5-3. A conceptual overview of an autonomous scientific facility composed of flexible workcells. (a) A workcell is composed of a set of 
connected instruments/robots that can be operated as a single robotic scientist. (b) This assembly is facilitated by “on-demand” units that are 
brought together by tugboats and can be used to investigate a variety of scientific phenomena. 
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5.3 Advances in the Next Decade 
These three grand challenges motivate three suites of 
capabilities that must be developed within the DOE. 

5.3.1 AUTOMATION-SPECIFIC CAPABILITIES 
Open co-design of laboratory robotics. DOE investment in 
laboratory robotics is essential to reach the data volumes and 
quality needed to enable autonomous discovery and self-
driving labs. While current approaches have produced 
working prototypes of self-driving labs, they do not exploit the 
full potential of robotics, as industry advances and academic 
research in robotics are often narrowly focused on replicating 
human actions and tasks. Unique micro- and nanofabrication 
expertise within DOE can be leveraged to operate at much 
smaller scales than conventional robotics, for example, for 
DNA assembly [22] or phenotypic screening [23], embedding 
molecular sensors on semiconductor chips [24], producing 
wireless and optically activated microscopic sensors [25] that 
enable a scientific internet of things (IoT), monitoring 
metabolism through quantum effects [26], or interacting with 
cells and their metabolism through light [27, 28]. Thus, DOE 
investment in laboratory robotics will provide unique abilities 
to study and manipulate matter at the appropriate data scale 
and cost, in domains where industry and academia cannot (or 
lacks incentive). 

Apart from sensors and instrumentation development, DOE 
investments toward the open co-design of laboratory robotics 
must include open software ecosystems that can provide an 
interoperable environment for laboratory equipment. Related 
efforts in Europe have focused on adopting open standards 
such as SILA [29] for robotic instrumentation; however, such 
standardization and toolkit adaptation remains elusive given 
the diversity of vendors and custom (and often proprietary) 
software developed for operating such robots or a particular 
company’s product line. This situation will require developing 
(1) open standards to enable interoperation, (2) protocols and 
frameworks to facilitate open exchange of information and 
metadata across experimental workflows, (3) self- and auto-
calibration capabilities for robotic instruments, and 
(4) computer vision and modeling approaches for capturing 
how experiments can be run. 

Robotics and automated laboratory in remote and/or 
harsh environments. Another important area of research is 
in the use of robotics and automated labs in settings that are 
dangerous or inaccessible (e.g., due to location or spatial 
scales) to humans or even extant electronics and robotics 
systems. There is a significant need for research that “lets” 
robotic labs handle the dynamic environments encountered in 
inhospitable environments, as well as for field research on 
scales or timescales that are impractical for human observers 
(e.g., longitudinal measurement campaigns). This research 
can potentially leverage work within the DOE National 
Nuclear Security Administration (NNSA) or other federal 
agencies such as the National Aeronautics and Space 

Administration (NASA); however, there are unique 
applications within the DOE scientific facilities where 
significant research investments are needed. 

Additional items to address in this domain include interacting 
with unique (never-seen-before) settings or conditions, 
requiring prediction outside of trained data bounds; 
interacting intimately with unknown, multi-domain physics; 
creating physical interfaces between the robot and 
objects/environments; learning from mistakes in some 
scenarios and having zero tolerance for mistakes in others; 
intelligently placing sensors and understanding their 
performance in the environment; and reacting/adapting to 
changing conditions, limited access, and limited power. This 
underscores the need to infer both perception and action well 
beyond any available training set, with the need to perform 
complex and unpracticed physical tasks (e.g., manipulation). 

Real-time autonomous agent learning for scientific 
facilities. Data generated by upgraded instruments and 
robotic instruments (including deployed field laboratories and 
sensor networks) pose an important challenge for managing 
autonomous scientific facilities. AI models will be required to 
support time- and/or resource-limited situations through the 
use of existing knowledgebases, while rapidly integrating new 
data in real time to feed forward into control and decision 
models will enable on-the-fly decision-making. Among other 
impacts, this capability would enable data collection by 
agents or robots whose distribution and data sampling could 
also be orchestrated by an AI system. Other potentially high-
impact application areas beyond autonomous laboratories 
include experimental apparatuses, additive manufacturing, 
and robotics in the field and inhospitable environments. While 
some real-time data integration is being performed in narrow 
fields today, we envision a broad integration of disparate data 
that requires fast cleaning, processing, and blending for use 
in training AI models.  

5.3.2 CROSSCUTTING TECHNOLOGY 
CAPABILITIES 
Mathematics and fundamental research. The ambitions of 
autonomous discovery with AI and robotics all rest on 
(1) developing computational interfaces to manage scientific 
goals and methods; (2) correct and reliable robotic execution 
of the goals; and (3) navigation and optimization among the 
physical constraints of materials, supplies, and experimental 
conditions. If these three distinct challenges can be unified 
computationally with advances in AI, then the fundamental 
capability of autonomous discovery can be realized. 

Abstractions and languages for encoding laboratory protocols 
for automated execution are also foundational to achieve the 
grand challenges discussed in Subsection 5.2 above. 
Specifically, scientific laboratory protocols in an automated 
setting will drive the generation of highly reproducible 
experiments and high-quality data. Scientific protocols are the 
step-by-step techniques used in research. A protocol in data 
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science research, for example, can be shared via the code 
used to transform the input data to statistical conclusions 
drawn or charts generated. Similarly, a protocol in biology is 
typically shared through written step-by-step instructions with 
a sufficient level of detail such that a reader of the protocol 
could replicate the study. Furthermore, protocols have 
different levels of generality. 

Protocols can be expressed solely in terms of reproducing 
the results of a single paper; however, protocols can also be 
used more generally for expanding on a particular result or 
applying it to different inputs. For example, a protocol to 
perform a type of gene “knockout” can simply outline the 
steps used to knock out a particular gene in a particular 
model given a particular study’s downstream conditions; or a 
protocol can be abstracted to be applicable for different types 
of models, different genes, and even different conditions.  

Protocols are today typically written for human colleagues 
who share a vast amount of background information, 
common sense, and practice. They involve a combination of 
human actions, instrument settings and procedures, and 
other functions in the context of a fully manual laboratory 
process. Advances are needed to translate this shared 
knowledge to computational infrastructure, along with 
standard APIs for digital control of instruments. The fluidity of 
abstraction as well as the challenge of translating traditional 
scientific protocols from open-natural language into closed-
machine steps is a major challenge. 

Model calibration is also essential for experimental design. 
Calibration refers to the ability of a model to correctly 
characterize its own uncertainty on a problem, and that its 
characterization nears exactness in practice. Calibration is 
achieved by linking experimental data to model inferences. In 
practice, calibration requires data infrastructures for collecting 
different conditions of data and for harmonizing across the 
data’s organization, given that calibration is generally specific 
to a particular instrument and its own noise and uncertainty 
characteristics. Further advances are needed in areas such 
as automating the calibration of AI models within 
experimental settings against instruments and tasks, as well 
as understanding how to translate calibration settings across 
instruments and experimental conditions. 

An allied area of AI research where there have been 
significant challenges is integrating neural network models 
with symbolic computation techniques (such as incorporating 
first-order logic). While emerging techniques are focused on 
developing neural-symbolic models, the best ways to 
incorporate them with emerging mathematical and formal 
logic constructs, such as probabilistic models, remain elusive. 
This situation is highlighted by the fact that language models 
developed for both general purpose and specialized (domain-
specific) areas are poor in predicting out-of-distribution 
samples, as well as in logical/deductive/abductive reasoning. 
Significant advances in formal logic and reasoning will be 

necessary to enable autonomous discovery facilities to 
flourish. 

Software and frameworks. Currently, scientists have no 
unified or accepted notion of a programmatic interface for 
performing experiments; collecting experimental results 
digitally; and using coding interfaces to control the 
instruments, the sample handling equipment, or other devices 
in the conduct of wet-lab research. Many unspoken 
assumptions are made in traditional laboratories—even with 
respect to important attributes such as ambient temperature, 
rinsing protocols, and handling of samples. These 
assumptions need either to be computationally inferred with 
the usage of AI planning models or explicitly outlined 
programmatically by the scientist. Furthermore, results from 
experiments need to be communicated back from the robotic 
platforms. While seemingly simple, it will be challenging to 
ensure that AI laboratory systems properly respond to cases 
such as experimental failure, noise, and even “serendipitous” 
anomalies—the root of much paradigmatic innovation in 
science. The process of transforming subjective experience 
into analytical and quantitative measures, emphasizing some 
aspects of experience over others, is also challenging. 
Finally, to fully leverage autonomous discovery especially in 
conjunction with AI techniques for optimal experimental 
planning, new techniques must be theorized for the 
convening of which experiments should be performed to 
achieve a specific goal. 

Data management and AI workflows for autonomous 
scientific discovery. Current scientific data are generally 
balkanized, disorganized, and disaggregated, accessible 
mainly (if at all) through the supplemental information of an 
associated publication. In experimental laboratory settings, 
the harmonization problem across batches, instrument 
models, conditions, and even presentations of the data is an 
additional challenge. In experimental sciences such as 
biology, much of the data today is kept in complex Excel 
sheets, stipulating the range of assumptions and conditions 
used for generating the data. With the aim of leveraging AI to 
drive experimental planning and prediction and even to 
generate synergistic connections between experiments and 
prior data, it is essential that new data infrastructure and 
methods be designed to accommodate historically generated 
data, as well as the increases in data generation from 
automated and autonomous instruments and laboratories. 

As facilities continue to expand and upgrade, the data 
volumes that will be generated, such as from various light 
sources, are projected to reach multiple exabytes per year. At 
these scales, data analyses processes and workflows need 
to be primarily autonomous: from identifying what raw 
datasets to store to the meaningful extraction of information 
from such datasets. 

AI predictive models are built by learning from massive and 
often disparate sources of training data, and the crucial steps 
of assembling training datasets currently requires months of 
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work for a human. The result is that opportunities for timely 
scientific discovery are missed. As the amount and 
complexity of available data across the science, energy, and 
security sectors continue to increase exponentially, the need 
for AI methods to augment, if not automate, the tasks related 
to curating and preparing data, managing heterogeneous 
data, and building training datasets will be indispensable for 
transformative change to occur in the efficiency and 
effectiveness of AI prediction in robotics, autonomous 
discovery, and beyond. 

The enabling technologies that could transform future data 
management and infrastructure systems will rely on major 
advances that are enabled by new AI methods and 
capabilities, including data format standardization, optimal 
data sampling, and data transfer. Major data-intensive uses 
of these transformative AI technologies across science, 
energy, and security will also present researchers with 
additional challenges such as those related to data security 
and privacy. These and other challenges and opportunities 
are detailed in Chapter 14. 

Beyond the challenges of building a data infrastructure to 
enable harmonization across user facilities, domains, and 
even computing and experimentation, such factors as 
explainability, trust, and rigorous system evaluation 
capabilities will pace the adoption of autonomous discovery 
within traditional scientific practice. For example, in 
developing a programmatic interface for user facility–based 
autonomous discovery, researchers will have to deal with the 
challenge of overcoming the experiential and education 
divide. This is an education and adoption challenge, and 
much progress is already underway with the increase in 
computational requirements across education in the scientific 
disciplines. Furthermore, such an interface needs to be co-
designed with many disciplines, experiments, and future 
experiments in mind, likely requiring many workshops and 
outreach activities. These practical challenges are already 
being met with solutions, as many science education 
programs increase computational learning requirements. 

AI-oriented hardware architecture. An additional area of 
research is needed in seamless integration of sensor 
networks with embedded AI/ML capabilities such that 
analyses of data can be performed in situ—where the data 
are generated. Edge analysis will be passed to subsequent 
steps of an experimental protocol such that downstream 
tasks can automatically “register” and “anticipate” failures as 
experiments are designed and executed. While advances in 
novel AI-oriented hardware continue to fuel the race toward 
exascale and zettascale computing, this race needs to be 
aligned with scientific use cases requiring compatible 
resources at the edge. This need extends the traditional co-
design of individual computing platforms to also include their 
integration with (and the design of) scientific instruments.  

5.4 Accelerating Development 
We outline two pilot projects that can provide both near-term 
improvements while also demonstrating forward paths that 
will provide insight, including “early failures,” to additional pilot 
projects in different domains. 

Regional, continental, and earth-scale monitoring 
systems initiative. With new sensor modalities, AI “at the 
edge” (within the sensors [30]) can analyze data in situ, 
detecting anomalous conditions and events, and ultimately 
provide (e.g., coupled with predictive models) real-time 
decision support for both natural and man-made events. 
Moreover, AI@Edge enables automation, for instance using 
an AI model to detect events or conditions of interest and 
reconfigure the instrument (e.g., sampling rate, focus, or 
direction of observation) to examine such phenomena in 
greater detail. Such intelligent sensing networks could then 
be used to monitor—and capture in detail—events such as 
earthquakes and extreme weather conditions. A pilot project 
is needed to integrate autonomous predictive and reactive 
modeling capabilities spanning the edge-to-HPC continuum 
in an Autonomous Discovery laboratory context. This effort 
will include training AI edge code for autonomy in detecting 
conditions or events of interest as well as pre-analyzing 
observational data. Additionally, these edge AI codes must 
include actuation capabilities, such as adjusting observational 
instrument settings (e.g., orientation, sampling rates, etc.). In 
turn, edge capabilities in this pilot must be integrated with 
HPC modeling systems to create a control and modeling loop 
that continually updates the HPC models (and ultimately will 
continually train AI models). 

This pilot could leverage existing DOE facilities and 
resources, such as accelerating the adoption of edge AI 
capabilities in weather observation instruments operated by 
the Atmospheric Radiation Measurement (ARM) User Facility 
as well as the new Urban Integrated Field Laboratories. 
Similarly, edge AI systems are already being deployed for 
experiments supporting not only ARM and U-IFL sites but 
also NNSA’s NA-22 program (in situ radiation monitoring and 
characterization) and the Office of Energy Efficiency and 
Renewable Energy (EERE’s) Vehicle Technologies Office 
(vehicle mix and flow observations). 

Pilot project on the design of (bio-)polymers for critical 
mineral extraction. Critical minerals are currently used in 
multiple clean energy technologies including electric motors 
and batteries. Although many of these elements are 
abundant in the Earth’s crust and are present in waste by-
products like coal ash, acid mine drainage, or consumer 
electronics, they are often dilute or difficult to separate with 
existing technologies. For example, China controls 80% of 
the world’s supply of rare-earth elements, of which 920 lbs. 
are needed for each F-35 jet. Similarly, other critical 
elements, such as the lithium and cobalt needed in batteries, 
are primarily produced in Chile and the Congo, respectively. 
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Given the inhospitable regions where such critical elements 
are found, there is an immediate need to extract, concentrate, 
and recycle critical minerals in a more efficient manner, for 
instance, by using chemical sorbents that act as selective 
sponges, and which need to be designed from existing 
knowledge (and from scratch).  

However, our knowledge in chemistry, materials, proteins, 
and organisms is siloed, and we need advances in both AI 
and robotics to enable the design of novel materials that can 
extract rare-earth minerals. Given the incompleteness of 
current knowledge, a pilot is needed to develop new, AI-
enabled laboratory processes to inform our understanding of 
biological principles that can be used to capture and 
concentrate these minerals directly. For example, bacteria 
have already been engineered toward reducing certain types 
of phosphates complexed with certain minerals. Yet the 
ability to design, build, and test large-scale cycles of rare-
earth extraction or processes and scaling them within 
reactors will require (1) automation and new biotechnology 
protocols to survey and design new synthetic organisms with 
the ability to process such materials, (2) new AI methods that 
go beyond interpolation to examine which pathways can be 
used in these applications, and (3) data collection at scale 
regarding rare-earth microbiomes including fungi and other 
organisms that can provide new ways to energize rare-earth 
extraction and clean energy technology. 

The pilot would also need to develop AI approaches that can 
automatically identify datasets for developing general-
purpose, multitask, and cross-discipline material property 
models for DOE-relevant domains, prioritizing data collection 
efforts for these materials/tasks where needed. The pilot 
initiative would entail the development of robotic standards 
using open-source standards such as the robotic operating 
system (ROS, [31]) and explore additional open standards to 
support the interoperability among instruments and scientific 
workflows and across facilities (for demonstrating a smart-
interconnected facility). 

In the ten-year timeframe, progress on two complementary 
areas would need to be achieved, including in (1) developing 
and promoting standards for modular hardware that support 
interoperability and discoverability with automatic data 
capture and storage; and (2) developing methods to 
automatically construct digital twins for laboratory equipment 
during operation. Intersection with other approaches, 
including property inference and inverse design, surrogates, 
foundation models, and prediction of complex engineered 
systems, will be needed. 

5.5 Expected Outcomes 
AI-enabled autonomous discovery presents a new, and 
urgently needed opportunity to increase the productivity and 
reliability of DOE’s investments in scientific instruments and 
infrastructure. Through interconnected networking, 

automation, and integrated AI for experimental design, 
autonomous discovery will reduce bottlenecks due to human 
involvement and increase reliability through systematic 
handling of materials and smart tuning of instruments. The 
impact of increased throughput, analysis, and aggregation of 
experimental data has the potential to drive scientific 
discovery by accelerating the ability to (1) screen new 
materials or drugs experimentally; (2) increase the calibration 
and decrease the uncertainty of models through the 
leveraging of AI-driven exploration, typically occurring during 
instrument downtime; and (3) increase scientific productivity 
by offloading time spent on protocol design to computing 
methods. 

There is potential for AI systems, as described here and in 
detail throughout Section 01 of this report, to revolutionize the 
nation’s manufacturing, therapeutics, and sustainability 
industries through advances in biological and inorganic 
material design capabilities. For example, AI for drug design 
has been an accelerating and growing field, initially 
leveraging high-performance computing with traditional 
modeling and simulation. Surrogate (Chapter 01) and 
Foundation (Chapter 02) models offer the potential to create 
AI-driven computational systems that can screen billions of 
compounds a day for a target of interest. A similar system for 
inorganic material design would enable the design, testing, 
and manufacture of new materials, employing not only robotic 
laboratory and manufacturing systems but also inverse 
design approaches outlined in Chapter 03. However, without 
commensurate AI-enabled experimental throughput, these 
models will be limited due to insufficient training and 
calibration, in turn reducing our capacity to synthesize and 
test the resulting vast array of potential compounds. These 
challenges are also mirrored in other domains such as 
material design.  

Autonomous discovery, integrating experimental science with 
AI-enabled computation, will also radically extend the reach 
of the enormous investments across the DOE complex in 
computing advances (e.g., the Exascale Computing Project 
[ECP]) and instruments ranging from genetic sequencers to 
entire user facilities. Illustrated in the life sciences domain, 
these advances offer the most promising path toward closing 
the massive gap between the identification of a disease or 
target of interest and an appropriate therapeutic—by 
accelerating the planning, design, and execution of 
experiments to identify targets and potential compounds of 
interest. The same outcomes will accrue not only to the life 
sciences but also to the material sciences and other domains 
(outlined in Section 02 of this report), lowering the overall 
cost of designing, engineering, and manufacturing novel 
materials.  
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06. AI FOR PROGRAMMING AND SOFTWARE ENGINEERING 
Software is ubiquitous throughout the scientific and energy 
infrastructure, whether it is controlling large-scale, complex 
instruments or monitoring and optimizing electricity 
generation and distribution. As these systems become 
increasingly complex, ensuring their robustness, reliability, 
security, and rapid recovery are not only more challenging 
but also more critical given the central role that these 
infrastructure assets play in every facet of society. 
Increasingly interconnected, today’s software-rich 
infrastructure is also vulnerable to both cybersecurity and 
natural disruptions that can propagate through systems—
demanding verifiably correct and robust code. Consequently, 
major productivity, quality, and verifiability improvements are 
needed in programming and software engineering for 
applications ranging from complex systems controls 
(see Chapter 04) to scientific applications (Section 02 of 
this report) to fully exploiting new HPC architectures. 
Recently, advances have been made demonstrating the 
feasibility of large-scale language models (e.g., GPT-3 [1], 
Codex [2], etc.) to write code and to translate code from one 
language to another. This chapter discusses the opportunity 
for using artificial intelligence (AI) to address the software 
needs of the control systems (including scientific instruments 
and energy infrastructure), scientific computing, and high-
performance computing (HPC) communities. The importance 
of this topic is not only highlighted in the 2020 AI4Science 
report [3] but also in a follow-on report, “Program Synthesis 
for Scientific Computing” [4]. More recently, the DOD 
community also created a report on “The Science of Software 
Development and Use,” [5], further laying the groundwork for 
pursing the opportunities discussed in this chapter. 

A central strategy is to develop AI assistants for code 
development and maintenance, software optimization and 
tuning, and software architecture and design to improve the 
productivity of human programmers by 10x or more, to 
improve the reliability of software systems, and with a focus 
on the needs of the U.S. Department of Energy (DOE) in 
science and engineering codes and for leading-edge 
architectures. Beyond the critical importance of addressing 
these and other current challenges, a key long-term objective 
is to develop AI systems whose algorithms exceed the best 
human-known algorithms and that ultimately include novel 
algorithms unanticipated by experts. 

6.1 State of the Art 
Early-stage commercial tools, such as GitHub Copilot [6] and 
Amazon CodeWhisperer [7], act as AI-assisted co-
programmers, generating code recommendations based on 
prior code and user comments. At the system software level, 

tools such as Ithemal [8] use AI techniques to make data-
driven choices with system software (e.g., compilers and 
runtime systems). Concurrently, there is extensive research 
in this area, focusing on using AI to perform a broad range of 
critical tasks such as text-to-code generation (to generate 
code from natural language description) [1], code completion 
(to predict following tokens based on code context) [9], code 
translation (from one programming language to another) [10], 
defect detection (to identify resource leaks, code 
vulnerabilities) [11, 12], clone detection (to measure the 
semantic similarities between codes) [13], cloze test (to 
predict the obscured section of a code) [14], code search 
(e.g., for a natural language query, to find the most relevant 
code in a collection of codes) [15], code repair (to fix bugs 
automatically), code summarization (to generate natural 
language comments for code), and documentation translation 
(from one natural language to another). 

The scale and complexity of DOE science and energy 
systems differentiates them from typical commercial systems 
and their associated applications (e.g., desktop computers, 
mobile devices, or cloud or web services) targeted by today’s 
commercial code assistance tools, including CoPilot and 
CodeWhisperer. While there are some extremely large 
industry data centers with tremendous computing capability, 
the types of applications and workloads they support often 
differ greatly from the demands of large-scale science. The 

PROJECT SPOTLIGHT 
Project Name: FourCastNet 

PI: Anima Anandkumar 

Organizations Involved: Lawrence Berkeley National 
Laboratory, NVIDIA, Caltech 

Goal: Scale deep learning models to forecast global 
atmospheric dynamics at high resolution to accelerate 
expensive numerical models in weather and climate. 

Significant Accomplishment: Developed the first deep 
learning model capable of forecasting global weather 
patterns with accuracy and resolution comparable to 
operational numerical weather models, which features 
orders-of-magnitude reduction in computational cost per 
forecast. 

In the News: Perlmutter-Powered Deep-Learning Model 
Speeds Extreme Weather Predictions. Available at 
https://www.nersc.gov/news-publications/nersc-
news/science-news/2021/perlmutter-powered-deep-
learning-model-speeds-extreme-weather-predictions/, 
accessed December 2, 2022. 

https://www.nersc.gov/news-publications/nersc-news/science-news/2021/perlmutter-powered-deep-learning-model-speeds-extreme-weather-predictions/
https://www.nersc.gov/news-publications/nersc-news/science-news/2021/perlmutter-powered-deep-learning-model-speeds-extreme-weather-predictions/
https://www.nersc.gov/news-publications/nersc-news/science-news/2021/perlmutter-powered-deep-learning-model-speeds-extreme-weather-predictions/
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unique needs, complexity of architectures, sparsity of code 
examples, and rapid evolution in systems all make the use of 
AI for programming and software engineering particularly 
challenging and limit the extent to which commercial systems 
can play a significant role. For example, the state-of-the-art 
approach to simplify code development for the diversity of 
HPC architectures is to invest heavily in performance-
portability programming abstractions such as Kokkos [16] and 
Raja [17]. While there have been recent examples of 
successful use and deployment of AI for HPC [18], the use of 
AI in support of HPC programming for scientific computing 
does not yet exist. 

Throughout this chapter, the terms “software” or “code” refer 
not only to specific source code for individual executable 
programs but also to more complex software systems, such 
as workflows, or to systems comprising various AI model 
components, along with their associated configurations 
(hyperparameters, weights, etc.). 

6.2 Grand Challenges 
A number of AI building blocks such as foundation models 
(Chapter 02) and inverse design (Chapter 03) will be critically 
important to achieving the cost, agility, and quality 
improvements necessary for current and future software 
systems. Here we outline three grand challenges that will 
themselves form the underpinnings for applying AI to the 
programming and software engineering needs across DOE’s 
scientific, energy, and security mission areas. The first 
addresses the software necessary for the control and 
automation of complex, interconnected systems—discussed 
in Chapters 04 and 05. The second grand challenge focuses 
on codes embedded throughout the DOE enterprise that 
support science and engineering across desktops, clusters, 
laboratory instruments, and other experimental, 
computational, and data infrastructure. The third grand 
challenge in this area specifically targets DOE’s leadership 
HPC infrastructure. 

6.2.1 AI FOR PROGRAMMING CONTROL 
SYSTEMS 
Control software for complex engineered systems, such as 
those discussed in Chapter 04 for the electricity grid, high-
performance computing facilities, nuclear power generation 
systems, and others, is critically important to support national 
security, economic competitiveness, and the quality of life in 
the U.S. These systems face ever-increasing threats from 
evolving and growing demand patterns, the changing climate 
(driving both changing demand and weather disruption), 
aging infrastructure, reliance on international supplies, and 
adversarial attacks. Similarly, control systems are at the heart 
of automated or AI-driven laboratories operated throughout 
the DOE complex as detailed in Chapter 05. A real-time 
control system will thus comprise many scales, many 

components, and many subsystems—each controlled by 
software systems—that must not only be internally correct 
and robust but must interoperate and adapt to both short-
timescale disruptions and long-timescale evolution. 

A grand challenge to use AI to generate control-system 
software could significantly improve our ability to ensure 
reliability and resilience for control systems that adapt to 
rapidly changing conditions. In the envisioned system, AI 
capabilities comprise the control software. Utilizing systems 
such as inverse design (Chapter 03), the AI system for 
control will be generated automatically based on domain-
specific design objectives, operational and simulation-
generated data, and assurance mechanisms quantifying the 
trustworthiness and correctness of the control system with 
respect to its design objectives. The system must also be 
robust, reliable, and resilient to faults from natural and 
adversarial causes. For example, a mission-critical 
infrastructure operating at 99.999% (“five nines”) of reliability 
will experience 5 minutes of outage annually. If this level, or 
higher, is required for the overall system, then the control 
software can be no less, and would ideally be much more, 
reliable. 

6.2.2 AI FOR SOFTWARE ENGINEERING OF 
SCIENCE AND ENGINEERING CODES 
Science and engineering codes designed for DOE are 
distinguished from the broader software community by 
algorithmic complexity and rigorous validation and verification 
requirements. In addition, scientific codes are very 
specialized and are not likely to exist in large repositories, 
confounding approaches such as those used by Co-Pilot and 
CodeWhisperer, which learn from vast landscapes of 
common methods and classes of applications. Finally, 
scientific codes are typically a composition of codes and 
libraries that require multi-physics, complex numerical 
methods, and a range of multi-fidelity and multi-scale 
solutions. The national importance of DOE’s science, 
engineering, energy, and security missions requires the 
laboratories to make significant investments in scientific code 
development. The potential for using AI to aid in that 
development is a grand challenge that could lead to massive 
improvements in productivity, software quality, and 
application sustainability—all critical challenges for the 
DOE complex. We briefly discuss each of these 
improvements next. 

AI-generated software could significantly improve 
productivity. The engineering and science codes that 
represent the bulwark of DOE’s science, energy, and security 
mission areas each take years, sometimes decades, to 
develop to the quality level required by those missions. These 
codes are developed with a wide range of requirements for 
fidelity, uncertainty quantification (UQ), verification and 
validation (V&V), and time to solution. The traditional 
approach—independent development by thousands of teams 
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across the complex—is time consuming and expensive. AI-
generated scientific codes would enable the generation of 
custom codes that incorporate new algorithms (ultimately 
including those created by AI models), are constrained by 
user requirements, and implicitly certified for production use. 
For example, integrating new components such as a new 
preconditioner or eigensolver today is gated by the ability of 
many software teams incorporating the components into 
libraries or other codes. An effective AI-driven software 
maintenance system would accelerate the adoption of such 
improvements. Success would mean order-of-magnitude 
productivity improvements and significant savings in 
expenses historically used for software design, development, 
evaluation, and production hardening. From a DOE mission 
perspective, our simulation and modeling capabilities would 
exhibit the agility, quality, and responsiveness increasingly 
demanded by mission needs, along with equally important 
reductions in costs associated with human-in-the-loop factors 
such as long development cycles and identifying and 
addressing software flaws.  

Software quality is a significant and growing challenge for 
scientific codes [19]. AI-generated software constrained by 
strict guidelines for software engineering [20] could lead to 
consistent quality of software and explainable, enabling 
human verification, and simplifying debugging. High-quality 
AI-generated and AI-verified software could also be more 
secure than our existing code base—ensuring code that is 
without known code vulnerabilities and is responsive to 
emerging cybersecurity threats. 

Finally, AI-developed software systems and the associated 
quality improvements will also dramatically improve software 
sustainability. Today’s codes, developed over many years by 
a succession of programmers, can involve hundreds of 
thousands of lines of code—a daunting challenge to maintain, 
much less to extend or port to new computing architectures 
or laboratory instruments. For the AI model, however, 
modifying, extending, and porting code are innate capabilities 
that make these tasks no more challenging, and potentially 
even easier, than code generation.  

6.2.3 AI FOR PROGRAMMING HIGH-
PERFORMANCE COMPUTERS AND ADVANCED 
ARCHITECTURES 
The past decade has seen extreme growth in heterogeneous 
architectures for high-performance computing. A recent DOE 
report stated that heterogenous accelerators are used in 
more than 100 of the TOP500 systems and in the majority of 
the TOP10 [21]. Each of the DOE’s leadership-class 
computing systems at the DOE’s science laboratories and the 
National Nuclear Security Administration (NNSA) implement 
different overall system architectures that each support a 
different organization of heterogeneous central processing 
unit (CPU) and graphical processing unit (GPU) node 
architectures, as well as multiple levels of complexity in the 

memory and storage systems. Future trends point to even 
greater complexity, with potential accelerators for dataflow 
[22, 23], neuromorphic [24], and quantum [25, 26] computing 
that could soon make their way into our HPC platforms.  

Designing codes that are portable and performant for the 
diversity of HPC systems and architectures that exist 
consumes a large number of staff and computing resources 
at these national laboratories and their industry and academic 
partner institutions. Given a well-defined scientific problem 
with user constraints, reducing the time and resource costs of 
these activities will require AI models that can generate the 
algorithms and software system design that would support a 
range of HPC systems, effectively exploiting their unique 
hardware features. These codes must not only support large-
scale parallelism in the system but also node parallelism and 
diverse internal architectures, while adapting computing and 
communication algorithms based on the network and storage 
topology and capabilities of the underlying platforms. For 
systems with configurable hardware, the AI models must 
further understand how to adapt the hardware to meet the 
primary objectives of the code, which could be optimized for 
energy efficiency, scalability, or time-to-solution. 

AI-generated software that makes effective use of our HPC 
systems will dramatically reduce the time it takes to transition 
those systems into a production state and also could reduce 
or even eliminate the need for years of development on early-
access systems. Moreover, these AI models have the 
potential to address emerging challenges associated with the 
extreme scale, complexity, and energy demands of exascale 
systems and beyond, notably in energy efficiency, scalability, 
and performance. Such improvements would enable better 
utilization of our platforms and accessibility to a much 
broader community of HPC users. 

6.3 Advances in the Next Decade 
To achieve the AI-enabled end states identified above, DOE 
and the broader research community must solve many 
intermediate and foundational challenges. Some of these 
challenges are themselves grand in their ambition and 
potential impacts on scientific and engineering generally. We 
highlight two technical advances that are of highest priority. 

6.3.1 ADVANCES NEEDED FOR AI-ASSISTED 
SOFTWARE DEVELOPMENT AND CODE 
GENERATION 
The grand challenges in this chapter describe an AI-assisted 
software development environment that is fundamentally 
different from the process involving human effort that exists 
today. In this new environment, a DOE scientist or control-
system engineer will act as an architect or orchestrator, 
providing high-level requirements and directives to an AI 
system tasked with creating the software. That AI system will 
generate performant, portable, scalable, and correct code for 
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a variety of different architectures ranging from large 
instruments and HPC systems to edge devices including 
intelligent sensors and scientific instruments. It will also 
generate the test suite, documentation, and codes necessary 
for V&V, as well as UQ. Equipped with these software 
systems, the scientist will iterate with the AI system as 
necessary to refine and finalize requirements and verify 
the results.  

All three grand challenges described above assume a 
“language” for expressing requirements, and this language 
does not yet exist. An important step toward creating such a 
language or set of languages is to define methods 
(e.g., natural language, programming models, symbolic 
algebra) to express requirements, constraints, and design 
objectives in a way that minimizes ambiguity for the AI 
system and that maximizes the system’s ability to generate 
verifiable and correct code. Equally important, the languages 
must be accessible to engineers, analysts, or scientists in 
order to enable precise articulation of the design criteria 
specific to that domain. For example, a control-systems 
engineer may want to articulate the design objectives and 
constraints of individual control subsystems, including the 
power, memory, and speed constraints in the design of an 
energy-distribution network. A physicist interested in using AI 
and HPC to model turbulent flow as part of a re-entry code 
may provide constraints for uncertainty, fidelity of the result, 
and deadlines for completion. While the end state of these 
languages is different from anything currently in existence, 
initial work can build on domain-specific programming models 
and some of the excellent early results from the broader AI 
community, including those discussed above in the context of 
the state of the art.  

While the end goal expressed earlier in the description of 
grand challenges is for fully automated AI code generation, 
tremendous progress could be made even in the immediate 
term using AI for “recommender” systems that provide 
guidance to software engineers, computational scientists, and 
control-system engineers. A focus on AI for software quality, 
productivity, and system portability is a natural evolution 
toward fully automated, AI-generated programs.  

To satisfy the level of rigor required for V&V and UQ, we will 
need a focused research effort toward AI tools that generate 
test suites from standards/specifications written in natural 
language (e.g., automatically generate tests from ingesting 
the message passing interface [MPI] or OpenMP standards). 
Both correctness and performance measures are needed. 
Realizing AI-generated test suites and the generation of 
ensemble workflows for V&V seem plausible in the next 5 to 
15 years. 

6.3.2 ADVANCES IN THE AI-ASSISTED HPC 
SOFTWARE STACK 
To create AI systems capable of generating codes to 
effectively utilize DOE’s assets such as HPC systems and 

research facilities, significant research is also needed on the 
HPC software stacks themselves. For example, achieving the 
objective of AI-generated code that can fully exploit unique 
architecture features will require a reconfigurable HPC 
software stack operating on the target system. This 
reconfigurable stack would, in turn, both enable a more 
flexible hardware design and simultaneously relax constraints 
on interfaces among runtime systems, programming models, 
and system software components. The resulting real-time 
adaptation of the software stack would also reduce or 
eliminate many trade-offs that currently end up being “baked 
into” the low-level software or even hardware during the 
design phase. Rather, with AI-generated code, these settings 
would be exposed to the AI-enabled software stack for 
resolution at execution time, factoring in the actual workloads 
being run on the system at that moment. Achieving this “on-
the-fly” adaptation will require significant advances in 
composability, reconfigurability, and observability of the 
numerous components comprising the HPC software stack—
in effect, not only using AI models to generate user codes but 
also to generate lower-level components of the software 
stack. This capability would increase the achievable 
performance of the system, as well as its ability to 
accommodate a much broader set of workloads, resulting in 
an increased “democratization” of these systems in terms of 
supported programming models and runtime systems. 

6.4 Accelerating Development 
The goal of AI-generated codes for advanced architectures 
could be significantly accelerated through a co-design 
approach with HPC and AI-hardware vendors. We anticipate 
a rapidly evolving commercial market for AI tools and 
hardware. With strategic DOE investments in co-design, as 
demonstrated by the Exascale Computing Project (ECP), we 
expect the vendors to be responsive to ideas that enable 
DOE scientists and engineers to make effective use of their 
hardware. In turn, communicating the specific needs of our 
science and engineering missions will lead to hardware 
designs more appropriate for our missions. 

Workforce development—detailed in Chapter 16—is also a 
critical issue, where AI-enabled programming and software 
engineering capabilities will have a pronounced impact. By 
loosening the current entanglement between computational 
science and computer programming skills, the envisioned AI 
systems will remove barriers to entry for a much broader 
audience. We need to recruit top-tier researchers as well as 
educate/train DOE scientists in the fast-moving world of AI 
and this new software-development paradigm. The 
challenges associated with developing the AI methods, 
particularly those around composition of complex scientific 
codes, will require not only a mix of computer scientists, 
mathematicians, and software engineers but also new ideas 
and novel approaches that often come from those with 
expertise outside of these disciplines. The somewhat unique 
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challenges for DOE (e.g., multi-modal, multi-fidelity, multi-
scale) will require us to work closely with our university 
partners to evolve curricula and develop talent pipelines that 
understand and embrace the unique requirements 
underpinning DOE’s scientific, energy, and security 
mission areas. 

Finally, the use of AI-generated codes introduces new 
challenges for intellectual property (IP)—in particular, for 
licensing/copyright issues (e.g., what is the license for code 
generated from a training set that also contains GPL-licensed 
code? Who owns copyright to AI-generated code?). While we 
expect some of these challenges to be resolved in the 
broader research community, these types of issues can often 
create roadblocks for innovation. DOE should have a plan for 
how to deal effectively with the IP, legal, and cybersecurity 
concerns associated with AI-generated code. 

6.5 Expected Outcomes 
Achieving the grand challenges, through advances outlined 
above, can be accomplished through the development of a 
series of increasingly sophisticated methods, components, 
and similar stepwise increases in the autonomy and level of 
controls afforded the AI systems. The target destination for 
this path is the creation and use of AI systems that generate 
codes from high-level requirements, including designing 
innovative algorithms for a vast array of scientific, energy, 
and security problems. The objective is to develop AI 
systems whose algorithms exceed the best human-known 
algorithms and that ultimately include novel algorithms 
unanticipated by experts. To achieve full impact, the AI 
systems will not only generate operational codes but will also 
provide accompanying products including test suites, 
documentation, and verification. 

By enabling scientists and control-system engineers to focus 
on domain science through expressions of requirements, this 
ecosystem will significantly reduce the human, time, and 
financial costs associated with the development, 
maintenance, and performance tuning characterizing today’s 
methods. Beyond individual codes, AI-created workflows that 
generate, deploy, and optimize code operating across the full 
spectrum of HPC, networks, and edge devices will 
significantly increase the effectiveness and efficiency of our 
systems and lead to innovative designs that interoperate at 
an unprecedented scale, ultimately increasing efficiency and 
accelerating scientific discovery. 
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SECTION 02: SCIENTIFIC DOMAINS 
 

Ultimately, the value of developing and implementing the new AI approaches outlined 
in Section 01 is to address the unique needs of DOE’s specific application and 
program areas. Throughout the report, we emphasize co-design approaches to this 
end, integrating expertise from program and application areas, mathematics, AI/ML 
foundations, computer science, instruments and data sources, new software and 
hardware architectures, frameworks, and platforms. This approach will also change 
the nature of computational workloads and significantly increase the scale of 
resources needed from DOE’s exascale systems as the emphasis shifts more toward 
model training rather than solely for executing models. Transforming these science, 
energy, and security endeavors will entail rethinking fundamental concepts and 
approaches including the traditional simulation, modeling, and data analysis 
approaches, and addressing new and rapidly evolving demands placed upon 
underlying physical and software infrastructure. For these programmatic domain 
areas—each comprising multiple programs and program offices—we highlight the 
open opportunities for harnessing new AI approaches and capabilities, the challenges 
that must be overcome to do so, and what investments are needed to seize those 
opportunities. 
 
 
Chapter 07: OFFICE OF SCIENCE (SC: ASCR, BER, BES, HEP, NP, FES, AND 

SCIENTIFIC USER FACILITIES) 

Chapter 08: ENERGY (EERE, OE, FECM, NE) 

Chapter 09: EARTHSHOTS 

Chapter 10:  NATIONAL NUCLEAR SECURITY AGENCY (NNSA) 
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07. OFFICE OF SCIENCE (SC: ASCR, BER, BES, HEP, NP, FES, 
AND SCIENTIFIC USER FACILITIES) 
The U.S. Department of Energy (DOE) Office of Science (SC) 
programs underpin the basic and applied research of DOE 
mission areas and domains across the complex. The 
Advanced Scientific Computing Research (ASCR) program 
supports the SC and broader DOE science, energy, and 
security mission areas through basic research in computer 
science, applied mathematics, distributed systems, and 
computational sciences. SC’s Biological and Environmental 
Research (BER) program supports transformative science 
and scientific user facilities to achieve a predictive 
understanding of complex biological, earth, and 
environmental systems necessary to ensure U.S. leadership 
in energy, infrastructure, science, and security. SC's Basic 
Energy Sciences (BES) pursues scientific research to lay the 
foundations for new energy technologies through discovery 
and to uncover new physics and phenomena spanning a 
wide range of materials and chemical processes that will 
drive innovation in areas such as energy resources, 
production, conversion, transmission, storage, efficiency, 
waste mitigation, quantum science, and microelectronics. Its 
High Energy Physics (HEP) programs aim to discover the 
ultimate constituents of matter and uncover the nature of 
space and time. The underlying theory and associated 
experiments in the three HEP frontiers—cosmic, energy, and 
intensity—cover science at all scales, from the smallest to the 
very largest [1]. The SC Nuclear Physics (NP) program aims 
to discover, explore, and understand all forms of nuclear 
matter. Nuclear physicists create, detect, and describe the 
different forms and complexities of nuclear matter that can 
exist in the universe, thereby better understanding the 
building blocks of the smallest nanostructures to the largest 
stars. SC’s Fusion Energy Science (FES) program focuses 
on the scientific and technological innovations necessary to 
enable a unique U.S. vision for economically attractive fusion 
energy, with the goal of a fusion pilot plant by the 2040s [2]. 
Magnetic confinement fusion (tokamak) reactors are a major 
focus area within this effort. 

DOE SC also supports a portfolio of 28 scientific user 
facilities supporting an international community of tens of 
thousands of researchers from DOE laboratories, 
universities, and industry across all of the SC scientific 
programs. These facilities range from light sources and 
accelerators to field laboratories, from high-performance 
computing (HPC) centers to DOE’s national Energy Sciences 
Network (ESnet). Experimental scientific user facilities enable 
exquisite characterization, synthesis, and simulations (theory) 
of a very wide variety of materials and devices, allowing new 
understandings of underpinning mechanisms and spawning 
new advances in biology, materials science, physics, and 

chemistry. Fundamentally, major open opportunities exist 
both in increasing the efficiency of the synthesis-
characterization-understanding workflow (via autonomous 
control and design of experiments) at user facilities, as well 
as in developing new algorithms and methods to improve 
solving of inverse problems relating structure to functionality. 
A fundamental “grand challenge” for the DOE Scientific User 
Facilities lies in how to best utilize these theory, computation, 
synthesis, and characterization facilities to solve specific 
problems in the most efficient and comprehensive manner 
possible. Today, only individual researchers address this 
challenge by making such judgements based on 
combinations of experience, cost of each experiment, and 
perceived utility. AI-based methods to optimize this workflow 
could transform the process with respect to critical measures 
including time-to-solution and reductions in cost. 

Finally, we note that the pervasive nature of ASCR research 
in the context of artificial intelligence (AI) is reflected 
throughout this report, notably in Section 01: AI Approaches 
and Section 03: Technological Crosscuts, and thus is 
covered only briefly in this chapter. 

7.1 Open Opportunities 
Each of the SC programs described above has active 
research applying and advancing AI/machine learning (ML) 
methods while developing strategies to harness the emerging 
capabilities outlined throughout Section 01 of this report. This 
work and planning reveal opportunities across the SC 
programs, relying heavily on ASCR.  

PROJECT SPOTLIGHT 
Project Name: Reinventing coherent imaging data 
inversion 

PI: Mathew Cherukara 

Organizations Involved: Argonne National Laboratory, 
Advanced Photon Source 

Goal: Use AI@Edge to enable real-time ptychography. 

Significant Accomplishment: An AI model (PtychoNN) 
allowed us to realize speeds that were 100x faster and 
required 25x less data than used in classical 
approaches. 

In the News: Cherukara, M. J., Zhou, T., Nashed, Y., 
Enfedaque, P., Hexemer, A., Harder, R. J., and 
Holt, M. V., 2020. “AI-enabled high-resolution scanning 
coherent diffraction imaging,” Applied Physics 
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Two opportunities illustrate the potential for AI approaches to 
make advances. The first is to enable understanding of new 
materials, and the second is to transform scientific user 
facilities. 

 The development of general-purpose, AI-powered 
simulation tools could boost our capability to simulate 
materials and processes with high fidelity and 
spanning multiple orders of magnitude in spatial and 
temporal scales. These tools could greatly expand our 
fundamental understanding of the behavior and dynamics 
of materials and complex biological systems over larger 
timescales, something that is critical in a wide range of 
domains, from the development of better energy storage 
materials to the exploration of complex quantum materials, 
to the development of the next generation of 
microelectronic devices. AI can play three critical roles in 
the development of a next generation of simulation tools 
through: (1) the acceleration of computations using 
surrogate models; (2) the ability to generalize to new 
systems not encountered before; and (3) the development 
of intelligent systems capable of adopting the best set of 
conditions, parameters, and components for simulations, 
digital twins, and experiments. Two examples are the 
development of digital twins (discussed in detail in 
Chapter 04) that capture the full life cycle of a material, and 
the development of AI-powered universal atomic potentials 
for atomistic simulations that are 1,000 times faster than 
non-AI methods while retaining first-principle molecular 
dynamics precision. 

 Significant opportunity exists for AI to transform 
facilities such as the Facility for Rare Isotope Beams 
(FRIB), Jefferson Laboratory (JLab), the Deep 
Underground Neutrino Experiment (DUNE), and ton-
scale detectors for neutrinoless double beta decay. 
This ranges from operations—AI-based control of 
accelerators and detectors—through experimental design, 
to enabling more autonomous discovery. Accelerator 
science and engineering provide the foundation for these 
facilities and underlie discovery in other sciences, including 
medicine and technology. Development of digital twins of 
emergent accelerator technology and capabilities is 
occurring at increasingly high-fidelity levels. This advance 
provides an opportunity to pursue inverse design strategies 
(see Chapter 03) for enhancing today’s facilities and 
optimizing the building blocks of the facilities of the future. 

The opportunities we outline in the following section are 
organized in terms of the six AI approaches detailed in 
Section 01 of this report. 

7.1.1 AI SURROGATE AND FOUNDATION MODELS 
FOR SCIENTIFIC COMPUTING 
The development of hybrid models that use a combination of 
traditional numerical prediction approaches and data-driven 
architectures will enable new capabilities in nearly every 

domain, including observationally informed components 
directly coupled into modeling frameworks. Furthermore, 
hybrid models will be well suited to new leadership class 
computing with mixes of central processing units (CPUs), 
graphical processing units (GPUs), and new architectures.  

One example is DOE’s flagship Earth system model (E3SM), 
which is designed to answer questions regarding climate 
impacts on food, water, and energy security at global scales, 
E3SM typically requires significant computational resources 
and time that sponsors are often unwilling or unable to 
support. Replacing sub-models in E3SM with much faster AI 
surrogates could reduce computational requirements and 
help enable E3SM’s adoption as the primary tool for 
answering questions of climate impacts. 

A second example is nuclear physics. At all energy levels, 
nuclear theory has increased its use of high-performance 
computing [3]. AI-based surrogates provide opportunities 
both to accelerate the numerical routines underlying these 
advanced calculations as well as to provide training data for 
downstream uses.  

AI-based models represent a significant new opportunity to 
harness the large volumes of complex data that are costly to 
create, process, and manage, e.g., using foundation models 
(See Chapter 02) to create open and connected knowledge 
graphs. Trained on HPC systems, these models could also 
result in inference capabilities capable of running on 
embedded processors to enhance data collection through AI 
“at the edge.” BER, for instance, has invested significantly in 
measurement facilities (e.g., Atmospheric Radiation 
Measurement [ARM] facility and Environmental Molecular 
Sciences Laboratory [EMSL]) and field data collection 
(e.g., Next Generation Ecosystem Experiments). Building AI 
into sensors (edge computing) enables targeted data 
collection and preprocessing that reduces data volumes while 
simultaneously targeting the ideal measurements for specific 
science questions.  

These opportunities apply not only to existing observation 
systems but also to the design of new facilities and 
instruments. BER recently initiated the design and creation of 
three Urban Integrated Field Laboratories (U-IFLs). These 
U-IFLs in Chicago, Baltimore, and Texas represent 
opportunities in the application of AI to urban science, for 
instance, employing surrogate models to build rapid-running 
regional climate models that will enable urban planners to 
evaluate many potential interventions in addressing climate 
change impact on urban communities. Such a surrogate 
model could potentially lead to the use of an urban climate-
specific foundation model trained on the diverse and 
extensive volumes of data spanning regional weather and 
climate models through remote-sensed land surface 
temperature to traffic movement and socioeconomic and 
demographic data.  
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The tight coupling of experimentation with AI/ML models 
could also provide effective guidance in the bioengineering 
process to produce renewable bioproducts. Next steps 
include the development of integrated and explainable AI-
driven models of complex biological systems that encompass 
all omics, structural, phenomic, and environmental layers of 
information. Finally, combining mechanistic and machine 
learning models will increase the accuracy of both 
approaches. 

There is also an opportunity for AI, and Surrogate models in 
particular, to revolutionize the nuclear data pipeline, wherein 
data are compiled, evaluated, processed, and validated for 
end-user applications [9]. The existing pipeline is the result of 
human-intensive efforts; AI can be used to automate this 
process as well as to improve the fidelity of the resulting data. 

7.1.2 AI FOUNDATION MODELS FOR SCIENTIFIC 
KNOWLEDGE DISCOVERY, INTEGRATION, AND 
SYNTHESIS 
There is an opportunity to build general large-scale AI models 
that can be applied to a wide range of downstream programs 
and priorities in the materials and chemistry domains 
targeting structure and property predictions. In areas such as 
natural language and image processing, the development of 
large-scale models has revolutionized the way AI is applied, 
shifting from many bespoke and task-specific models to the 
use of one large-scale model that can be refined with a small 
amount of additional data to carry out many specific tasks. 
Implementing this approach in the biology, materials, and 
chemistry domains would be transformational for BES and 
BER priorities, creating core capabilities that could be reused 
across programs and improved over time. Using the 
chemistry domain as an example, potential downstream tasks 
enabled by a single large-scale model would include 
predicting properties of complex organometallic molecules 
that could lead to the discovery of more efficient catalysts and 
better separation technologies for rare earths, greatly 
improving our understanding of actinide chemistry or 
developing better electrolytes for electrochemical and energy 
storage systems. 

7.1.3 AI FOR ADVANCED PROPERTY INFERENCE 
AND INVERSE DESIGN 
Beyond accelerating the discovery of novel materials and 
molecules, the use of foundation models for property 
inference and inverse design would deepen our fundamental 
understanding of the connection between composition, 
structure, and properties, leading to new insights that would 
otherwise be extremely difficult to “tease out” of our traditional 
research and development (R&D) approaches and modeling 
and simulation. 

Problem domains involving anomaly detection [4], fast 
surrogates [5], interpretability, uncertainty quantification (UQ) 
[6], searches and inverse problems in high-dimensional 
spaces, and AI-based control and optimization of complex 

systems (e.g., accelerators, detectors) are lively research 
areas and constitute typical open opportunities for AI in the 
near future.  

7.1.4 AI-BASED DESIGN, PREDICTION, AND 
CONTROL OF COMPLEX ENGINEERED SYSTEMS 
HEP science has a major focus on UQ [6], and the use of 
high-fidelity digital twins is already widespread and growing, 
providing examples and insight across SC programs. 

For magnetic confinement fusion (tokamak) reactor R&D, the 
use of AI to predict and control plasma states in magnetic 
fusion energy (MFE) and inertial confinement fusion (ICF) 
systems has the potential to significantly improve our ability 
to optimize fusion performance. In turn, high-fidelity plasma 
predictions could be used to design improved facilities and 
operations. With the use of AI-enhanced modeling, HPC 
systems could be leveraged as real-time assets.  

AI-driven modeling, design optimization, and diagnosis could 
also fundamentally advance capabilities for control and 
optimization of high-repetition-rate inertial fusion energy (IFE) 
facilities. Success in this area will entail the integration of AI 
capabilities across compute scales—from edge/diagnosis, 
through orchestration, to HPC, with the goal of executing at 
increasing scale, eventually up to a fusion pilot plant. 

7.1.5 AI AND ROBOTICS FOR AUTONOMOUS 
DISCOVERY 
The criticality of these new approaches for BES and BER 
applications is outlined within Chapter 05. HEP is another 
example where AI-based autonomous discovery and robotics 
capabilities are critical in that research is highly data-driven, 
with deep theoretical roots and some of the most complex 
engineered systems in the DOE complex. For instance, data 
rates and volumes in all major current and future HEP 
experiments already require heavy use of automation and are 
ripe for the exploitation of transformative AI techniques in the 
coming decade and beyond; indeed, a substantial community 
has recognized the opportunity and is working actively in this 
direction [7, 8], laying the groundwork for the necessary 
advances and new approaches outlined in Section 01 of this 
report, including the use of autonomous discovery and control 
capabilities. 

7.1.6 AI FOR PROGRAMMING AND SOFTWARE 
ENGINEERING 
Nearly every SC science program will benefit from AI-
accelerated software engineering, particularly to mitigate 
disruptions from computer architecture changes as well as to 
integrate new, AI-enabled laboratory instruments and 
facilities with computational and data infrastructure. 
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7.2 Challenges to Overcome 
The AI opportunities listed above in Subsection 7.1 highlight 
many specific challenges to be overcome; these center 
around model development (including explainable AI, 
faithfulness, validation, composability, and multi-scale), 
datasets (collecting, curating, storing, and making them 
usable for the community), and integration (with existing 
scientific facilities, instruments, and software, including issues 
of access, instrumentation, steering, interoperability, and 
adaptability). We discuss each of these below. 

7.2.1 MODEL DEVELOPMENT 
In order to advance scientific understanding, AI models must 
be grounded in the rules of nature. Multiple techniques for 
creating AI constrained by known biological and/or physical 
principles have been proposed and are discussed in 
Chapter 01; however, the field is young and needs significant 
attention. Concurrently, the “black box” nature of AI models 
confounds our ability to validate the results, hindering 
adoption. This challenge is also outlined in Chapter 12 
(Mathematics and Foundations). Nascent methods for 
interrogating internal AI states for physical relevance have 
shown promise. Investments in efforts to maintain physical 
relevance and translate what AI has learned into physical 
understanding are essential to fully unlock the potential of 
new AI models. 

Additional advances are needed in digital twins, discussed in 
Chapter 04. Increasing their faithfulness to actual systems 
will help ensure that digital twins can reliably advise and 
eventually control system operations. The wider application 
and usability of digital twins will also need to be expanded, 
ideally to the point where users and operators can virtually 
predict the operation of a planned experiment. Such 
expansion of digital twins will help enable AI-based 
autonomous discovery. 

Building and optimizing what is effectively a digital twin of the 
lifecycle of a component/process will require modeling from 
the molecular to the fully operational system. This multi-scale 
task will require significant effort in developing the models 
and coupling across the scales. Developing AI methods that 
achieve this outcome will require new approaches; and for 
these approaches, we must also create uncertainty 
quantification that works across the necessary scales and 
maturity levels. Moving from synthesis to manufacturing will 
be facilitated if the original design and synthesis are informed 
by the subsequent manufacturing processes. 

A longer-term challenge is the development of a reference 
library of production-quality AI models that can be composed 
in turn to build large foundation models. Although initial 
success has been documented applying foundation models 
to material science [10], considerable research remains to 
understand and evaluate strategies to effectively apply the 
concept of large-scale/master/foundation models to the 

materials and chemistry domains at scale. This research is 
needed in areas including the models themselves and the 
definition of the right input space, as well as the self-
supervised learning methods required to maximize the 
usefulness of unlabeled data. 

There are fundamental challenges to the adoption of any of 
the AI approaches from a validation standpoint. For many 
tasks, there is limited data (e.g., design of materials for 
controlling degradation, or predicting material behavior in 
extreme environments), and we will need to understand how 
we can maximize our ability to transfer broader knowledge 
contained within the representation of the large-scale model 
into these downstream tasks. 

7.2.2 DATASETS 
The widespread adoption of new AI methods in SC research 
and program areas will require high-quality, curated, AI-ready 
datasets; however, today in nearly every area of applied AI 
science, there is a dearth of available datasets for training 
and verification. Additionally, benchmark datasets are vital 
across SC science areas, as summarized in [11] and [12].  

The FAIR (findable, accessible, interoperable, and reusable) 
data principles are directly relevant to these data needs that 
span every AI application area. These must be applied not 
only to training data but also to the training process and the 
models themselves. Moreover, large amounts of data 
generated by experimental facilities will need careful curation, 
provenance tracking, and storage before being used to train 
the AI. Despite DOE’s leadership in traditional modeling and 
simulation resources and expertise, the necessary 
infrastructure for developing and adopting AI methods—both 
in terms of infrastructure and humans trained in data 
science—is currently lacking in the DOE complex. 

The size and complexity of HEP’s, BER’s, and other SC 
programs’ datasets are considerable; however, the migration 
from traditional modeling and simulation to training and 
expanding AI models adds new dimensions. For instance, a 
significant challenge is the availability of the data 
management and computational infrastructure needed to 
support training/inference applications at large scales. Open, 
curated experimental and observational datasets will need to 
be processed (e.g., tokenized) for use in model training and 
to be available for meaningful collaboration with the broader 
applied mathematics and data and computer science 
communities in academia, industry, and national laboratories. 
The data infrastructure requires not only the generation of 
large datasets for quick visibility, but also that the datasets 
encode sufficient meta-data to enable labeling, data 
integration, and provenance tracking for reproducibility. Here, 
open data from surrogates based on high-fidelity simulations 
will be essential for training and validating AI techniques: 
examples include simulations of detailed future detector 
designs and synthetic sky maps based on large-scale 
cosmological simulations. 
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7.2.3 INTEGRATION 
To enable autonomous workflows that can incorporate many 
levels of AI at scientific user facilities, scientific instruments 
will require abstraction layers for functions such as 
operational control, experiment configuration, and data 
routing. The resulting data flows from instruments, as well as 
their inputs (i.e., beams), need to be accessible, with analysis 
carried out in some cases with very low latency (edge 
detection), as well as for use asynchronously, such as to train 
models. 

Nuclear theory, environmental models, and other SC 
programs’ software have advanced significantly under 
programs such as ASCR’s Scientific Discovery through 
Advanced Computing (SciDAC). However, these novel 
software stacks have been developed within the context of 
traditional simulation and modeling, and consequently are 
typically not AI-ready. For example, additional work will be 
needed to ensure that codes are endowed with the automatic 
differentiation and uncertainty quantification capabilities 
necessary to accelerate AI-based development. Many of the 
advanced computing code bases have been developed in 
relative isolation. A focus on software interoperability 
throughout the SC community would significantly benefit AI 
efforts for the creation of surrogates, inverse design, etc. 

Facility operation and control systems, whether for nuclear 
physics, environmental observations, or infrastructure such 
as ESnet, are highly complex. Current optimization and 
control efforts have focused on individual components, 
typically tuning a small number of parameters based on fast 
diagnostics. Coupling multiple components, and tuning their 
interplay, will require greater interoperability throughout a 
facility’s systems. Furthermore, these systems will evolve 
over time, and hence training data will be equally dynamic. 
Advances are needed to provide additional machine-ready 
hooks for AI methods to diagnose changes and react 
accordingly. 

From the theory and computation perspective, many forms of 
computation for autonomous steering of user facilities will 
require developing and deploying rapid decision-making 
algorithms, as well as addressing issues related to task 
scheduling under resource constraints as detailed above (in 
this “Integration” subsection), as well as in Chapter 13. 

In fusion energy, the U.S. is rather “experimental facilities 
poor”; and the facility time and access necessary for AI 
innovation and exploration will exacerbate the need for such 
infrastructure, as well as for AI-ready instrumentation that can 
interface with the broader AI ecosystem. The integration of 
automation with AI/ML computational techniques will also 
require deeper collaborative efforts across domains and 
scales, such as in BER to bring together biological research, 
data science, computer science, and engineering. 

7.2.4 GENERAL 
Traditionally, scientists are trained either in AI-related 
disciplines (math, computer science, etc.) or domain-specific 
disciplines (e.g., biology, chemistry, physics, earth science, 
etc.). SC programs have increasingly encountered the need 
for expertise in both AI-related and domain-specific fields to 
fully leverage AI. Communication and education between AI 
and other domain experts are thus of utmost importance and 
can be encouraged through funding calls requiring co-
participation and workshops aimed at bridging this gap. Here, 
the DOE national laboratories have a long history of 
collaboration among domain-specific disciplines and 
mathematics, computer science, and computational science. 
This unique DOE strength will be instrumental in fostering 
collaborations related to AI and domain-specific disciplines 
and facilities. 

Another significant challenge becomes apparent when 
reviewing the many science programs, where traditionally 
independent vertical approaches come at the expense of 
fragmentation. The magnitude of intellectual and resource 
investment needed to move from traditional modeling and 
simulation to the use of AI models and methods will demand 
new approaches to collaboration, with much larger scientific 
teams spanning SC domain and ASCR programs and user 
facilities. 

7.3 Investment Needed for 
Achievement 
In order to realize the many exciting scientific opportunities 
outlined herein, investments are essential to address the 
challenges described above—effectively representing a 
roadmap for ASCR co-design with other SC offices. We 
organize investment needs around (1) AI methods and 
datasets, (2) self-driving laboratories, and (3) critical 
partnerships. Each subsection contains bulleted descriptions 
of the programs needed to fully harness the potential for AI 
across SC. 

7.3.1 AI METHODS AND DATASETS 
Necessary AI methods and datasets include the following 
examples:  

 Better data acquisition, curation, and utilization. Designing 
and training AI capabilities in FES will require massive 
amounts of data. From large ensemble simulations to AI-
ready instrumentation of facilities, data acquisition and its 
curation require an immediate effort to understand the 
requirements unique to FES, as well as a sustained 
investment in preparing AI-ready instrumentation and 
simulation workflows to acquire, curate, and distribute the 
needed data to the communities most capable of driving AI 
innovation. 
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 Increasing the number and fidelity of digital twins for 
nuclear physics instruments, experiments, and facilities. 

 Advancing current computational software to be AI-ready 
through differentiable and probabilistic programming. 

 Expanding natural language processing efforts to extract 
semantics from documents pertaining to nuclear data.  

 An Environmental AI Data Library: Creating curated and 
easily accessible (application programming interface [API]) 
datasets for training, etc., such as on global storms to 
bacteria and beyond.  

 Coupled with datasets, creating data proximate compute 
and notebook-based workflows that incorporate ways to 
increase the FAIR-ness of AI analyses. 

7.3.2 SELF-DRIVING LABORATORIES 
Necessary components for self-driving laboratories include 
the following:  

 Environmental AI testbeds at the edge. Edge computing 
nodes connected with simple and advanced sensors at 
DOE labs and facilities—such as ARM and EMSL—
allowing AI research with active and configurable sensors 
to test new ideas alongside baseline measurements. Such 
testbeds would be a BER version of self-assembling 
laboratories. Next-level investments could be made in 
mobile autonomous data collection, including an 
unmanned aerial vehicle (UAV) facility for adaptive sensing 
of the atmosphere, Earth system, and biosphere.  

 Self-driving labs that couple robotics for automated 
experiments and data collection [13], with AI systems that 
use these data to recommend follow-up experiments. 

 Digital infrastructure as well as edge computing fabric to 
enable integration, such as to drive interactive, AI-driven 
experiments at facilities and remote locations.  

 Abstractions to enable experimental theory-coupled 
workflows to be fully defined in a coding language. These 
abstractions should enable the automation of specific tasks 
in synthesis and characterization instruments. 

 The need to invest in cross-disciplinary research, including 
the need for facilities (such as autonomous laboratories) to 
explore, validate, and test approaches. 

7.3.3 CRITICAL PARTNERSHIPS 
Necessary critical partnerships include the following:  

 Increased engagement in facilities (U.S. and international). 
As AI methods improve in providing sophisticated control 
and fault prevention, integration of these new methods and 
their validation will require a vibrant ecosystem of pilot 
facilities, and the continued involvement of the FES 
community with international collaborations (e.g., ITER). 
Co-design both with material science efforts and public-

private partners will also be required to establish an AI-
driven U.S. pilot plant and energy dominance in 10 years. 

 Centers for co-design. Institutes where domain scientists 
are partnered with AI experts to attack a distinct and well-
defined science question. Chosen by application (such as 
a user facility), principal investigators (PIs) would begin 
with an intensive three-month (nominally) engagement in 
person and an extended, less intensive engagement for 
over a year. The outcomes should be tools, datasets, and 
publications. In addition, materials studies should focus on 
the how, thus aiding in the reproducibility and reusability of 
techniques. 

 Continued close partnership between SC domain programs 
and ASCR. Investments in theory and computation are vital 
to the continued development of complex validated 
models, from data acquisition and curation to 
improvements to modeling capabilities. A continued close 
partnership is needed between FES and the advanced 
computing community to ensure that new methods in real-
time control, UQ, and AI surrogates are used to improve 
the material, design, and control system of FES facilities 
(including pilot plants). 

 An essential requirement is a data and compute 
infrastructure that has the flexibility to support both large 
individual projects and many exploratory forays. 
Substantial investment will be needed to establish a 
number of joint programs (across ASCR and HEP) to build 
up and maintain curated datasets. These datasets will 
include supporting software that allows for data 
interpretation and reduction and thus ingestion by an AI 
model. An organized investment plan for software 
development and sustainability (Exascale Computing 
Project [ECP]/SciDAC-like focused programs) targeted to 
specific opportunities and challenges mentioned above will 
need to be developed. At least some fraction of this 
investment will need to be made at the facilities to manage 
specific issues for the HEP community, such as the 
diversity of AI platforms. 

 The benefits of diversity, equity, and inclusion (DEI) across 
SC programs are clear in terms of the quality and breadth 
of data, ideas, and strategies. Concurrently, a focus on 
environmental justice recognizes that the brunt of impacts 
from challenges such as climate change and energy 
security is disproportionately borne by these communities. 
The importance of these programs to DOE’s continued 
scientific leadership and service to the nation is detailed in 
Chapter 16. 
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08. ENERGY (EERE, OE, FECM, NE) 
To function, modern society is critically dependent on large, 
networked, engineered, complex energy systems—some of 
which were outlined in Chapter 04. Such systems have 
scales ranging from individual buildings and facilities 
(e.g., power plants) to districts and metropolitan areas, to 
regional and continental (and combinations of these). They 
are designed to support society—for the environments where 
people live and work; for transport of commodities such as 
electric power, natural gas, oil, hydrogen, water, etc.; and for 
transport of goods and people using highways, public transit, 
rail, etc.  

The importance, scale, and complexity of these challenges 
are reflected through the work of multiple U.S. Department of 
Energy (DOE) offices and programs. The Office of Energy 
Efficiency and Renewable Energy (EERE) is working to build 
a clean energy economy that benefits all Americans, with 
programs including energy efficiency, renewable energy, and 
sustainable transportation. The Office of Electricity (OE) 
works with industry and other stakeholders to ensure that the 
Nation’s electricity delivery system is secure and resilient to 
disruptions. The Office of Fossil Energy and Carbon 
Management (FECM) focuses on minimizing the 
environmental impact of fossil fuels while working towards 
net-zero emissions, with programs encompassing carbon 
capture, management, transport, and storage as well a 
critical minerals carbon dioxide removal, carbon conversion, 
and methane mitigation. The Office of Nuclear Energy (NE) 
advances nuclear energy science and technology through 
innovation in continued operation of existing U.S. nuclear 
reactors, deployment of advanced nuclear reactors, 
development of advanced nuclear fuel cycles, and 
maintaining U.S. leadership in nuclear energy technology. 

Unfortunately, disruptions to energy supply are becoming 
more frequent and serious, driven by factors such as: (1) an 
energy system that is becoming more complex, 
interdependent, and less stable with the addition of 
renewable and co-generation sources; (2) more intense and 
more frequent extreme weather events; and (3) inadequacies 
in tools (extensions, monitoring, and control) for managing 
these systems. The status quo has led to poor and costly 
decision making, wasted resources, slow recovery from 
interruptions, suboptimal planning decisions, and 
susceptibility to catastrophic disturbances and cascading 
failures. Indeed, each year yields new cycles of reactive 
reports highlighting challenges and lessons learned—
underscoring the fact that better planning, improved 
predictions, and enhanced response could have significantly 
improved the outcomes that were experienced. Two recent 
and notable examples are Hurricane Sandy in November 
2012 and the February 2021 “arctic blast” that disrupted 

power throughout Texas [1]. Regarding the former, the North 
American Electric Reliability Corporation’s (NERC’s) 
Hurricane Sandy Event Analysis Report remarked that many 
entities had challenges with system control, both during the 
storm and during restoration, balancing loss of load with loss 
of generation, all of which may have contributed to the sizes 
and lengths of power outages that affected populations 
experienced. At the storm’s peak, 8.35 million customers 
were without power, some of whom were without power for a 
month [2]. 

Such situations are exacerbated by the increasing 
interconnectivity within our energy infrastructure (e.g., natural 
gas and electricity systems) as well as with other 
infrastructure systems, such as communication and 

PROJECT SPOTLIGHT 
Project Name: Automated and scalable active ensemble 
machine learning frameworks for rapid optimization of 
product design and manufacturing processes 

PI: Pinaki Pal 

Organizations Involved: Argonne National Laboratory; 
Parallel Works, Inc.; Convergent Science, Inc.; Aramco 
Americas 

Goal: Develop automated and end-to-end workflows 
coupling active machine learning (ML) and simulations 
for rapid optimization of product design and 
manufacturing processes.  

Significant Accomplishment: Argonne National 
Laboratory developed, demonstrated, and 
commercialized (through adoption by industry partner 
Parallel Works, Inc.) a unique ML-genetic algorithm (ML-
GA) software technology that integrates ML-based 
ensemble surrogate models and active learning within an 
adaptive, automated, portable, and scalable framework 
to accelerate virtual design optimization campaigns by 
an order of magnitude (from months to days over current 
industrial state-of-the-art approaches). 

In the News: Awards include the 2021 R&D 100 Award 
(Software/Services category) and 2021 HPCwire 
Readers’ Choice Award for Best Use of High 
Performance Data Analytics & AI. Also: O. Owoyele, 
P. Pal, A. V. Torreira, D. Probst, M. Shaxted, M. Wilde, 
and P. K. Senecal, 2022. “Application of an automated 
machine learning-genetic algorithm (AutoML-GA) to 
engine design optimization based on computational fluid 
dynamics simulations,” International Journal of Engine 
Research, Vol. 23 (9), pp. 1586–1601. 
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transportation, and the expansion of new infrastructure 
systems such as those that support electric vehicles and the 
emerging hydrogen economy to improve the nation’s energy 
independence. These factors point to the need for artificial 
intelligence (AI) systems that proactively predict, mitigate, 
and prevent extreme scenarios that are experienced today, 
and future scenarios that will emerge as the nation’s future 
energy system evolves. For example, as the nation’s 
transportation electrifies, how can AI for the grid plan and 
respond to an increased need for charging during extreme 
events that require evacuation? 

Moving beyond the structure and complexity of integrated 
networked systems, the individual technologies and materials 
that are required to produce, store, and deliver energy each 
present unique challenges as they must meet simultaneous 
requirements for reliability, cost, resilience, and sustainability. 
Examples include new materials to increase efficiencies in 
solar photovoltaics, sensors for monitoring the health of 
energy components, power electronics, new materials for 
energy storage, new fuels, and materials for harsh 
environments such as those inside nuclear reactors. 
Developing new materials and technologies is currently costly 
and time consuming, with limited guarantees that investments 
will yield the desired payoffs. 

Here, advances in biotechnologies would provide alternative, 
sustainable fuels for transportation requirements that are 
difficult to achieve with electricity (aviation, heavy freight, etc.) 
[3]. Advances in storage technologies, such as battery 
materials, would reduce the cost of utility-scale storage to a 
level where these technologies would become an attractive 
alternative to fast-ramping fossil fuel generators required to 
manage variability in renewable energy resources. And 
finally, new advances in manufacturing processes and supply 
chains would support rapid and efficient deployment of 
technologies as they become available. In all these 
examples, the application of new AI methods will enable 
researchers to examine extremely large, complex, and 
multivariate problems in ways not possible today, catalyzing 
new discoveries in materials and manufacturing that are 
necessary for transformational energy technologies. 

Within the U.S. Department of Energy (DOE) applied energy 
offices—its Office of Energy Efficiency and Renewable 
Energy (EERE), Office of Electricity (OE), Office of Fossil 
Energy and Carbon Management (FECM), and Office of 
Nuclear Energy (NE)—there are significant programs that are 
seeking to address each of these factors and dimensions—
both individually and in combination—by leveraging AI and 
related technologies.  

 EERE programs have long sought to utilize AI systems to 
improve predictive models for energy output from variable 
and uncertain renewable energy sources, such as wind 
and solar, to support reliable, resilient, and extensive 
adoption of clean energy solutions. AI approaches have 
also been used to assist in efficient and grid-responsive 

operation of buildings. EERE/Advanced Manufacturing 
Office (AMO) is championing next-generation (“beyond 
CMOS” – that is, complementary metal oxide 
semiconductor) microelectronics to support energy-efficient 
processing and control of energy generation and transport 
systems by exploring AI-enhanced co-design of new 
electronic devices, components, and computing systems. 
Likewise, there is significant emphasis within the DOE-
Vehicle Technologies Office (VTO) and DOE-AMO 
programs to leverage AI/machine learning (ML)-based 
surrogate models and algorithms (see Chapter 01) for 
rapid, high-dimensional design optimization of novel fuel-
engine systems and manufacturing processes, 
respectively. Finally, EERE/Bioenergy Technologies Office 
(BETO) has funded the pioneering use of AI and ML to 
enable biodesign of cells for renewable biomanufacturing 
in the form of the Agile BioFoundry (ABF) [4]. 

 OE initiatives, such as the Smart Grid, Microgrid R&D, 
Advanced Grid Modeling, Transmission Reliability, and 
Energy Storage programs, have sought to leverage AI to 
construct predictive tools that anticipate when extreme 
weather will induce grid disruptions, with the objective of 
utilizing such predictions to improve operator response and 
thus limit the impact of such disruptions. This effort 
involves enhancing grid resilience to enable 
decarbonization while simultaneously enabling resilience to 
extreme events. Here, AI is used to analyze data from 
multi-domain (e.g., gas, electric, and wind) infrastructure to 
understand interdependencies across infrastructure assets 
and to minimize the impact of extreme events on the grid. 
AI is also being used to help improve the observability of 
the electric grid, particularly in the context of limited data 
sources or missing data. OE’s initiatives also depend on 
predictive, high-reliability electronic hardware to improve 
the resiliency of the grid, where AI-enhanced co-design 
has driven developments in next-generation grid hardware 
infrastructure [5]. 

 FECM programs—such as the Science-informed Machine 
Learning for Accelerating Real-Time Decisions in Carbon 
Storage Applications (SMART-CS) project—seek to 
dramatically reduce the climate impact of fossil-fuels-based 
generation by harnessing AI to enable efficient, stable, and 
effective management of subsurface reservoirs for secure 
carbon storage. Within FECM’s Advanced Turbines 
Program, efforts are underway to enable 100% hydrogen-
fueled gas turbine engines for decarbonization of the 
stationary power generation sector. However, these energy 
systems are prone to catastrophic failure from rare 
combustion events (such as flashback, thermoacoustic 
instabilities, etc.). Consequently, the development and 
deployment of AI systems, such as surrogate models 
described in Chapter 01, are sought for automated 
discovery/assessment of causalities behind these rare 
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events and for developing predictive control strategies to 
prevent their occurrence.  

 NE is seeking to develop new and advanced reactor 
designs; design, selection, and manufacturing of materials 
for nuclear systems; and flexible controls to manage the 
overall lifecycle of nuclear power technologies. AI-based 
capabilities throughout these activities have the potential to 
lower capital costs, reduce ongoing operations and 
maintenance costs, allow nuclear energy to meet 
emergency needs for energy (e.g., electric power after 
extreme events), and balance the requirements of clean 
energy policies. Of particular importance is the 
development of “digital twins” (virtual models of operating 
nuclear power systems, structures, and components), as 
detailed in Chapter 04, that reflect the real-time system 
state and may be applied toward developing solutions for 
the challenges, ranging from real-time controls to long-term 
planning, as discussed elsewhere in this chapter. 

While not exhaustive, these examples spanning DOE’s 
applied energy office programs highlight the complex 
interplay between the nation’s interconnected and 
interdependent energy systems. Figure 8-1 illustrates the 
inherent complexity that crosscuts the applied energy offices. 

The figure highlights how decisions and disruptions within 
any one of these systems have the potential to influence, and 
in the case of disruptions, cascade through other systems, 
causing catastrophic events where recovery can take days or 
weeks and at significant economic cost [1]. 

AI capabilities such as those detailed in Section 01 of this 
report are becoming an increasingly attractive solution for 
managing the complexity in modeling, predicting, operating, 
controlling, and planning these systems [6], both in isolation 
and from a system-of-systems perspective characterized by 
the dynamics of their interconnections and 
interdependencies. Below we identify some of the major open 
challenges in energy that are central to DOE’s applied energy 
missions in the offices of EERE, OE, FE, and NE. We focus 
on those challenges where expected advances in 
foundational and crosscutting AI capabilities—beyond what a 
single office can support—will play a critical role in providing 
solutions to these challenges. 

8.1 Open Opportunities 
One of the core opportunities for AI systems in the energy 
domain is to support the modernization of the nation’s 
integrated energy delivery system to simultaneously achieve 

 
Figure 8-1. The complex interdependencies of the electric power grid, gas, oil, transportation, and communication, and emerging 
energy sources such as hydrogen, that complicate modeling, predicting, and controlling energy systems. 
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affordability, carbon neutrality, reliability, and resilience to 
extreme (both natural and intentional) events beyond what 
today’s system can achieve. A second opportunity is to not 
only maintain but to exceed today’s expectations of energy 
reliability and low energy costs [7]. Moreover, AI can play an 
important role in ensuring energy equity and environmental 
justice through the optimization of new technologies and 
operations. To achieve these opportunities several key AI-
enabled capabilities are required, including: 

 AI-Enabled Design of Control Systems. Control theory 
has a long history of contributing to and impacting the 
operations of energy systems. AI presents new 
opportunities to form the backbone of next-generation 
control for seamlessly integrating heterogenous sensor 
platforms. These platforms would operate at varying 
timescales to ultimately yield self-composing and 
self-healing control that adaptively incorporates new 
devices, reconfigures itself during adverse conditions, and 
can recommend what devices and sensors are needed to 
improve performance. Such an AI control system 
approach, detailed in Chapter 04, also holds the potential 
to improve the reliability and resilience of modern energy 
systems through self-healing, distributed, and potentially 
multiscale control that leverages compute capabilities at 
the edge. 

 Trustworthy Decision-Making under Uncertainty. 
Energy systems represent a high-consequence 
environment where the impacts of failure or inaction are 
potentially significant in terms of economics, loss-of-life, 
etc. AI systems as described in Section 01 have the 
potential to improve our ability to provide fundamentally 
robust and theoretically sound decisions for operating, 
planning, and maintaining energy systems, accounting for 
inherent uncertainties and being resilient to bad, missing, 
and adversarial data. Such AI capabilities, among the 
common requirements for systems described throughout 
Section 01, would allow energy systems to robustly handle 
high penetrations of variable and uncertain renewable 
energy and to secure energy systems from malicious 
actors. 

 Materials to Components Co-design. Achieving 
decarbonization goals will require innovations that scale 
from components to integrated systems. Often, innovations 
in next-generation materials do not translate into functional 
components due to limitations in environmental, 
operational, and other requirements. When exploring the 
space of material designs, AI systems such as property 
inference and inverse design, discussed in Chapter 03, will 
support the discovery and evaluation of novel materials 
through co-design methods that account for system-level 
requirements (such as grid integration, operational 
reliability, lifecycle durability, etc.). Such frameworks will 
accelerate the development of technologies and materials 
for higher-efficiency solar photovoltaics with higher power 

density; component-level, in-situ sensors for monitoring 
operational health and observability; high-efficiency power 
electronics for converters and inverters; hybrid 
manufacturing of conventional and additive approaches for 
components; and harsh-environment electronics [8]. 

 Load Forecasting and State Estimation. An important 
objective of equitable energy infrastructure is its openness: 
the ability for the end user to have significant autonomy in 
how and when they use it. The entities responsible for load 
balancing and stability must be able to forecast the load 
mix and estimate the state of the system at places with low 
visibility. While the steady-state response is quite 
accurately forecasted, the dynamical one is far behind. 
This challenge will be exacerbated by increased 
fluctuations in voltage, amplitude, and frequency 
associated with the growing adoption of renewable 
generation, and by increasing privacy and security 
concerns. AI models—such as foundation models 
discussed in Chapter 02—that are trained using multimodal 
data, including anonymized smart infrastructure data, 
public infrastructure deployment records, existing 
infrastructure signatures, and new sources such as social 
media data, have the potential to provide unprecedented 
fidelity in load estimation. This capability will reduce 
average interruption times, improve situational awareness, 
and significantly improve reliability. 

 Federation and Privacy. In the operation of energy 
infrastructure, data access remains a major concern, 
driven by the multi-stakeholder nature of energy 
infrastructure and data and concerns about security, 
privacy, and market integrity. One promising approach is to 
develop distributed, federated AI-based mechanisms that 
guarantee a high level of privacy and that approach or, 
ideally, exceed the performance of centralized data 
analysis systems.  

Meeting these opportunities will allow the nation to reduce, if 
not eliminate, climate impacts induced by energy production, 
transport, and consumption, while potentially saving billions 
of dollars in outage costs.1  

8.2 Challenges to Overcome 
The adoption of AI capabilities in energy systems to harness 
these opportunities will require addressing the following 
challenges: 

 Scalable Computation. The combinatorial control and 
design space of energy systems is impossible to explore 
with current techniques, and the interconnected systems 

________________________________ 
1 For example, it is estimated that the 2003 power blackout that 

originated in Ohio and spread across much of the Northeast cost 
$10 billion [9]. More recently, the South-Central United States cold 
weather outage in 2021, which had impacts spreading between the 
natural gas and electric power systems, had economic impacts 
estimated to be as high as $130 billion in Texas [10]. 
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result in large-scale coupled systems that are 
computationally intractable and too complex to fit into 
existing combinatorial optimization modeling and solution 
tools. Thus, AI systems will need to overcome these and 
other fundamental scaling challenges for energy control 
and prediction as outlined in Chapter 01 regarding 
surrogate models. 

 Validation and Verification of AI Methods. Because of 
the high consequences of energy systems failure, new AI 
approaches, models, and tools will require formal validation 
and verification (V&V) of correctness throughout the life 
cycle of data and associated model development. These 
challenges are discussed in detail in each of the chapters 
in Section 01 as well as in Chapter 12, Mathematics and 
Foundations. 

 Uncertainty-Aware Robust AI Systems. For AI to provide 
solutions in the energy domain, an AI system is required to 
make provably robust inferences and recommendations 
locally (e.g., at the edge of or within a subsystem of an 
energy system) and globally (e.g., centralized operations), 
with human-understandable explanations for why the AI 
makes the decisions it does. Moreover, the AI must 
account for and characterize the uncertainties in 
measurement data and forecasts when making decisions 
and to certify that it is resilient to interference (natural or 
adversarial). This is a requirement across decision 
applications in energy systems, ranging from control 
systems for power grids with mixes of centrally dispatched 
generators, locally controlled distributed energy resources 
(DERs), as well as control systems for operating pipeline 
systems (natural gas, petroleum, carbon dioxide [CO2], 
hydrogen, etc.), handing uncertainty in renewable 
generation sources, and optimizing the operation of 
sophisticated reactors. As with V&V, uncertainty, 
explainability, robustness, and related requirements are 
discussed throughout Section 01 regarding capabilities and 
in Chapter 12: Mathematics and Foundations. 

 Adaptative and Self-Configuring AI Systems. Integrated 
energy systems are evolving systems with increasingly 
large numbers of sensors and devices being added over 
time. Sensors and other devices have controllable 
phenomenology that occur at the multiple timescales of 
decision-making in energy systems—ranging from sub-
second frequency control to decadal capital investments. 
Thus, for AI systems to provide planning, optimization, and 
control solutions to energy, they must respond quickly 
enough to match the scales of the phenomena, have an 
implicit understanding of the domain (e.g., physics-
informed constraints), and ultimately become self-
composing optimization and control systems that adapt to 
the changing conditions, environment, and configurations 
of an energy system over appropriate timescales. Chapter 
04 discusses these factors at length. 

 Data Sensitivity and Curation. AI methods require large 
amounts of labeled, curated data to be effective. Although 
energy system sensor arrays generate large volumes of 
data, there is misalignment between the input data 
required by typical AI models and the data that energy 
systems can provide. First, energy data are not typically 
well labeled nor centrally collected, requiring that AI 
methods work with partially structured data collected and 
stored in an accessible platform. Research in foundation 
models (Chapter 02) suggests the potential for emergent 
capabilities in large-scale models with respect to self-
supervised learning from large, unstructured, and multi-
model data sources. Second, energy data often have 
protection requirements that limit how widely they can be 
disseminated, presenting AI challenges including 
anonymizing data and developing federated or shareable 
AI models that are non-invertible (e.g., they cannot be used 
to recover the information that was used to develop the 
AI model). Third, energy data includes measurements with 
high degrees of uncertainty and incompleteness, with 
missing data for significant periods. Similarly, these data 
may or may not include low-frequency, high-consequence 
events, increasing the potential for misinterpretation of 
phenomena that are absent in the training data. 

8.3 Investment Needed for 
Achievement 
Investments in AI capabilities applied to energy challenges 
provide long-term as well as immediate benefits. For 
example, AI capabilities such as those in surrogate 
(Chapter 01) and foundation (Chapter 02) models provide the 
opportunity for a paradigm shift away from traditional 
optimization solutions that, while trusted, are inadequate for 
today’s (and certainly future) energy systems. The 
interpretation of simulations on the scale of the electric grid is 
difficult, and even more challenging for integrated energy 
systems with sector coupling, but AI systems such as inverse 
design models (Chapter 03) and digital twins (Chapter 04) 
can provide system designs and operational capabilities that 
improve the ability of decision-makers, policy-makers, and 
stakeholders to identify relationships that are non-intuitive, 
opaque to human observation, or beyond the view of 
traditional solutions such as correlation techniques. 

At present, humans build system models that they can 
intuitively understand, which are thus limited in size, scope, 
and complexity and in the questions that they can address. 
The development of AI surrogates (Chapter 02), in turn 
enabling digital twins (Chapter 04), is one immediate path 
toward accelerating and scaling the modeling and simulation 
development of energy systems, concurrently reducing 
reliance on specialized subject matter experts. Finally, 
investments for AI capabilities to support real-time decision 
and control (Chapter 06) could target replacing more complex 
simulation models. Here, the discussion of surrogates in 
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Chapter 02 is an appealing approach, as it is targeted on 
surrogates for the complex physics and dynamic phenomena 
of energy transport over networks. Further, investments are 
needed to create explainable and interpretable methods and 
surrogates for interconnected energy system that integrate 
streaming, multi-modal, and multi-fidelity data. These AI 
systems can act as closure models that integrate and 
transform the inherently multi-modal data of energy systems 
into new models. 

Over the long term, several investments will be essential. 
First, there is the need for investing in AI for intelligent and 
composable control systems (Chapter 06). Key investment 
areas include in the ability to continuously adapt to changing 
and increasing numbers of sensors that generate information 
at different time intervals as well as in AI to support decision-
making that occurs quickly enough for the temporal scales of 
the phenomenology of the energy system under control. 
Moreover, such control is inherently constrained by legacy 
systems that must be combined with more modern 

technologies. The investments need to leverage the compute 
power emerging at the edge of energy systems (e.g., with 
intelligent sensors that can both process data and actuate 
controls without the hundreds of millisecond data propagation 
and processing delays involved in centralized control 
systems), with the result being AI-enabled, distributed 
monitoring and operations. The long-term goal of this 
investment is self-composing AI control systems. 

Second, there is a need for AI investments in trustworthy 
decision-making under uncertainty. This is inherently critical 
for provably robust decision making, providing both intuitive, 
human-interpretable, investment-grade explanations and 
resilience to adversarial attacks. Associated development of 
metrics for quantifying trust in an AI model, including AI 

explainability, are also centrally important. Together, these 
developments are necessary to provide quantitative and 
qualitative means to certify AI model trustworthiness, as 
necessary for operational adoption. The investments noted 
elsewhere in this report (including Chapters 01, 02, 06, and 
12) for trustworthy and interpretable AI are directly connected 
to this recommendation. 

Third, there is a need for investments in AI for harnessing the 
vast and fragmented landscape of energy-systems-data. 
Efforts of identifying, acquiring, securing, curating, and 
contextualizing (encoding, compressing, and representing) 
the massive, multi-modal, heterogeneous, and rapidly 
growing data from energy systems spanning orders of 
timescales together constitute a computational science 
challenge that requires significant advances in the state of 
the practice. 

Finally, the diversity in terms of timescales for the design, 
implementation, and operation of energy systems confounds 
the development of holistic, integrated design capabilities. 
For example, investments in energy systems are made at the 
scale of decades, whereas geothermal storage needs to be 
charged seasonally and daily, solar and wind energy need to 
account for days of scarce energy harvesting, and grid-
responsive buildings—the consumers and prosumers in such 
integrated energy systems—need to manage loads at 
timescales of hours to minutes and seconds. Simply put, 
investments in developing AI capabilities across multiple 
scales of time and space is a computational and scientific 
challenge that requires focused research investment and 
demands new approaches and capabilities, particularly as 
described throughout Sections 01 and 03 of this report. 
Figure 8-2 illustrates how operational timescales (sub-
second) interact with decadal decisions. 

 
Figure 8-2. Examples of decision-making timescales for electric power systems that is inspired by the report [11]. 
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09. EARTHSHOTS 
The U.S. Department of Energy (DOE) has created Energy 
Earthshots™ initiatives to drive research activities needed to 
achieve its 2050 net-zero carbon goal [1]. As of September 
2022, there are six Energy Earthshots: Hydrogen, Long 
Duration Storage, Carbon Negative, Enhanced Geothermal, 
Floating Offshore Wind, and Industrial Heat (Table 9-1). A 
common thread throughout the Energy Earthshots is that they 
require the development of novel complex engineering 
systems, comprising complex components ranging from 
electrolyzers to flow batteries to gas turbine engines to 
floating wind turbines. General capabilities to design and 
develop complex engineered systems across different 
domain application areas are therefore critical for success of 
each of DOE’s Energy Earthshots. 

New technologies present new challenges for established 
system engineering practices and design tools. When the 
complexity of a new system design exceeds capabilities of 
existing tools, developers need to fall back to excessive 
hardware testing, which leads to massive cost overruns and 
missed deadlines. Perhaps the best-known example is from 
the defense domain, where complex engineered systems are 
also common. The F-35 Joint Strike Fighter, a complex 
mobile weapons system, was delivered three years behind 
schedule and roughly $200 billion (nearly 100%) over budget 
[2]. Similar experiences (albeit at smaller scale) have 
occurred with virtually every new transformative technology 
development. The success of Energy Earthshots will depend 
on the availability of design and rapid prototyping tools that 
can handle designs of such complexity. 

As global competition increases, other nations are improving 
system design capabilities. China, for example, 
commissioned its advanced Shadong aircraft carrier only six 
years after its construction began [3]. In comparison, the 
newest U.S. aircraft carrier, USS Gerald Ford, was 
commissioned 8 years after the start of construction [4]. This 
demonstrates that the Chinese military-industrial complex has 
made significant strides in closing the competitive gap with 
our nation in terms of building capability to develop extremely 
complex systems over the last decades. Capability to design 

complex engineering systems rapidly and at a low cost will be 
critical for meeting DOE carbon targets, as well as for the 
United States to maintain its leadership in new technology 
development. 

Each Energy Earthshot has a well-defined cost target and 
deadline (Table 9-1), and each involves developing new or 
scaling up existing technologies. In order to meet Energy 
Earthshot objectives: 

 new energy systems need to be designed and built within 
the specified Earthshot timelines; 

Table 9-1 Summary of DOE Energy Earthshots and their targets. Source: Energy Earthshots Initiative [1]. 

 

PROJECT SPOTLIGHT 
Project Name: ExaSGD: Stochastic grid dynamics at 
exascale 

PI: Christopher Oehmen 

Organizations Involved: Pacific Northwest National 
Laboratory, Oak Ridge National Laboratory, Lawrence 
Livermore National Laboratory, Argonne National 
Laboratory, National Renewable Energy Laboratory 

Goal: Deliver capability to optimize transmission grid 
economic dispatch with respect to a large number of 
possible contingencies and different stochastic weather 
scenarios to enable grid planning with large number of 
renewable resources as a critical analysis capability 
needed for grid decarbonization. 

Significant Accomplishment: Developed mathematical 
methods and implemented them in a software stack that 
performs economic dispatch analyses for transmission 
grid planning and operation at unprecedented scales 
(100,000s scenarios for a U.S. size grid), with our 
software stack also serving as a platform for deployment 
of different AI methods to further aid grid planning and 
operation. 

In the News: Maintaining the Nations Power Grid by 
Exascale Computing, by Lawrence Bernard, 25 August 
2022, https://www.exascaleproject.org/maintaining-the-

 

https://www.exascaleproject.org/maintaining-the-nations-power-grid-with-exascale-computing/
https://www.exascaleproject.org/maintaining-the-nations-power-grid-with-exascale-computing/
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 new energy systems need to perform efficiently to help 
meet the Earthshot cost targets; and 

 development costs of new energy systems and 
technologies need to be amortized during the system’s 
lifecycle without exceeding the Earthshot cost targets. 

Effective system design is therefore essential for success of 
all Energy Earthshots and artificial intelligence (AI) 
capabilities such as those detailed in Section 01 of this report 
that represent key enabling technologies. 

The design process for complex energy systems, such as 
electrolyzers or flow batteries, typically follows a V-Model [5] 
(Figure 9-1). This approach begins with a concept design 
from which system requirements are derived, followed by 
design details of specific system controls and components. At 
each design stage, models of increasing fidelities and for 
different types of analyses must be produced. Once all 
system and component requirements are specified and 
verified in simulations, the system prototype is built up 
through several stages, starting from individual components 
and working all the way up to overall system integration. At 
each prototype building stage, physical parts of the system 
are tested through hardware-in-the-loop (HIL) simulations. In 
HIL simulations, physics-based models are connected with 
real-time data streams from the actual hardware. Massive 
amounts of high-quality data are generated during hardware 
testing stages. However, today, that data is typically used 
only for rudimentary model calibration and validation. There is 
a great opportunity to use this data for more advanced 
learning methods to develop, train, and deploy AI models to 
improve the system design workflow. 

Because the vast majority of product development costs are 
in the hardware testing stages, reducing their number and 
duration is critical for meeting Energy Earthshots cost targets. 
This is especially true in later hardware testing stages 
(subsystem- and system-level), which are significantly more 
expensive than the early component-level testing. 

The “digital twin” paradigm (Chapter 04) is closely related to 
the V-Model for system design. Originally the digital twin was 
meant to be a construct that captured/represented the 
performance and degradation of a component or system over 
its service life. Over time, the concept has been extended into 
the design realm where there is not yet a physical system. 

Although the term digital twin is not firmly defined [6], the 
most common use is to describe a hierarchical set of models 
that provides desired system representation at each stage of 
the product design as well as during the product development 
and operational lifecycle. 

The digital twin is designed and constructed concurrently with 
the physical system prototype and is used at each design 
stage of the V-model (Table 9-1). In many instances, a digital 
twin is integrated within the final product (e.g., for automated 
controls, health monitoring, and fault prediction) [7]. A digital 
twin often implies a certain level of automation. It is not 
merely a collection of models but rather a virtual object that 
seamlessly provides the system representation at any 
desired fidelity level and for any analysis. Typically, a digital 
twin also includes learning and adaptation capabilities, 
updating its overall and component models based on test 
data during the HIL simulations or from the system sensor 
data collected as the system operates. 

With increased accessibility and advances in AI capabilities 
such as surrogate (Chapter 01) and foundation (Chapter 02), 
and inverse design (Chapter 03) models, there are more 
opportunities to equip digital twins with advanced AI. 

9.1 Open Opportunities 
9.1.1 FIVE- TO 10-YEAR TIME FRAME 
Several opportunities to take advantage of AI in complex 
system engineering can be leveraged in the short to medium 
term (five to 10 years). These opportunities present 
themselves at different levels, from model and system design 
to AI-human partnership, including the design of control 
systems embedded in the complex systems and their 
operation. Acting upon these opportunities will enable DOE to 
meet Energy Earthshots cost targets. 

Models and Systems Design. Advances in AI, notably 
surrogate, foundation, and inverse design models 
(Chapters 01, 02, and 03), open significant new opportunities 
to fundamentally change how complex engineering systems 
are designed and to take advantage of the massive amounts 
of data generated in the design and operation process. 
Design data is of high quality because it is generated in a 
strictly controlled lab environment and is typically obtained in 

 
Figure 9-1 Typical system design workflow following the V-Model. 
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tests far from the operating point (stress tests) where a 
number of different modes are excited and nonlinear effects 
are dominant. With such a wealth of data, machine learning 
(ML) techniques can be devised to verify accuracy of physics-
based component models within the digital twin and to 
automatically find corrections to those models when needed. 
AI models can be further used to automatically rerun a 
sequence of design computations with the updated digital 
twin to obtain corrected component and system requirements 
feeding back to improvements in hardware tests. This level of 
automation would represent a massive improvement over the 
current state of the art. Presently, re-running virtual system 
design stages requires significant manual intervention and is 
typically expensive and error prone. 

Control Systems Software Design and Robustness. 
Embedded software systems must be developed, tested, and 
optimized alongside the physical systems to control their 
behavior. The same system design opportunities described 
above for the physical components and subsystems apply to 
control systems, along with capabilities such as AI-enabled 
software engineering (Chapter 06). Combined, these 
techniques have the potential to revolutionize the reliability 
and resilience of the complex systems central to the Energy 
Earthshots. Developing, testing, and continuously optimizing 
embedded software in control devices are as critical to these 
complex systems as the hardware and subsystem design 
processes described above. Engineered systems today have 
millions of lines of code embedded in their control devices. AI 
techniques including autonomous discovery (Chapter 05) and 
inverse design (Chapter 03), can be used to generate stress 
tests for software-in-the-loop simulations during the virtual 
testing stages, identify software bugs, and suggest fixes to 
programmers. During hardware/software system testing 
stages, AI models can be used to learn control response 
and communication latencies within and among subsystems. 
These are factors not captured in today’s physics-based 
models. 

Operation and Optimization of Complex Systems. AI 
techniques such as those enabling digital twins can also 
make operational systems more robust and resilient to 
disruptions. The same digital twin used for system design and 
test, deployed on a commissioned product, will provide on-
board health diagnostic, prognostic, and supervisory control. 
Here, the digital twin can be a reduced-order model, e.g., 
obtained using AI/ML techniques guided by physical insights 
into the system. AI models deployed within these systems, 
such as on-board sensors and controllers that include “edge 
AI” (Chapter 15) hardware processing, can adapt to different 
usage patterns or operating environment conditions and 
modify control strategies. This will also allow for prototype 
digital twins that can be used for demonstrations and 
feasibility/cost studies, training of operator and maintenance 
crews, enabling one generation of complex system to “jump 
start” the next. Indeed, the AI capabilities described 

throughout this report, from surrogate models to digital twins 
to edge AI sensors and controllers, represent underlying 
technologies, methods, and systems that can be deployed in 
multiple Energy Earthshots. This will be important to realize 
economies of scale, and will be accelerated through the 
development of a set of tools that can be used by AI/ML 
engineers, ideally with domain expertise. 

Data. Data collected from a fleet of commissioned products 
can be used for a variety of purposes. They can model 
uncertainties in the product’s operating environment and 
update the control logic over the entire fleet accordingly. In 
turn, learning from this data can improve predictions in design 
computations and reveal modifications to make in future 
products. With years of accumulated fleet data, aging effects 
on the product performance could be modeled. Moreover, 
this growing, multi-modal data corpus holds promise for the 
development of foundation models (Chapter 02) that improve 
quality and reduce the development time and costs for new 
complex systems. To that end, AI methods in workflows 
(Chapter 13) and data management (Chapter 14) are 
required to support the capabilities described above and the 
collection, curation, and evaluation of data used for model 
training and optimization. 

Human-AI Partnership. As designers, scientists, and system 
operators interact with AI design and control systems, digital 
twins, and similar capabilities, each human interaction 
provides data representing the opportunity for the AI systems 
to learn the interests and objectives behind human 
interventions in the system. Whether these are operational 
controls or design changes, AI systems can provide 
computational support (e.g., decision support, including 
suggested actions) to aid the human cognition during the 
process. For this cooperative learning loop to function 
optimally, both the human and the AI system need to 
“understand” each other. This will require advances in natural 
language processing, which is already a rapidly improving 
capability (Chapter 02), as well as in explainability. Many 
decisions relating to critical infrastructure require 
explainability and if the AI “box” remains closed to the human, 
the human may not reasonably trust the AI design 
suggestions that they receive. AI and robotics capabilities are 
already showing promise of automating laboratory workflows, 
including those integrating computational models 
(Chapter 05). These emerging capabilities will provide both 
insights and basic building blocks for AI and robotic 
capabilities interacting with system designers and operators. 

9.1.2 10- TO 20-YEAR TIME FRAME 
Automated Design. The long-term objective of AI for Energy 
Earthshots is to have fully automated system design 
processes, which will allow for rapid prototyping of new 
energy technologies and dramatically reduce product 
development costs across different domain areas. This will 
demand AI capabilities and advances, such as those outlined 
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in Sections 01 and 03, to deliver a level of automation where 
domain experts provide a concept design and objectives, with 
all subsequent design stages (including requirements 
propagation) created by the AI system. Such an AI system 
should provide implementation options and associated 
evaluations and recommendations from which domain 
experts could choose. Once the best implementation 
candidate is selected, the AI system would orchestrate the 
hardware tests, collect data, and make design adjustments 
as needed. This process could be integrated with additive 
manufacturing so that component prototypes are 3D-printed 
on site (Chapter 05). This would also enable rapid hardware 
prototype adjustments based on the hardware testing results. 
Such fully automated design and prototyping process will 
strengthen and extend the nation’s global leadership in new 
technology development. 

9.2 Challenges to Overcome 
Models and Systems Design. Data-driven and physics-
based approaches typically have been investigated and 
applied in different contexts, but there has been relatively 
little crosscutting research across the two areas. That has 
hindered the adoption of data-driven methods in system 
design applications. Physics-based approaches have been 
and will likely remain in the foundation of system design, as 
they give predictions that can be interpreted in terms of 
domain science. Furthermore, physics-based methods 
provide a way to verify operational constraints, thereby 
minimizing security and safety design constraints with high 
levels of certainty. On the other hand, data-driven 
approaches are more effective in quantifying design 
variations, such as epistemic uncertainties or stochastic 
processes in the operating environment. Ideal modeling and 
analysis strategy for system design lies at the intersection of 
data-driven and physics-based approaches. Deployment of 
AI at the scale where it will deliver transformational changes 
to system design requires significant new research of novel 
“hybrid” methods that learn and make decisions based on 
acquired data. At the same time, these methods will need to 
strictly enforce laws of physics, security, and safety 
constraints. Advances in the development of AI-based 
surrogate models (Chapter 01), such as physics-informed 
and reduced-order models, will be essential to closing 
this gap. 

Control Systems Software Design and Robustness. The 
state of the art for control system design is limited by 
numerical analysis methods used to model and simulate 
complex engineering systems, which in turn affects the ability 
to deploy more advanced methods, including AI, at scale. A 
typical complex system model consists of three parts: 
(i) differential-algebraic equations (DAEs) describing physical 
components, (ii) a finite state machine (FSM) describing 
control logic (which is implemented in the embedded 
software), and (iii) a Petri net model of communication 

between system components. There are significant numerical 
and computational challenges for scaling up each of these 
computations to the size required for the deployment of 
advanced AI models. Instead of scaling up the computation, a 
typical approach in industry today is to reduce the fidelity of 
systems’ physical components models. By doing so, one is 
able to simulate a more complex system without significantly 
increasing the complexity of the model. This means that the 
simulation does not exceed capabilities of the existing tools. 
However, such models are often too coarse to take 
advantage of and incorporate fine resolution effects that can 
be captured by machine learning. 

Operation and Optimization of Complex Systems. 
Complex systems relevant to Energy Earthshots have strict 
security and safety operational requirements. These 
requirements are challenging to enforce when using deep 
neural network (DNN) surrogate models, which appear as 
black boxes and whose behavior cannot always be 
interpreted in terms of physics. Using DNN surrogate models 
for components typically leads to high-dimensional system 
models with strong nonlinearities [8]. This makes system 
analyses (e.g., uncertainty quantification, adjoint sensitivity 
analysis, and constrained optimization) computationally 
challenging and beyond capabilities of standard system 
design tools and embedded devices used today. In model 
predictive control, for example, computing uncertainty 
propagation through DNN component models may be 
extremely challenging to perform within real time operation 
requirements.  

Lack of physical intuition and computational complexity of 
DNN surrogates also raises questions about how to optimize 
systems, validate controls, and ensure that security and 
safety constraints are enforced. It is particularly challenging 
to understand limits of applicability for DNN models in system 
optimization. Are the models learned for one system 
configuration still valid after system parameters are 
optimized? Significant new research in physics-informed ML 
methods is needed to answer these questions. 

Data. While hardware testing generates large amounts of 
data, many industries have limited capability to take full 
advantage of it due to lack of scalable data acquisition and 
management infrastructure. At present, most of the hardware 
testing data is analyzed directly by engineers. Therefore, the 
amount of data used is limited by how much data a human 
engineering team can process. The supporting infrastructure 
is built accordingly. To be able to deploy AI analysis, one 
needs to build an entire supporting ecosystem (also 
discussed throughout Sections 01 and 03 of this report). 

This will bring new challenges, such as how to label acquired 
data for subsequent processing. There is a large number of 
configuration and environment parameters that specify a 
single hardware test. Furthermore, data entries with different 
labels are connected through laws of physics that need to be 
preserved throughout the analysis. There are also inherent 
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aleatoric (irreducible) uncertainties in hardware testing 
processes that need to be quantified and factored in the 
system design properly. 

Since system design involves multiple stakeholders, including 
multiple suppliers, there are proprietary and intellectual 
property issues associated with data and that need to be 
considered as well. For example, most component suppliers 
explicitly prohibit reverse engineering of their products. There 
is a risk that some learning methods deployed at hardware 
testing stages may be interpreted as a reverse engineering of 
system components provided by suppliers. There needs to be 
an organizational framework for complex systems design 
specifying how the intellectual property of each stakeholder 
will be protected and who has ownership and access to 
which data. 

Human-AI Partnership. While large amounts of data are 
generated during hardware testing, a relatively small fraction 
of that data is collected and used today. The current 
bottleneck is the ability of system designers to process large 
quantities of data in a timely and cost-effective way. How to 
process large amounts of data to give engineers actionable 
information and help them navigate complex design spaces is 
still an open challenge. Here, the interaction among humans 
and AI systems is also critical, requiring research in human 
factors and in AI interaction mechanisms to interpret human 
input with consideration to context and intent.  

Automated Design. Realizing the goal of automated designs 
requires that most, if not all, of the challenges presented (as 
they relate to shorter term opportunities) be addressed. There 
are also further challenges specific to automated designs. 
Currently, the system design process is fragmented, utilizing 
different and often incompatible design tools at different 
stages. The majority of these tools are proprietary, closed 
source, and have limited ability to interface with other tools. 
The lack of interoperability and limited data exchange 
capability with these existing tools poses serious challenges 
when deploying new methods and automating an established 
system design process. Developing AI approaches to 
improve and fully automate system design workflows will also 
require access to suppliers’ databases and the ability to 
process and learn from historical data from various sources. 
Finally, the concept of fully automated complex system 
design can itself be posed as an AI problem with a massive 
number of parameters. What makes this problem particularly 
challenging is that couplings between components are 
extremely complex, with changes to one component 
potentially cascading through the entire system.  

9.3 Investment Needed for 
Achievement 
The main investment needed is in AI methods, frameworks, 
and models that can learn from hardware tests, interpret 
results in terms of physics, and update system design to 

meet (or exceed) Energy Earthshots targets. New methods 
also need to strictly enforce security and safety constraints. 

To support Energy Earthshots, DOE also needs to invest in 
the development of generic components for system design 
relevant to each Energy Earthshot. Such investments will 
help standardize modeling practices across different 
modeling areas, especially since some components 
(e.g., power conversion or thermal management devices) are 
part of almost all energy systems relevant for the Energy 
Earthshots. Below, we describe some key investments that 
will create needed capabilities for multiple Energy Earthshots. 

Models and Systems Design. Development of component 
models for system design computations typically makes up 
most of the modeling and software development costs during 
the system design. Component models are often tailored to 
specific numerical simulation schemes used in the design 
computations. While these models capture correct physics, 
their scope of application in terms of different analyses is 
narrow. In the context of digital twins, system components 
are not modeled by a single model but by a hierarchical set of 
models that capture the same physics, but which are adapted 
for different stages of product design. Modeling data for 
systems such as electrolyzers or flow batteries are neither 
easily accessible nor provided in a form suitable for 
mathematical analysis due to various proprietary and/or 
practical issues. DOE needs to invest in creating libraries of 
hierarchical generic component models for complex energy 
systems (with complete sets of their mathematical equations 
and modeling parameters available) to support and 
incentivize research related to Energy Earthshots. Investment 
by DOE’s Advanced Research Projects Agency–Energy 
(ARPA-E) in creating generic transmission grid models [9] 
has spurred a flurry of research activities related to power 
grids. This success should be replicated for other energy 
systems as well in order for Energy Earthshots to be 
successful. 

Furthermore, component models for digital twins need to 
support updates and modifications from different learning 
techniques. This poses nontrivial mathematical problems that 
have not been addressed completely thus far. There are also 
many challenges with data for creating surrogate models 
required by digital twins. 

Control Systems Software Design and Robustness. To 
harness the power of AI for controls and embedded software 
design, there needs to be scalable modeling and simulation 
infrastructure, which can support multiscale hybrid models 
comprising both continuous and discrete dynamics 
components. Such a framework must allow dynamic analysis, 
obtain analytic derivatives for simulation and optimization, 
and enable code generation for real-time application with 
guaranteed solvability, execution time and memory footprint. 
This class of framework is needed to incorporate surrogate 
models for control systems obtained through ML from 
hardware testing data. Multimethod numerical integration 
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frameworks [10] have been proven effective for multiscale 
problems cast in terms of ordinary and partial differential 
equations. However, the theory is not fully developed for 
DAEs, which are typically used to model complex engineering 
systems. Having hybrid simulations that capture continuous 
dynamics and discrete events and scale to large systems is 
still an open research topic and requires significant new 
investment.  

Operation and Optimization of Complex Systems. Using 
AI to learn from observation data to optimize system 
performance and, at the same time, strictly enforce system 
security and safety operational constraints is of critical 
importance for the success of Energy Earthshots. 
Furthermore, in order for engineers to make sound design 
decisions, it is of utmost importance that AI analysis results 
are explainable. Delivering this capability requires significant 
new investment in physics-informed AI methods. Early results 
in this area combining physics-based modeling with data-
driven learning are very encouraging [11, 12]. Preliminary 
numerical investigation shows that adding physical 
constraints can dramatically increase the data-driven model’s 
accuracy in turbulent flows [13]. 

To address well-known limitations in data-driven modeling 
(e.g., sensitivity to noise in input data or lack of 
explainability), a targeted investment is needed to develop a 
symbiotic physics-data-driven modeling framework in which 
data is parsimoniously used to model only missing 
information in well-tested mathematical methodologies and 
improve their physical fidelity and numerical accuracy. This 
paradigm shift from “data-driven modeling” to “data-driven 
correction” is essential for efficient system design. It will allow 
for both reducing epistemic uncertainties in the digital twin by 
leveraging hardware testing data and for modeling aleatoric 
(irreducible) uncertainties accurately based on field operation 
data. This will provide basis for efficient uncertainty 
propagation models in the digital twin that can be used in real 
time for model predictive control during system operation. 
More importantly, accurately modeling deterministic and 
stochastic processes in the system enables engineers to 
strictly enforce security and safety constraints within the 
context of stochastic optimization.  

Data. The precondition for deployment of AI at scale to 
system design processes is the development of appropriate 
data acquisition, management, and storage infrastructure 
(Chapter 14). This work requires additional, new research 
into optimal approaches and mechanisms to label data 
samples from inherently multi-modal and multi-scale sources, 
ranging from sensors to AI models to operational settings and 
outputs. Moreover, the development of AI models that can 
evaluate and analyze these data streams is critical for 
establishing (and discovering) proper correlations between 
them, given that each sample is associated with a large 
number of configuration parameters and environment sensor 
readings. In addition to data science research, significant new 

investment is needed to create an adequate software 
ecosystem, develop open-source middleware, standardize 
application programming interfaces, and specify data transfer 
protocols (Chapters 11 and 13). 

Human-AI Partnership. Integrating AI into existing human-
centric processes requires the development of new AI 
methods that will enable deeper interactions than those 
associated with a purely assistive role. The AI methods must 
understand the goals as well as the processes. Therefore, 
investment is needed in AI algorithms that embrace human 
incremental formalism. This will enable the human to absorb 
the AI into their cognitive process and allow for gradual 
construction of the product design stages, beginning with the 
initial concept design supplied by the human. The AI models 
should consult the human for expert feedback and the human 
should consult the AI for suggestions or assistance. 
Eventually, AI methods should be able to design simple 
processes with input from humans; then, humans would 
score the performance of the AI. Such an AI system would 
demonstrate the co-learning relationship between the human 
and the AI and gradually build more robust human-robot 
interactions. These human-AI partnership methods can 
ultimately help to achieve the concept of self-driving facilities.  

Automated Design. Following the concept design, the 
subsequent design stages involve a lot of routine work, such 
as requirements propagation or model updates, that can be 
automated. Each subsequent design stage also generates 
large amounts of new data that need to be processed and fed 
back to prior design stages for design reevaluation. The 
decision-making process when moving from one design 
stage to the next is often influenced by the ability of human 
actors to process newly generated and often quite 
heterogeneous data, as well as ability to re-run prior design 
stages with the new data fed back in. Investment is needed in 
AI methods that automate this iterative system design 
workflow, starting from a concept design as the input and 
then automatically generating subsequent design stages 
while giving engineers several options to choose from at each 
stage. The automated design should be integrated with 
databases of different materials, components, and system 
designs to automatically identify best matches for the concept 
at hand and optimize its implementation for cost and 
performance. Further investment should be made in 
algorithms that can make more aggressive departures from 
previous designs in order to explore broader segments of the 
design space. The AI models also need to incorporate 
learning from hardware tests, interpret results in terms of 
physics, and update system design to meet (or exceed) 
Energy Earthshots targets. New methods must also ensure 
that security and safety constraints in each proposed design 
are satisfied and verifiable. Finally, investment is needed to 
support an effort to create AI models capable of orchestrating 
co-dependent activities in the design process and interfacing 
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with additive manufacturing facilities to create component 
model prototypes on site. 
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10. NATIONAL NUCLEAR SECURITY ADMINISTRATION (NNSA) 
The goal of bringing artificial intelligence (AI) systems into the 
National Nuclear Security Administration (NNSA) mission 
space is to dramatically reduce the time to execute across 
multiple mission programs, including stockpile stewardship, 
production and modernization, and nuclear nonproliferation.  

Prior to this report and the 2022 DOE AI for Science, Energy, 
and Security workshops, there have been strategic planning 
meetings within the NNSA Office of Defense Programs (DP)’s 
Advanced Simulation and Computing (ASC) program, which 
provided a significant baseline informing this report. With the 
potential for AI and machine learning (ML) to create 
efficiencies in the nuclear deterrence (ND) lifecycle, the ASC 
program launched its tri-lab1 Advanced Machine Learning 
(AML) initiative in FY 2019 with the objective of accelerating 
the ND design cycle and improving stockpile surveillance 
through advanced data analytics and by using AI/ML 
techniques. 

This chapter presents five exemplar problems that are drawn 
from stockpile stewardship and nonproliferation mission 
spaces, with connections to some NNSA experimental 
facilities as well. These exemplars align with the goals 
outlined in the forthcoming ASC AI for Nuclear Deterrence 
(AI4ND) Strategy Plan, which will address AI technology 
needs for full weapon lifecycle - spanning discovery, design 
optimization, manufacturing and certification, and deployment 
and surveillance (DDMD) lifecycle phases, as well the 
detection, location, and characterization of proliferation 
activities.  

Within this chapter, sections 10.2.1 through 10.2.4 provide 
grand challenges and goals for the role of AI within the ASC 
AI4ND strategy, and section 10.2.5 illustrates a grand 
challenge related to the nonproliferation work. Within the 
stockpile stewardship examples, there are multiple thrusts of 
the AI4ND strategy that seek to accelerate the time to deliver 
on lifecycle management. As a most aggressive goal, AI 
systems could potentially help to support reducing the time to 
manufacture a first production unit (FPU) from more than a 
decade to a much shorter timeframe. 

10.1 Open Opportunities 
Building upon AML, the ASC program aims to advance high-
performance simulation capabilities with AI/ML-enabled tools 
to solve current and emerging national security challenges. 

 
1  The three participating laboratories are Lawrence Livermore 

National Laboratory, Los Alamos National Laboratory, and Sandia 
National Laboratories. 
 
 

Integration of AI/ML techniques offers the promise of: 
(1) bringing simulations in line with experimental reality; 
(2) gleaning insight from the vast troves of multimodal data 
across the NNSA mission space; (3) identifying rare or 
anomalous events; and (4) helping to identify, model, and 
characterize systematic uncertainty. Because of these 
opportunities and current NNSA investments in AML and 
exascale computing, NNSA DP is formulating a strategy that 
makes use of AI/ML across the entire nuclear weapons 
lifecycle. The ASC AI4ND strategy is an opportunity for 
NNSA to enhance scientific and technology leadership 
globally and execute dramatic and sweeping changes in the 
stewardship mission that aim to drastically reduce the time-
to-solution across the full DDMD weapon lifecycle.  

Enabled through the new AI approaches detailed in 
Section 01 of this report by the ASC AML initiative and by 
exascale computing, the strategy consists of new capabilities 
in the following lifecycle areas (Figure 10-1): 

 Discovery: Discover new materials that are vital to 
national security priorities such as stockpile modernization. 
This effort would involve, for example, development of new 

 
 
 
 
 

PROJECT SPOTLIGHT 
Project Name: Machine learning of interatomic potentials 
with applications to materials aging 

PI: Kipton Barros and Benjamin Nebgen 

Organizations Involved: Los Alamos National 
Laboratory 

Goal: Use an ensemble of neural networks to learn 
interatomic potentials from fine-scale simulations to 
accelerate larger simulations of shock and aging in 
mission-relevant materials, where the AI system 
continuously improves itself by testing its ability to make 
predictions in order to learn which new training 
simulations to run. 

Significant Accomplishment: We have developed 
several interatomic potentials for bulk metals and have 
made significant progress on modeling, where our large-
scale active learning framework runs effectively on the 
Sierra HPC system and uses GPU resources to perform 
DFT-based quantum calculations, perform ML-driven 
molecular dynamics simulations, and retrain the neural 
network potentials. 

In the News: Our flagship publication that describes our 
Sierra workflow (an active learning framework that 
couples machine learning, quantum calculations, and 
molecular dynamics) appeared in Nature. 
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polymers with designed physical properties, or high 
explosives with improved safety performance. 

 Design Exploration and Optimization: Explore major 
efficiencies in a complex design parameter space and 
optimize weapons parts and system designs for 
requirements such as manufacturability, reliability, or cost 
efficiency.  

 Manufacturing and Certification: Advance manufacturing 
efficiency and quality, comprising AI-enabled adaptive 
manufacturing controls, inspection, and qualification 
optimized in a tight loop with design and production. 

 Deployment and Surveillance: Characterize behavior 
over the full weapons system lifecycle, including the use of 
digital twins (Chapter 04) with aging effects, analysis of 
data from embedded sensors, and awareness of potential 
problems before they occur. 

10.2 Challenges to Overcome 
This section describes five foundational research and 
proposed grand challenge problems whose solution will be 
required in the next 10 years to successfully harness the 
advantages of AI/ML to transform and accelerate the pace of 
discovery and development in high-consequence NNSA 
missions. The first four, in order, map to the DDMD lifecycle, 
and the fifth maps to the non-proliferation mission: 

 10.2.1 Scientific Discovery for Areas such as: Fission, 
Fusion, and High-Energy Physics 

 10.2.2 Design Exploration and Optimization using 
Multiscale and Multiphysics Simulations 

 10.2.3 Manufacturing and Certification of Parts and System 
Parts 

 10.2.4 Deployment and Surveillance for Stewardship 
Management and Global Security 

 10.2.5 Non-Proliferation 

We note that Infrastructure grand challenges crosscut these 
grand challenges and are particularly prominent in the third 
grand challenge. 

10.2.1 SCIENTIFIC DISCOVERY: FISSION, FUSION, 
AND HIGH-ENERGY PHYSICS  
Grand Challenge: Develop an AI system that can identify 
new materials synthesis that couple unique NNSA 
requirements and enhance both performance and safety in 
extreme environments. 

Introduction. High-energy density physics (HEDP) and 
fusion physics calculations are based on various multiphysics 
codes that include, but are not limited to, radiation-
magnetohydrodynamics (radMHD) density functional theory 
(DFT) and molecular dynamics calculations. These are 
computationally expensive calculations that display low-
dimensional emergent behavior. HEDP research is also 
associated with costly experimental modalities utilizing 
multiple diagnostic measurements that are designed to test 
and calibrate existing and novel physical models. To test and 
calibrate the model, researchers have a critical need for 
methods that can construct high-fidelity, efficient surrogate 
models (Chapter 01) of the physics, identify the low-
dimensional sub-manifold structure of the modeled physics 
and the data, and finally assimilate the data with the model to 
refine and extend the estimate of the sub-manifold structure. 

 
Figure 10-1. Future investments in research, development, test, and evaluation of AI/ML within the NNSA Advanced Simulation and 
Computing (ASC) program will enable significant improvements and enhancements of discovery, design exploration, manufacturing, 
and deployment (DDMD) processes. 
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While good-quality surrogates for DFT calculations and 
ML-informed interatomic potentials are starting to emerge 
[4, 5], combining these with diagnostic data in near real time 
is a beyond-exascale challenge. 

Opportunities. Solving this grand challenge problem will 
have a major impact on our understanding of uncertainty 
quantification (UQ) as well as validation and verification of 
HEDP, inertial confinement fusion, magneto-inertial fusion, 
magnetic confined fusion, and the factors affecting stockpile 
safety and readiness. This approach could also be applied to 
a broad range of other physical problems such as climate 
physics, geophysics, and astrophysics. In particular, the use 
of AI/ML methods for magneto-inertial fusion would enable 
new designs and reduce the risk of any proposed design not 
performing, both at current scale and at future scales. Such 
methods would also enable significant improvement in 
experimental design leading to greater understanding of 
HEDP physics (hypothesis test) and reduced risk of 
experiment failure. Success in this area could lead to 
commercial fusion energy and a more reliable stockpile. 

There are numerous multiphysics codes of different fidelities 
that have been optimized to run on the exascale 
computational platforms, so that ensembles of many 
simulations (100s to 100,000s, depending on the fidelity) can 
be produced, generating sufficient training data to create AI 
surrogates (Chapter 01), inverse design (Chapter 03), and 
control system (Chapter 04) models necessary to support 
new experiment design and optimization opportunities. 
Additionally, large databases of experiments are available 
from experimental facilities with multiple high-quality 
diagnostic measurements for each experiment, spanning a 
broad range of physical regimes. Physics-informed ML 
methods that can be trained on different materials with 
generalization capabilities for different temperatures also 
show promise [1]. Finally, this grand challenge could leverage 
tools and capabilities developed for the domain areas within 
the Office of Science (Chapter 07). 

Risks. Without realizing the improvements from AI-based 
methods, the fidelity that is required for HEDP use cases 
remains beyond the reach even of exascale-class HPC 
systems. This gap means that the pace of our science 
discovery will not match that of other actors, affecting our 
national security and scientific competitiveness. Moreover, 
the continued aging of the stockpile will increase the demand 
for modeling and simulation, which is challenging even with 
exascale systems. The number of different materials, as well 
as the different physics and scenarios that need to be 
studied, represent a grand challenge that is beyond the reach 
of current conventional methods due to limitations in compute 
and the scaling of some first-principles methods. Without AI-
enabled approaches, we run the risk of critical gaps in our 
understanding all of the physical properties, at all scales of 
interest, for all materials.  

Advances in this area would enable us to use current and 
future exascale systems to solve hundreds of problems by 
harnessing the speedups of surrogates, property inference, 
etc.  

Challenges. An AI grand challenge problem is to focus on 
near-real-time workflows that enable discovery of new 
materials vital to national security priorities (Section 03: 
Technological Crosscuts discusses workflows, software 
frameworks, data infrastructure, and other factors). The AI-
assisted workflow will use data generated from sensors, 
images from cameras, and other diagnostic sources to 
enable edge analytics near the accelerators/experimental 
facilities or in the field (e.g., detecting radiological sources in 
urban areas or major ports of entry). This workflow will also 
enable inference using surrogate models at device scale or 
online learning approaches deployed in computational 
resources physically near accelerators or other experimental 
facilities. These new AI/ML-enabled workflows would not only 
improve an individual experiment but would evaluate results 
for the purposes of designing the next set of experiments and 
for retraining the surrogate models on capability-class 
computational systems using carefully chosen diagnostic 
data and generated configurations from the experimental 
data. Ensembles of 100s to 100,000s of multiphysics 
simulation runs would be performed based on AI-specified 
configurations to generate new training data, which can be 
combined with experimental data, such as from the 
Z-machine, the National Ignition Facility, DIII-D, and the 
Tokamak Fusion Test Reactor, to train surrogate 
models offline. 

10.2.2 DESIGN EXPLORATION AND 
OPTIMIZATION USING MULTISCALE AND 
MULTIPHYSICS SIMULATIONS 
Grand Challenge: Develop a master model—i.e., a 
foundation model (Chapter 02) specifically trained for a range 
of related downstream tasks—for material design or 
multiscale physics to enable weapons designs that are 
optimized for performance, ease of manufacturing, short 
qualification times, and/or specialized mission needs. 

Introduction. Enabled by increases in available computing 
power and driven by rapid developments in applied 
mathematics and computer science, the ASC program has 
demonstrated positive impact across many areas of the 
NNSA. Many aspects of the NNSA mission, including 
weapons design, production modernization, and qualification 
and certification, rely heavily on our ability to simulate 
everything from fundamental physics and material response 
under a wide range of physics regimes to full-system 
performance calculations for complex engineered systems. 
Simulation can significantly accelerate the design cycle, limit 
the need for costly or prohibited experiments, and are key to 
stockpile assessment. However, because the computational 
requirements of first-principles modeling approaches exceed 
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available HPC resources—even in the exascale regime—for 
all but the most fundamental sciences, computational models 
grapple with a trade-off between accuracy and performance. 
That is, scientists must choose the least approximate solution 
that is feasible to compute with the available resources. Fully 
resolving many important problems remains out of reach due 
to either lack of computational resources, lack of physical 
models, or lack of sufficient data to parameterize more 
accurate models. Many of the core phenomena of interest in 
weapons science span many scales in space and time, and 
often entire subfields are dedicated to understanding and 
approximating just a single scale. The corresponding 
simulations represent all smaller scales in the aggregate 
while all larger ones are effectively ignored. Consequently, 
the utility of such models is limited to exploring very specific 
questions and always carries the risk that some unresolved 
effects at scales below the resolution of the relevant 
simulation may lead to significant errors in the answers. 

One common approach is multiscale models that couple 
simulations at different scales; fine-scale, expensive models 
are restricted to the most important parts of a problem and 
other models cover larger scales with more approximate 
solutions. This type of coupling also extends to different types 
of physics, that is, connecting hydrodynamics with radiation 
transport, for example. Many of the most impactful 
simulations are assembled as a collection of different physics 
models at different scales and are carefully chosen to provide 
the most accurate overall solution given the available 
computing resources. Nevertheless, even the most 
sophisticated multiscale, multiphysics simulations remain 
many decades away from explicitly resolving all known 
physics effects, even assuming an unabated increase in 
computational power. AI-based techniques such as AI 
surrogates, foundation models, and property inference (as 
outlined in Section 01 of this report) have the potential to 
fundamentally alter this trajectory, leading to unprecedented 
capabilities in the next five years and a radical restructuring 
of computational science in general within the next decade. 
Moreover, this initiative could leverage models and 
capabilities developed in the broader context of energy 
science (Chapter 08) or as part of the effort to address the 
U.S. Department of Energy’s (DOE) Energy Earthshots 
initiative (Chapter 09). 

Opportunities. As discussed in Section 01, recent advances 
in AI/ML have given rise to scalable and efficient AI-based 
surrogate models that—once calibrated from sufficient 
training data—can replace a broad range of physics modules 
with surrogates that accelerate the computation by factors of 
1000s and beyond. Consequently, given an existing 
assembly of multiscale and/or multiphysics components, one 
can iteratively replace the most computationally expensive 
parts with AI surrogates, leading to unprecedented speedups. 
A master model could be developed that addresses the 
needs for multiple material design needs under different 

conditions. This capability would allow for the composition of 
a hybrid system based on AI using a master model (see 
Chapter 02) and multiphysics calculations, creating a 
simulation that is truly greater than the sum of its individual 
parts. This hybrid system will enable the design and 
development of true scale-bridging simulations in which even 
the largest scales are informed not only by bulk physics at the 
respective scale but via trained models that directly 
incorporate information from all finer scales. 

An AI-empowered multiscale/multiphysics framework in its 
fully developed form will enable an autonomous approach to 
accelerate any existing simulation capability in a transparent 
and easy-to-adopt manner. Given an existing modeling 
system, the new framework will target the most expensive 
components of the system and replace them with AI 
surrogates. Subsequently, a new decision point is introduced 
that, at each invocation of the submodule in question, uses 
UQ techniques to determine the trustworthiness of the trained 
model. If the inference requirements are deemed to be within 
acceptable limits based on the uncertainty calculations, an 
accelerated AI-surrogate for that model is used in place of the 
traditional (and more computationally expensive) component. 
Whenever challenging data (“out of domain” or high 
uncertainty data) are encountered, the system reverts to the 
original physics module instead of the AI surrogate. This 
challenging data augments the training dataset to iteratively 
improve the model. This approach could be applied 
continuously and recursively at all scales. Ultimately, DOE 
will be able to assemble a master model for key constituent 
physics modules that collectively enable simulation at 
unprecedented speeds with ultrafast, trusted AI models and 
thereby replace traditional strategic computing components. 
Consequently, AI-driven multiscale simulations will enable 
design, exploration, and optimization using massive 
simulation ensembles at exceptional fidelities with the 
potential to drastically accelerate the entire DDMD lifecycle.  

Risks. Much of the nation’s success in, for example, 
stockpile stewardship and the corresponding technological 
advantages, has relied on superior simulation capabilities that 
both substitute for extensive nuclear tests and enable rapid 
design. AI-based surrogates have already been 
demonstrated in key application areas such as radiation-
hardened microelectronics design and fabrication, HEDP, 
additive manufacturing, and high-energy materials. 
Consequently, it is virtually certain that capabilities like those 
described above are being developed by other actors, 
eroding the advantages of superior simulation capabilities. 
Realizing this grand challenge will cause a disruptive 
advance in simulation capabilities for whoever achieves 
operational status first. In contrast to the current state of the 
art, in which high-fidelity simulations can require months to 
complete and yet disagree with experiments in critical details, 
these new AI/ML approaches will support massive parameter 
sweeps of highly predictive simulations with enormous design 
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potential (Chapter 03). Such capabilities have potential to 
leap-frog decades of prior advantages, creating tremendous 
security and industrial benefits. It is, therefore, imperative for 
DOE to secure its leadership in this field, both to boost the 
nation’s competitiveness and to adequately judge the 
capabilities of other actors. Simply maintaining the status quo 
is a significant risk. 

A critical risk associated with surrogate-based frameworks is 
rooted in the fact that they represent a fundamentally different 
technology than existing simulations, and thus past 
performance may not predict future success. That is, 
significant advances toward any of the remaining technical 
challenges discussed below might come from otherwise 
unrelated research such as in computer vision, natural 
language processing, or any number of other application 
areas employing AI/ML. This orthogonal nature of AI 
advances in one area allowing profound impact in entirely 
different science domains opens the possibility for 
adversaries to potentially assemble a working system without 
a large lead time and, with the exponential increase in 
predictive capability provided by AI, quickly erase prior 
deficits in physics capabilities and could quickly gain an 
advantage.  

Challenges. While AI-based surrogates for some critical 
applications have been demonstrated, a full master model 
and an AI system working within or in a composable fashion 
with multiphysics simulations as described above will require 
several fundamental advances. Here, we focus on the 
specific technology needs for AI-enabled 
multiscale/multiphysics modeling identified during the 
workshops organized according to the technology crosscuts 
in Section 03 of this report. 

The first set of needs relates to the underlying theory of 
machine learning. To achieve a master model for material 
design implies the ability for reliable UQ to answer such 
questions as, “Is the current model trustworthy or does it 
require retraining?” Additionally, in order to build confidence, 
verify outputs, and explain unexpected results, the full master 
model will need to meet the requirement that researchers can 
interpret any of the models being deployed as well as their 
complex interactions. Finally, the efficiency and effectiveness 
of the approach can be significantly improved by integrating 
active learning algorithms that proactively improve models 
instead of waiting for answers to be deemed unreliable.  

The second set of needs address the changing nature of 
the overall software and system design and combines 
challenges in software, workflows, and data management. 
The AI system as outlined above implies a shift from the 
complex, modular applications used today to a more flexible, 
dynamic, and unpredictable mixture of simulations, model 
inferences, and training. We will need new software 
frameworks that can seamlessly integrate into the current 
computational ecosystem. Additionally, the composable use 
of traditional components and AI models recast otherwise 

monolithic applications as complex workflows that manage a 
variety of different components.  

Another important consequence of deeply integrating AI-
based surrogates is the need to manage the training data, 
models, and their provenance as necessary to ensure 
accountability and repeatability. There will exist a set of 
persistent and ever-evolving master models that represent 
significant investments and capabilities akin to current 
experimental databases. Maintaining a detailed record of 
what data was used to build such models, which fidelity was 
used, and which algorithms were used for training will require 
sophisticated data management across DOE sites 
and programs. This critical concept is detailed in 
Chapters 14 and 19. 

The final technical challenge will come from the changing 
need for computational hardware as the training of 
massive master models asynchronously, fast inference, and 
fast asynchronous training might become substantial 
bottlenecks. Furthermore, some theoretical advances, such 
as UQ or automatic differentiation, will benefit from and, in 
some cases, require new hardware developments 
(Chapter 15). 

10.2.3 MANUFACTURING AND CERTIFICATION 
Grand Challenge: Significantly reduce the time required to 
field new weapons systems with adaptive manufacturing and 
automated qualification and testing. 

Introduction. AI-enabled autonomous control for additive 
and advanced manufacturing would be a revolutionary 
capability for the DOE national laboratories and 
U.S. manufacturing industries. It would accelerate the design, 
build, and test phases of large-scale DOE science 
experiments (e.g., National Ignition Facility, Z-machine, Fermi 
National Accelerator, Advanced Photon Source). 
Simultaneously, production capabilities for the NNSA nuclear 
stockpile program would be accelerated, enabling 
fundamental national security objectives. Traditional custom 
design, fabrication, testing, and qualification of components 
and integration in systems often take a decade or longer. AI-
enabled digital engineering holds the promise of reducing 
these production lifecycle times by one-half or more through 
greater use of virtual design/simulate cycles on HPC 
systems, identifying the most promising candidates to reduce 
the number of build/test cycles, which are costly and time 
consuming [3].  

Challenges. We describe here a grand challenge problem 
that demonstrates key benefits of applying AI capabilities, 
including autonomy and robotics (Chapter 05), to advanced 
manufacturing from the early conceptual stages through 
deployment in certified systems. Achieving this 
transformation will significantly accelerate facility or system 
deployment, enabling associated programs to compete with 
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agility in an environment that is rapidly evolving 
technologically. This grand challenge has four components. 

The first component is the development of AI-enhanced 
manufacturing technologies where ML techniques enable 
unprecedented improvement in the timescales required for 
developing parts and components. ML would be used to 
create fast surrogate models from high-fidelity physics 
simulations (Chapter 01, and previously in section 10.2.1). 
These fast surrogate models would be incorporated into the 
manufacturing process monitoring and control system. 
Multimodal data observations of Non-Destructive Test and 
Evaluation (NDTE) sensors would produce data to 
continuously train ML models that would be used to monitor 
manufacturing of components and to certify that they already 
meet all qualification requirements—without the need for 
further time-consuming inspection (i.e., the components are 
said to be “born qualified”). 

Manufacturing processes would then be scaled up using AI 
techniques through data-driven “digital twins” (Chapter 04) 
for manufacturing entire components, assemblies, and 
ultimately the manufacturing facilities themselves. This effort 
could also leverage new AI programs in energy and 
advanced manufacturing initiatives (Chapter 08). ML models 
generated from data collected during the manufacturing 
processes will be used to understand and optimize 
performance, as well as to train surrogate models or generate 
new configurations for training data generation for surrogate 
models. An ML framework could optimize a specific design 
for functionality, performance, or a consistent and reliable 
manufacturing yield, or any combinations of these.  

Third, manufacturing technologies in this grand challenge 
would take into account NNSA needs to optimize 
components containing hazardous materials. ML would 
be used to create surrogate models from high-fidelity physics 
simulations of the materials and the manufacturing 
processes. These surrogate models would enable broad 
exploration of the design space for chemical, radiological, 
mechanical, thermal, and constitutive properties. ML methods 
would also be used to fuse these surrogate models with the 
limited experimental data from facilities such as the 
Z-machine, Lawrence Livermore National Laboratory’s 
National Ignition Facility, and the Los Alamos Neutron 
Science Center (LANSC).  

These new AI/ML technologies must span the complete 
range of NNSA manufacturing needs. The fourth component 
of this grand challenge problem is AI-enabled 
manufacturing and co-design. NNSA has unique 
manufacturing facilities that differ from industry and, as such, 
require specialized development and application of AI 
techniques. For instance, the NNSA has the only remaining 
trusted microelectronics fab for producing the NNSA’s 
strategically rad-hardened microelectronics, and this facility is 
used to create custom integrated circuits (ICs) for nuclear 
deterrence electrical systems (NDESs). A challenge for 

domains such as AI-enhanced microelectronic co-design is 
the coordination with the highly developed electronic design 
automation (EDA) industry. This ~$30 billion/year industry is 
also deploying AI/ML within its tools, though its focus is not 
necessarily on the trusted strategically rad-hard (TSRH) 
microelectronics critical to the NNSA mission. NNSA-critical 
microelectronic products are currently designed using 
commercial tools supplemented by custom NNSA 
multiphysics codes. Supporting and complementing the 
industry ecosystem progress, while furthering our unique 
needs, will necessitate deep scientific understanding of the 
foundations and vulnerabilities of this AI-enhanced approach 
as well as continued coordination with, and evaluation of, 
commercial EDA software. 

Semiconductor design and manufacturing is perhaps the 
penultimate example of process optimization: fabrication of 
CMOS chips with 100 million to more than 10 billion 
transistors of nanometer dimensions typically requires more 
than 700 individual process steps (lithography, pattern 
transfer etching, thin film deposition, planarization, cleaning, 
etc.). Each of these steps uses multiple $10 million tools 
guided via advanced metrology and statistical process 
monitoring and control. A modern fabrication may accumulate 
more than one terabyte (TB) of process data associated with 
a single wafer lot progressing through the full CMOS process 
flow (700+ steps), where this data may track minute 
variations of metal line widths, etch depths and roughness, 
film thicknesses and planarity, nanometer particulates and 
lithographic blurring. The ultra-high-volume throughputs 
(100–150 wafers/hour through each step) in modern 
fabrications can drive a rapid descent of the experience curve 
for most new products. This drives up wafer yields (fewer 
defects/errors) and enables the shipment of hundreds of 
millions of parts annually, as required to justify facility costs 
that are often in excess of $20 billion. The challenge here for 
NNSA is that the volumes required for its unique TSRH chips 
are ~100,000x smaller. Consequently, the descent of the 
experience curve is much slower and prone to setbacks due 
to manufacturing yield and qualification performance 
variability, leading to a much slower product realization than 
for commercial consumer chips. The solution here is to 
develop and employ AI/ML techniques that exploit the TBs of 
design and manufacturing data gathered during even low-
volume fabrications to “virtualize” the rapid learning cycles 
otherwise achieved in ultra high-volume consumer device 
manufacturing. This will provide game-changing benefits to 
NNSA and other low-volume national security 
microelectronics customers (e.g., U.S. Department of 
Defense), with additional potential benefit to small U.S. 
companies in the microelectronics industry that have not yet 
achieved high volume deliveries. 

Microelectronic design relies on models at multiple length and 
time scales to capture not only the theoretical performance of 
a given circuit design, but also the impact of minute variations 
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in the fabrication of the transistors, wiring, and power 
delivery, especially in the presence of extreme environments 
(e.g., temperature, radiation, and high voltage). ML may be 
used to create compact device models at multiple levels of 
fidelity, which can be used to accelerate the co-design of 
microelectronic components in NDESs. AI methods may also 
be used to model and alter integrated circuit fabrication 
parameters to meet evolving design specifications, including 
the extreme environment performance not covered in 
commercial electronics. Design and fabrication of new, 
cognitively aware, and cyber-secure microelectronic devices 
could be enabled using ML techniques that evolve 
microelectronic design with anticipated hostile environments. 
Similarly, AI methods may be used to enhance acceptance 
criteria, the inspection process, and material use at PF-4 or 
additive manufacturing tooling at the production agencies. 
In-situ monitoring with AI-aided analysis is expected to 
enable detection of anomalous builds in real time and aid in 
non-destructive testing and evaluation for increased certainty 
in as-built parts. This analysis phase will then be used to 
inform and aid designers in designs that are easier to 
manufacture (increased acceptance rates) while still meeting 
demanding constraints. 

Risks. The risks associated with not investing in this area are 
two-fold. First, the U.S. could not keep up with emerging 
threats to national security. Second, the time and cost to 
design and build our nuclear stockpile could become 
unsustainable. Without AI-driven manufacturing and 
certification, each step in the manufacturing process is a 
costly and time-consuming near-custom job. Neither of these 
risks is acceptable. Therefore, we believe that the U.S. must 
embrace and build upon the AI/ML capabilities being 
developed not only at DOE national laboratories but also in 
universities and throughout U.S. industry. The national 
laboratories will provide mathematical rigor, verification and 
validation, and UQ to AI/ML techniques; commercial AI 
applications and systems have more relaxed, or no, 
requirements in these areas. This will enable these 
techniques to be applied to higher-consequence applications. 
Working together, the national laboratories, universities, and 
U.S. industry will advance the state-of-the-art in AI/ML to 
improve small-lot manufacturing capabilities within the U.S., 
which in turn will reduce reliance on foreign manufacturing 
and improve national security. 

10.2.4 DEPLOYMENT AND SURVEILLANCE  
Grand Challenge: Develop a digital twin for every deployed 
system in the stockpile to assess health and aging under 
field conditions. 

Introduction. The NNSA laboratories annually assess the 
safety and performance of the nuclear weapons stockpile and 
report the stockpile assessment to the President of the United 
States in an annual assessment report (AAR). The collection 
of new surveillance data is often limited by the availability of 

funding, support, and hardware for testing. In addition, the 
AAR is conducted on testers typically different from the 
testers that were used for original product acceptance due to 
rebuilds and upgrades driven by obsolescence or other 
requirements changes. New AI methods are needed to 
evaluate and predict component and system performance in 
the face of these challenges. Such methods may include: 

 The development of new ways to apply advanced data 
analytics to existing data and/or generate synthetic data for 
minority classes of defects having insufficient, naturally 
occurring data for predictive analysis (rare defects). 

 The ability to classify defects or signs of aging using data 
from measurements including microstructures, CT scans, 
images, and other available measurement modalities and 
the development of methods to verify and validate 
datasets, tester performance, and modeling validity. 

 The development of the ability to forecast and predict 
manufacturing defects from incomplete production data 
(causal models).  

 The creation of a more open data environment and 
analytics environment for widespread adoption of data 
science. 

The NNSA surveillance mission would greatly benefit from 
new measurement capabilities and methods of manufacturing 
process control using physics-informed advanced data 
analytics and ML to support existing manufacturing 
capabilities and anticipated life extension programs (LEPs). 

Opportunities. Although surveillance data collected annually 
may be sparse for some components, sufficient surveillance 
data have been collected over time to enable the present-day 
application of AI data analytics. In addition, high-fidelity, 
physics-based models have achieved a level of maturity 
sufficient to generate synthetic data that may be needed to 
predict rare defects and to reach critical mass with respect to 
sufficient data to train large models using HPC systems. 
Tools for advanced data analytics have also matured and are 
widely available to mine existing surveillance data and 
develop new capabilities for ensuring confidence in data 
quality. Finally, there is a sufficiently large and skilled 
workforce available to execute the data science for 
surveillance mission. These factors provide a starting point. 

Risks. Adoption of more advanced, AI/ML-enabled data 
science methods such as those described in Section 01 to 
support the DOE’s surveillance mission would lead to faster 
data-driven decision-making, repeatable and reliable 
decision-making with archived pedigree, and a reduction in 
the time and resources needed for stockpile evaluation 
(i.e., in the AAR). At the same time, operational systems 
require a level of confidence that underscores the 
requirements outlined throughout Section 01 and in 
mathematics and foundations (Chapter 12). If new AI 
methods are not explored and implemented, the surveillance 
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of the nuclear stockpile could become prohibitively expensive 
and unsustainable. 

Challenges. Many HPC codes and existing AI methods are 
available to make rapid progress on this problem. Existing 
and in-development ASC models of various components 
(Aleph, Aria, etc.), data analytical software (TensorFlow, 
Unscrambler X, MATLAB, R, Python, etc.), computing 
hardware (high-performance data analytics platforms with 
graphics processing unit [GPU] acceleration and distributed 
file systems), and experimental apparatuses are available on 
the restricted or classified network to verify and validate the 
component, system, or manufacturing processes and 
products. Beyond current systems, there is also a rapidly 
growing need for physics models for aging processes, ideally 
harnessing scientific progress within NNSA and in the Office 
of Science (Chapter 07). 

The biggest challenge is related to performing big data 
analysis on multivariate sparse data and performing a causal 
analysis that links signs of defects and aging to the root 
cause. Natural language processing techniques, including 
foundation models (Chapter 02), could be used to 
automatically scan through hundreds of reports of significant 
findings to make fine correlations between symptoms and 
possible causes. 

Another challenge is to create an AI-powered resilient 
knowledge ecosystem (RKE), as knowledge management 
continues to be a significant issue. We discuss this at length 
in Data Ecosystem (Chapter 14), based on requirements 
related to assembly, curation, evaluation, and encoding of 
training data (Section 01). The human ability to generate 
tremendous amounts of information is rivaled only by the 
complementary limit on any human’s ability to digest that 
information, exponentially increasing the problem of not 
knowing what information is available and relevant to a given 
task at hand. This confluence requires that we intentionally 
manage our knowledge, data, and analytics. Through the use 
of various ML techniques (e.g., natural language processing, 
text analytics, various forms of ML) and other AI approaches 
(e.g., induction, reasoning by analogy), the RKE will enable 
easy preservation, curation, and dissemination of critical 
artisanal knowledge as our workforce, workflows, and work 
products continue to evolve. The DOE workforce (e.g., 
scientists, engineers, managers) will not only have access to 
but will rely on the RKE for recommendations, knowledge and 
resources (at whatever classification level) appropriate to the 
tasks they are performing as they perform them. Likewise, 
staff knowledge and decision provenance will be captured by 
the RKE as a function of the staff interacting inside the RKE 
without adding extra burdens to the NNSA workforce. 

Last, we need to instrument deployed systems and their 
environments with sensors to vastly increase the amount of 
data collected for surveillance. This need not be standard 
surveillance data but can include a host of new measurement 
modalities that can be used to train and continuously optimize 

digital twins and simulations (Chapter 04) to predict aging 
and other effects. An added challenge addressable with the 
tools of AI is sensor signal discernment/inference that 
minimizes and quantifies anomalous information. Part of this 
capability will include the use of AI capabilities within edge 
computing devices to process observational data in situ for 
rapid onsite assessment. 

The last grand challenge with the related theme is to develop 
digital twins of aging devices. Components of (critical) 
complex engineered systems often fail due to aging, as 
material microstructures evolve, material properties change, 
and material response to thermal, mechanical and radiation 
stimuli deviate from design specifications. Naively, it should 
be possible to design classifiers that detect outliers or 
anomalous behaviors via continuous monitoring and/or non-
destructive testing. However, many of these complex 
systems are few in numbers and examples of failed behavior 
are few. Consequently, empirically collected datasets are 
insufficient to serve as training datasets for classifiers. It 
should be possible, in principle, to construct and train 
classifiers on synthetic datasets, assembled out of 
simulations of devices with aged material models (with further 
“tuning,” e.g., via transfer learning, using scarce empirical 
measurements), but such material models (also known as 
“subgrid models,” constitutive models, or closures) and digital 
twins of aging devices do not yet exist.  

There are high-fidelity models, such as crystal plasticity 
models, that can be used to construct the training datasets 
for (aged) materials. However, challenges lie in the 
architecture of the material models, their “tuning” with 
multimodal data (images of microstructure, spatiotemporal 
measurements of macroscale responses to stimuli, field 
measurements of stresses and strains from load tests), and 
the incorporation of uncertainties in the trained models and 
their qualification (they are data-driven and can suffer from 
out-of-distribution errors). In addition, these data-driven 
closures must satisfy physical constraints (e.g., Galilean and 
rotational invariance). In addition, the incorporation of these 
new closures into device models (i.e., the digital twin of the 
aged device) may introduce numerical issues (e.g., stiffness) 
in current models. This use-case poses some of the 
requirements for surrogate models (Chapter 01) as closures 
and devices’ digital twins will rely on surrogates, as well as 
material property estimation (Chapter 03).  

If successful, these closures for aged materials can be used 
to develop training datasets for aging classifiers. A digital twin 
of the aged device could in turn be used to predict device 
lifetimes, which are fundamental for predictive maintenance. 

10.2.5 NONPROLIFERATION 
Grand Challenge: Develop an AI system to rapidly detect, 
locate, and characterize foreign activities related to fuel cycle 
and weapons development, movement of nuclear materials, 
and nuclear explosions across the globe. 
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Introduction. The NNSA Office of Defense Nuclear 
Nonproliferation (DNN) works to prevent state and non-state 
actors from developing nuclear weapons or acquiring 
weapons-usable nuclear or radiological materials, equipment, 
technology, and expertise [6]. The long-term effectiveness of 
U.S. methodology is confounded by advances in nuclear 
technology and adversary efforts to hide illicit activity, making 
it feasible for a nation to produce significant quantities of 
special nuclear materials, specialized explosives, rad-hard 
electronics, and other critical technologies with a minimal 
facility and personnel footprint. Despite the unparalleled 
amount of data being collected by ever-increasing and 
evolving sensing capabilities, it is doubtful that we will be able 
to collect significantly more actionable data than we have 
now, especially against a sophisticated low-profile 
proliferator. This situation highlights the need for even more 
sophisticated means of sifting and correlating the flood of 
data to extract the unique signatures associated with nuclear 
proliferation activities. 

Data analytics and signature extraction processing needs 
include: 

 Patterns of life: processing of open data (social media, 
industry supply chain data, scientific publications) [7].  

 Centralized/Ground station data processing of sensor data. 

 Distributed sensor (“edge”) onboard processing (satellites, 
terrestrial, seismic). 

AI techniques such as those described in Section 01 offer 
dramatic improvements in signature extraction in all of these 
areas independently, and perhaps even more impact by 
correlating across all three datasets. 

The DNN R&D program advances the nonproliferation 
mission through leveraging investments in unique subject 
matter expertise and facility testbeds. These testbeds 
represent critical pieces in the nuclear fuel cycle and are ideal 
targets for exquisite remote sensing data collection to help in 
research and development efforts to detect and monitor 
foreign nuclear fuel cycle and weapons development 
activities, special nuclear material movement or diversion, 
and nuclear explosions.  

Over the last decade, DNN R&D has made significant 
investment across multiple AI-enhanced programs with the 
goal of accelerating analysis timelines to detect, localize and 
characterize foreign nuclear proliferation activity. These same 
capabilities support nuclear arms control treaty monitoring 
and verification, operational interdiction and other nuclear 
security efforts across NNSA and government.  

Key programs include: 

 Multi-Informatics for Nuclear Operations Scenarios 
(MINOS): use of diverse physical measurements for high-
fidelity detection, location, and characterization of 
proliferation activities. 

 Advanced Data Analytics for Proliferation Detection 
(ADAPD): combination of data and physics models to 
enable early detection of low-profile proliferation. 

 Persistent Dynamics: real-time optimization of proliferation 
detection. 

 Steel Thread: use of foundation models to address 
proliferation challenges. 

 Low Yield Nuclear Monitoring (LYNM): use of multiple 
sensing phenomenologies to increase detection sensitivity. 

Ranging from large, coordinated multi-modal data collects at 
testbeds to robust multi-modal data analysis to establish 
patterns of life for event prediction to building large-scale 
foundation models for unique sensing approaches and 
phenomenologies, these AI-enhanced methods offer the 
promise of enabling nuclear proliferation analysts to perform 
deeper, more timely, and more comprehensive assessment 
of a foreign state’s nuclear enterprise. Furthermore, these 
investments aim to enhance the teamwork effectiveness 
between nuclear proliferation analysts and AI systems to 
produce next-generation AI-augmented experts for global 
nuclear assessment. 

Opportunities. To date, much of the DNN mission space has 
relied on subject matter experts and trained analysts to comb 
through ever-larger troves of data, searching for key “tells” 
that an adversary is working toward nuclear proliferation. As 
we shift from monitoring known large nuclear-capable states 
to include global detection of small-scale nuclear proliferation 
activities, this approach will be increasingly unsustainable. 
Enhanced sensing capabilities (direct) and other closed-
source and open-source (indirect) data (Figure 10-2), such as 
publications, bills of lading, and social media, produce 
exquisite data at larger volume and velocity (and with more 
diversity) than humans can ingest. Concurrently, nuclear 
technologies have advanced to a degree that makes it easier 
for potential proliferators to hide their activity even among this 
deluge of data.  

 
Figure 10-2. Indirect and direct sources of proliferation- 
related data. 
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The breakthrough insights that the AI community has 
developed in pattern matching, anomaly detection, natural 
language interfaces to query-answer tools, and the ability for 
sophisticated AI foundation models (Chapter 02) to 
synthesize cogent responses are unprecedented. 
Commercial applications—with limited application to DOE 
mission requirements, much less non-proliferation needs—
often have access to millions of events of interest, and the AI 
methods they use rely on that volume to ensure reliable 
performance. By contrast, in nonproliferation there are 
typically very few events of interest even within the enormous 
amounts of data collected against those few events. Thus, to 
achieve parity with industry breakthroughs in AI, novel 
methods must be developed that combine the knowledge of 
highly skilled NNSA subject matter experts with sparse data 
across three axes: sparse observables, volume and variety of 
training data, and missing data modalities for inference. 

There is little opportunity (or incentive) for the AI industry to 
invest heavily in the domain-specific adaptation that will be 
necessary to make these techniques successful on our 
mission data. However, DNN has invested in larger and 
larger measurement campaigns, presenting an opportunity 
for development of rich collections of data for algorithm 
development. In addition, DNN has invested in academic 
collaborations through multiple university consortia, 
presenting an opportunity and motivation for methodological 
breakthroughs that support reliable detection, location, and 
characterization of proliferation even when the number of 
events is limited. Going forward, strategic investments in AI 
have the opportunity to extract critical puzzle pieces from the 
nearly infinite streams of data being collected on a daily basis 
to accelerate time to insight. 

One area that may be able to leverage AI industry progress is 
in onboard sensor AI engines for event detection and point-
of-sensing data reduction (e.g.- for satellite or unattended 
terrestrial sensors). For example, the size, weight, and power 
(SWaP) constraints on the AI hardware in these applications 
share many requirements with hardware developed for the 
autonomous vehicle market, though the unique non-
proliferation algorithm and application software development 
will require close multiscale co-design with the evolving AI 
hardware ecosystem to ensure reliability, auditability, etc. for 
this high-consequence application.  

Risks. Without increased and sustained investment in this 
area, we will be left behind by foreign actors, and our 
analysts will continue to be overwhelmed by the data deluge 
that they face. The ultimate result will be unmetered global 
nuclear proliferation by unknown and unstable foreign actors. 

Challenges. Cross-modal search and retrieval—between 
images, video, and text, for example—are among the 
bedrocks of advancements in this field. Large-language 
models and emerging foundation models (Chapter 02) that 
can demonstrate emergent properties on new tasks provide 
another key innovation supporting this mission space. These 

technologies demand substantial computing resources for 
both training and inference (Chapter 18). Truly enabling these 
technologies on the unique data sources within the 
nonproliferation mission space will place unprecedented 
demand on existing and planned computational resources for 
the myriad of missions and models that will be developed. 
Meeting this demand will itself require new advances in AI 
hardware architectures, software tools, and frameworks, as 
well as in fundamental mathematical techniques 
(Chapter 12). Furthermore, critical algorithmic challenges 
include the trustworthiness and auditability of a model’s 
predictions, as well as the imminent threat posed by an 
adversarial AI system. In order for the output of these models 
to support actionable decision-making, new approaches and 
methods for auditability of the model’s construction, training, 
and predictions are required. Lack of persistent data 
collection over facilities or other places of interest, including 
oversubscribed or paucity of sensors, inability to place 
sensors, and other denial of data streams, present additional 
challenges that may require new or additional sensors, new 
techniques to support AI at the edge, or novel methods to do 
better “tip and cue” to increase persistence. 

10.3 Investment Needed for 
Achievement 
To leverage the methods and techniques laid out in 
Section 01 of this report, it is paramount to prepare the 
necessary training datasets from simulations and 
experiments within the DP and DNN mission spaces. For 
example, some of the tasks that are required for developing 
foundation models (Chapter 02) are enumerated below. 
These tasks are required for each dataset, guided by a 
subject matter expert from within the DOE laboratory 
complex. This cannot be delegated to any other organization. 

 Identify self-supervised learning tasks on broad categories 
of multi-modal data relevant to DDMD weapons lifecycle. 

 Understand the nature of each modality within a dataset 
and create tokenization schemes that are required for 
ingestion into foundation or surrogate models. 

 Articulate fundamental physical constraints and 
correlations between a sample’s data fields that provide 
key conservation properties and provide models with 
elements of physics-informed deep learning. 

 Curate labeled datasets for specific downstream learning 
tasks and model adaptation / transfer learning. 

Systematic investments in software to develop AI systems, 
master models, and composable systems of AI systems with 
physics models are all needed. The grand challenges 
identified here all require use of hardware acceleration for 
training and inference (Chapter 15). Investments in co-design 
efforts in algorithm and architectures—and ultimately 
in materials and chips that comprise processor 
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architectures—will be needed to be successful. Finally, 
investments in AI-empowered data collection from the 
experimental facilities will be key steps to realize solutions to 
the grand challenges identified here. 
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SECTION 03: TECHNOLOGICAL CROSSCUTS 
 

Critical crosscutting technology challenge areas must be addressed to harness the 
promise of new AI methods (Section 01) accelerate progress across the diverse domain 
areas detailed in Section 02. This effort will require bridging the gap between traditional 
domain-driven methods and new, AI-based data-driven methods; developing the 
underlying mathematical and foundations of scientific machine learning (ML); and creating 
new integrative systems. These systems are crosscutting, comprising workflows, software 
and frameworks, data, and new types of hardware. In each of these areas, we detail 
Advanced Research Directions (ARDs), their importance, the gaps that prevent forward 
progress today, the urgency and timeliness of addressing those gaps, and what is needed 
to start now. 
 
 
Chapter 11: SOFTWARE AND FRAMEWORKS 

Chapter 12: MATHEMATICS AND FOUNDATIONS 

Chapter 13: AI WORKFLOWS (EDGE, CENTER, CLOUD) 

Chapter 14: DATA ECOSYSTEM 

Chapter 15: AI-ORIENTED HARDWARE ARCHITECTURE 
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11. SOFTWARE AND FRAMEWORKS
Scientific software encompasses not only modeling and 
simulation applications but also analysis codes and system 
software (see also Chapter 13, Workflows). These software 
systems play an increasingly vital role in all areas of science, 
energy, and security. To date, production and research 
scientific software has followed a path independent of 
mainline artificial intelligence (AI) and machine learning (ML) 
frameworks such as PyTorch [1] and TensorFlow [2]. 
Advancing the complex approaches described in Section 01 
will require significant progress in software, frameworks, and 
their integration. Tighter integration between scientific 
software and frameworks will not only facilitate such 
integration but will also improve the productivity of scientists 
and software/framework developers. 

An effective software stack is needed to bridge the chasms 
between mathematical foundations, data, workflows, and 
hardware. Different science, energy, and security domain 
applications entail different constraints, such as assurance 
requirements, compute/data latency, energy consumption, 
inference time, resource availability, and knowledge 
distillation. Under any combination of constraints, software 
and frameworks should be high performing. The goal is thus 
to ensure that AI and domain capabilities, efficiency of 
computational and data resources, and domain and 
developer expertise are not sacrificed.  

11.1 Advanced Research Directions 
in Software and Frameworks 
Harnessing the new approaches described in Section 01 will 
require highly advanced and modular software ecosystems. 
Here, we amplify five Advanced Research Directions (ARDs) 
along which key innovations are needed for software and 
frameworks to enable diverse breakthroughs in science, 
energy, and security on high-performance computing (HPC) 
systems. These ARDs apply to the full software stack and 
also involve computational science domains ranging from 
advanced simulation to programming languages. These 
ARDs exemplify what is needed so that AI capabilities can be 
quickly and easily built, tested, deployed, continuously 
optimized, and trusted for applications critical to the U.S. 
Department of Energy (DOE). Moreover, they position the 
DOE enterprise to adapt to and harness the continued 
evolution of diverse AI workflows as AI capabilities. 

11.1.1 ARD 1: COMPOSABILITY OF SCIENTIFIC 
SOFTWARE, HARDWARE, AND AI FRAMEWORKS 
We will need an infrastructure that provides unified, 
interoperable, efficient organization and communication 
among multiple AI and physics-based models and 

simulations across scales, control systems, and sensors. It 
must be agnostic to changing hardware needs for 
autonomous systems and to changing ML software, and it 
must allow us to leverage new community- and vendor-
provided tools as they emerge. Composable hardware 
(e.g., discussed in Chapter 15) will enable the underlying 
system architecture to be optimized at runtime, enabling 
massive-scale AI applications to map fine-grained 
computations to the most efficient microarchitecture. We 
must develop new software and frameworks that facilitate a 
wide range of AI models for the edge-to-HPC computing 
continuum (supercomputers, near edge clusters, and edge 
devices; see also Chapter 13: AI Workflows). The 
frameworks that enable efficient processing of large-scale 
datasets and continual learning for real-time control will also 
be required for scientific instruments and facilities, as 
discussed in Chapters 04 and 05 of this report. Software 
frameworks that integrate large language models for 
integrating domain-specific scientific knowledge from 
scientific literature into AI models will enable the creation of 
more accurate and robust models for scientific research. 

11.1.2 ARD 2: UBIQUITOUS DIFFERENTIABILITY 
OF SCIENTIFIC SOFTWARE 
End-to-end differentiability for composing simulation and 
inference in a virtuous loop is required to integrate first-
principles calculations and advanced AI training and 
inference, as discussed in the context of HPC surrogate 
models in Chapter 01. Continuous integration of differentiable 
programming capabilities will ensure that computational 
domain capabilities are AI-ready for the future. AI-optimized 
hardware that supports differentiability as discussed in 
Chapter 15 will require deep co-design across algorithms, the 
software stack, and the underlying hardware. We need 
differentiability in the scientific software to enable verification 
and validation (V&V) of scientific software (simulation and AI) 
and to provide capabilities for analyzing their correctness and 
reliability—as discussed also in Chapter 12, Mathematics and 
Foundations. We must develop software frameworks that 
enable robust and reliable differentiability of large parallel and 
distributed applications in the presence of noisy experimental 
data or complex systems. 

11.1.3 ARD 3: PORTABLE USABILITY OF DOE 
SOFTWARE ON EXASCALE AND POST-EXASCALE 
HETEROGENEOUS AI HARDWARE 
Production HPC systems are complex engineered systems 
comprising many software layers that need to be tuned for 
each new hardware configuration and workload and for which 
optimization choices must be revisited as the hardware, 
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software, and/or workloads evolve. For new platforms, as 
developed in ECP and anticipated with quantum computing 
architectures or new AI-oriented hardware (Chapter 15), 
portability is essential. The development of AI-enabled 
software frameworks and programming models to 
automatically provide these capabilities across this complex 
landscape—with a software framework that enables quick 
and easy sharing, deploying, diagnosing, and testing across 
systems and models—will significantly improve development 
and execution time, as well as allow predictable resource 
forecasts (execution time and memory) to inform real-time 
control. We must develop intelligent software tools with 
proactive and reactive capabilities to optimally distribute 
workloads across various hardware components with 
different hardware characteristics. The software frameworks 
will provide functionalities to manage and mitigate the 
complexity of using exascale and post-exascale systems, 
employing intelligent automation and predictive analytics. We 
must develop interfaces to enable users to easily access the 
full capabilities of exascale and post-exascale systems using 
natural language processing and visualizations. 

11.1.4 ARD 4: REPRESENTATION FLEXIBILITY 
AND EXTENSIBILITY FOR MULTIMODAL 
SCIENTIFIC DATA 
Science, energy, and security data take many forms and 
modalities, and these data are central to the creation and 
training of fundamental new AI capabilities described 
throughout Section 01 of this report. We will need software 
and frameworks that readily address concurrent forms of data 
(including graphs, grids, point clouds, and unstructured data), 
enable fast computation with native representations, facilitate 
expressive features and outputs, and allow for certain data to 
be protected (e.g., due to privacy concerns or to protect 
intellectual property [IP]). Considering the deluge of data 
(discussed in Chapters 14 and 19), the integration of data 
from different sources and with diverse formats (multi-modal) 
will open a new front on the problem of data reduction: what 
data is critical to keep considering whole multi-modal data 
sets to keep opportunities for scientific discoveries? This 
problem is beyond classic reduction techniques and must 
consider semantic aspects of the data (which is not the case 
with current data reduction methods). We must develop 
advanced data integration tools with semantic technologies to 
facilitate new methods such as foundation models (Chapter 
02) that build on large language models, as these tools will 
enable multimodal scientific data to be integrated and 
combined across different domains and applications. These 
also require support so dynamic and adaptive 
representations of multimodal scientific data can be 
developed. New scalable software frameworks are also 
needed for the exploration and visualization of multimodal 
scientific data with interactive, easy-to-use interfaces, 
enabling insight as well as evaluation of the efficacy of 
various representation schemes. Furthermore, we need 

service-oriented software frameworks and tools to enable 
seamless exchange and sharing of multimodal scientific data. 
These frameworks must support ever-larger teams working 
across different research teams, organizations, and 
communities using scalable, open-data platforms and 
repositories. 

11.1.5 ARD 5: TRUSTWORTHY AND 
SCIENTIFICALLY RIGOROUS AI SYSTEMS 
Complex problems in discovery science and high-
consequence applications demand ready availability of 
advanced uncertainty quantification (UQ) and V&V 
capabilities (further discussed in Chapter 12). Such 
capabilities include the end-to-end propagation of probability 
distributions throughout a software stack, the quantification 
and attribution of errors and approximations, and V&V in 
settings where hardware, operating system, or algorithms are 
nondeterministic. Advances in hardware technology such as 
UQ-optimized microarchitectures necessitate deep co-design 
with these architectures and will enable orders-of-magnitude 
improvements in these AI applications. Trustworthy AI 
systems are needed for near-real-time evaluation of 
correctness and accuracy at an experimental facility. We 
must develop AI software and frameworks that enable users 
to easily understand how AI algorithms make decisions and 
predictions and explain them in an easy way through 
interactive language models. Software frameworks that hide 
the complexities of reproducible research practices and 
robust experimental design will improve trustworthiness of AI 
systems. Concurrently, as discussed in more detail in 
Chapters 14: Data Ecosystem and Chapter 19: Data 
Infrastructure, these capabilities must be integrated into the 
entire data lifecycle, given the intimate interdependence 
between training data and trustworthiness. 

11.2 Why Is It Important? 
Advances in AI-enabling software and frameworks are critical 
for meeting the needs of grand challenges in science, energy, 
and security such as those highlighted in Section 02 of this 
report. These advances are also critical for ensuring that 
DOE’s excellence in computational and mathematical science 
is fully leveraged to realize the long-term, AI-based 
breakthroughs (see Section 01) necessary to achieve these 
grand challenges. 

For software and frameworks to catalyze advances on grand 
challenges, there must be a virtually seamless integration 
across model authoring, simulation, data, and compute 
infrastructure. When advances are focused on any 
component in isolation, the limitations of all AI-enabling 
components multiply and propagate throughout. For example, 
coupling multiple systems on heterogeneous, emerging 
architectures where multiple AI models are being trained and 
used for inference on multiple tasks requires a level and 
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complexity of composition to span a large number of types of 
simulations, problems, and software systems. We will need a 
modular, standardized, and readily extensible application 
programming interface (API) for resilient, plug-and-play 
interaction with legacy and emerging technologies. The 
composability enables more efficient and effective analysis of 
large and complex datasets tailored to specific science 
domains. Without such composability, we risk duplicative and 
costly piecemeal integration of ML models and AI workflows 
that will impede fast progress on grand challenges. 

A primary feature of existing ML frameworks is built-in 
differentiation capabilities (see 11.1.3). The availability of 
derivatives for training, through automatic differentiation 
(autodiff) techniques such as backpropagation, has been vital 
to the success of deep learning and beyond [3]. Differentiable 
programming capabilities can especially impact relevant 
domains that have benefited from forward simulation 
advancements but have seen fewer developments for 
inverse design, control, and other derivative-heavy outer 
processes [4]. 

In a typical scientific software development cycle, the rate at 
which the first-principles science, energy, and security 
models change is often slow. Consequently, scientific 
software requirements and specifications remain constant 
over a longer period, and the steps involved in the 
development cycle—such as testing, validation, verification, 
and scaling—remain relatively stable. In contrast, the rapid 
iterative nature of AI/ML model training and inference, 
combined with continual learning, pose a number of unique 
challenges. Specifically, not all of the data required for 
training the model are available in advance; instead, the data 
may be acquired over time. As new data become available, 
models must be retrained, validated, verified, and rapidly 
deployed in production. The development of software 
frameworks to enable such rapid model iteration is critical to 
improving the usage and effectiveness of overall AI-enabled 
approaches. 

The diversity and constant evolution of hardware 
architectures and compute and data environments also 
require that software and framework solutions must perform 
across platforms and use cases. Such portability is 
fundamental to building user trust in the capabilities and 
reliability of AI-enabled processes in science, energy, and 
security. However, there is a natural tension between 
software portability and performance, and future hardware 
architectures that are highly optimized for specific tasks will 
require major advances to achieve performance, such as 
just-in-time compilation coupled with dynamic hardware 
reconfiguration. AI software and frameworks that are 
developed for science, energy, and security can be 
customized to the specific data and goals of a domain, 
leading to improved accuracy and performance of AI models. 

DOE mission domain-driven AI models often have unique 
requirements and challenges that are not well served by 

generic AI solutions. For example, scientific software 
frameworks in use today were not designed to contemplate 
distributed, federated data injection and collaborative and 
interactive model development at scale (using DOE 
supercomputers with AI accelerators). Significant advances in 
the scale of frameworks have been demonstrated in industry, 
but these have been predominantly focused on very different 
applications, such as involving text and image data. This 
significantly affects the AI development cycle and overall 
scientific productivity. We must develop software tools and 
frameworks with enhanced collaboration and interoperability. 

Reproducibility of the AI models requires software tools and 
frameworks with improved data and model management 
capabilities for large and complex datasets that are frequently 
encountered in the domains outlined throughout Section 02 of 
this report. This reproducibility is today nascent with the 
generic AI frameworks; addressing this will be important for 
assuring scientific integrity and correctness. It is crucial that 
these frameworks support but hide the complexities 
associated with large-scale data and model provenance. 

Science, energy, and security applications are rarely 
concerned with a single prediction or decision in isolation. 
Instead, we test multiple hypotheses, confront multiple 
scenarios, and account for sources of uncertainty. Efficiently 
performing ensembles of computational tasks and producing 
probabilistic outputs are key to building confidence in AI-
enabled advances.  

11.3 Why Can’t It Be Realized Now? 
Traditionally, scientific software efforts have been focused 
primarily on forward simulation, that is, being able to develop 
digital twins of phenomena and systems encountered in 
science, energy, and security. To this end, various research 
sectors and industry domains converged on standards for 
model representation, simulator exchange, and distributed 
co-simulation [5, 6]. Development efforts have focused on 
achieving performance and scalability at ever higher levels of 
fidelity and for ever larger, more complex systems. In many 
areas, however, the focus on fidelity in such forward models 
has come at the expense of consideration for high-level tasks 
such as inverse design and autonomous discovery. The 
complex performance and fidelity optimizations of mission-
driven software stacks will need to be reexamined in the 
context of new drivers and approaches like those noted in 
Section 01 of this report. Similarly, the requirements of 
existing frameworks have been driven by data, hardware, and 
uses that necessitate more than simple adoption of the 
advanced approaches envisioned here. 

Current composition strategies often come at the expense 
of limiting capabilities to the weakest link in the composition. 
For example, straightforward composition in a software stack 
will often come at a significant overall performance expense, 
because we are limited to employing particular instantiations 
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of the various components, and these components are often 
optimized for inputs, data flows, and hardware resources 
outside of the environments in which a fully composed stack 
is deployed. The complexity of assembling different 
components is a bottleneck even in current approaches to 
compose software with respect to correctness, validation, and 
verification (as well as safety and security for many 
applications). These factors prevent the community from 
achieving composable software for science. 

Another major bottleneck in the broader adoption of AI 
technology is the lack of AI/ML frameworks that enable 
findable, accessible, interoperable, and reusable (FAIR) data 
and model artifacts (discussed further in Chapters 14 
and 19). FAIR AI/ML frameworks have the potential to drive 
rapid adoption of AI technologies within DOE mission domain 
areas and to enable synergies and partnerships across 
diverse areas. Currently, there is no science-centric AI/ML 
framework that adopts a systematic approach to relate data, 
models, and tasks within any particular scientific domain. The 
resulting discord between the data and the model increase 
inefficiency in applications involving large volume of data. 
Software stacks used in industry do not reflect scale, 
diversity, and unique characteristics of the DOE mission 
domain areas. A particularly acute issue is the significant 
knowledge and technological gap with respect to the 
emerging AI-driven software development lifecycle because 
no related prior research exists within DOE or elsewhere 
(Chapter 16 provides further assessment of DOE’s 
workforce). 

Increasingly, there are efforts to employ popular ML 
frameworks for simulations to realize differentiable 
programming capabilities. However, for many science, 
energy, and security applications, this approach tends to 
come with significant costs. First, simplifications tend to be 
made to the forward models so they can be expressible in 
the existing framework syntax. Second, accuracy and 
performance compromises are often made in such 
implementations. These include substituting smooth 
approximations for known regime changes and fixing the 
mode of automatic differentiation (e.g., backpropagation) 
independent of the output and input dimensions. 
Furthermore, differentiation throughout a production scientific 
software stack today is often enabled by one-off efforts, such 
as differentiation through a single LAPACK routine. In 
addition, current frameworks struggle to retain valuable 
information when confronted with multiple data modalities. 
When a differentiation or representation limit is reached, it is 
rarely the case that such a change in control flow or 
knowledge is propagated up the software stack, which would 
otherwise facilitate exploitation in higher-level operations.  

Usability in DOE mission-related, grand challenge 
computational problems, usability tends to be limited to 
intersectional (hardware-software-framework-data-algorithm-
problem) specialists (see also Chapter 16, Workforce). There 

are many limitations on higher-level software, frameworks, 
and applications due to hardware and low-level software 
constraints. Current strategies for adapting software to new 
systems tend to rely on applying heuristics for each piece of 
software individually—and typically only once. For instance, 
the memory performance experienced by a computational 
workload can be affected by multiple layers of memory 
management policies, from the operating system kernel to 
runtimes. Systems are becoming increasingly energy-
constrained and cannot supply full power to every hardware 
component at all times. The question of which components to 
prioritize—and at the expense of which other components—
can have significant performance implications, yet it is 
frequently workload-dependent. Furthermore, while HPC 
systems have complex job schedulers, individual nodes also 
have task schedulers, input/output schedulers, and network 
schedulers, each of which is highly capable and configurable 
yet rarely adjusted to changing workloads. Floating-point 
implementations have also evolved, creating an additional 
knob and an additional source of complexity as domain 
specialists port scientific applications from one hardware–
software stack to another. Current programming models and 
language choices are also largely incompatible with the 
emerging AI hardware technologies. 

Today, UQV&V tasks such as formal verification tend to be 
limited to narrow classes of operations and implementations. 
Although the predominant use of ML frameworks is in 
building models through empirical risk minimization, making 
use of distributional knowledge, whether from data or first 
principles, is difficult in general. Furthermore, most scientific 
software is still devoted to outputting point estimates: At best, 
simplistic uncertainty indicators such as individual error bars 
are obtained. Examples of where richer distributional 
information or end-to-end error and uncertainty propagation 
are employed in software and frameworks are typically found 
in niche fields or problems lacking the full complexity 
envisioned here. 

11.4 Why Is It Reasonable to Start 
Now? 

Despite software and framework-related challenges 
associated with realizing the promise of the approaches in 
Section 01, an environment is emerging in which dedicated 
focus on the identified ARDs could enable the sea change 
needed for transformational advances in AI-driven scientific 
discovery. This is critically important, as developing and 
advancing the building blocks described in Section 01—from 
surrogate and foundation models to digital twins, inverse 
design, autonomous laboratories, or automated coding— will 
rely on the software and framework ARDs described here. 
Below we take the pulse of this emerging environment in 
other crosscuts and ecosystems detailed in this report. 
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An increasing number of science, energy, and security 
domains are employing AI/ML techniques, in some cases 
through popular ML frameworks. As noted in Chapter 12, the 
theory underlying ML and its foundations is advancing to 
make some capabilities provided by today’s frameworks 
increasingly ready for adoption into select high-consequence 
science applications and settings. A growing understanding 
of AI/ML techniques’ domains of applicability and limitations 
is emerging. This understanding is allowing practitioners to 
move beyond the full factorial combination of methods and 
problems to a reduced, more principled set that better 
facilitates performant execution.  

Vendors and hardware are significantly addressing data-
driven settings that facilitate computational performance for 
AI-enabling technologies. As noted in Chapter 15, these 
developments are advancing both on general-purpose and 
highly specialized emerging architectures. Although floating-
point conventions will continue to evolve, standards are 
emerging along with a better understanding of the 
implications, both in accuracy and performance, for different 
levels of precision. Algorithms and software for mixed and 
variable levels of precision have also seen significant 
development.  

Recent improvements in the integration and dynamic nature 
of the HPC software stack show great potential for quickly 
delivering and testing more configurable software layers. 
Concurrently, the application of reinforcement learning and 
control theory for computer systems has made significant 
progress.  

DOE’s Exascale Computing Project (ECP) has hardened a 
software technology infrastructure [7] that increasingly 
represents a bridge between the emerging computer 
hardware and the science, energy, and security specialists 
tackling large-scale, complex problems (Figure 11-1). These 
efforts have enabled increased composability across the 

software stack and are addressing new challenges 
associated with massive scale and heterogeneity of data. 
Composability is a critical driver in the research and 
development of new ML frameworks [8].  

In some domains, forward simulation fidelity has improved to 
the point where leading errors are now associated with 
unknown parameters, uncertain states, and the like. In 
others, fidelity levels have improved to the point where 
control, robotic automation, and targeted design can take 
advantage of AI/ML. Endowing such applications with 
UQV&V capabilities and pursuing the approaches in Section 
01 are high-potential opportunities.  

Probabilistic programming languages (PPLs) are also 
increasingly mature and provide proofs of concept for 
propagating probability distributions across a software and 
programming hierarchy [9–12]. Differentiable programming is 
also seeing adoption beyond ML frameworks to new classes 
of applications [13]. 

There is also an increasing appreciation and understanding 
of the science of team-based software and frameworks—with 
many important lessons and success stories from the ECP 
itself, which has more than 1,000 participants. DOE near-
term priorities include the following [14]: understanding 
practices, processes, and tools that can help improve the 
development, sustainment, evolution, and use of scientific 
software by teams; developing next-generation tools to 
enhance developer productivity and software sustainability; 
and developing methodologies, tools, and infrastructure for 
trustworthy software-intensive science.  

FAIR AI/ML frameworks are crucial to overcoming the 
challenges of developing AI/ML models for DOE applications. 
The DOE Advanced Scientific Computing Research 
community is in a unique position to develop these 
frameworks by leveraging past successes in developing 

 
Figure 11-1. An example build tree for ECP's math library, SDK, which illustrates the complex interdependencies among different libraries. 
Source: Satish Balay, Argonne National Laboratory.  
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scalable and efficient data and workflow management 
software tools. These tools enabled researchers from various 
DOE programs to handle massive amounts of data from 
simulations, experimental facilities, and observational 
instruments.  

The nature of current and future AI-enabled DOE applications 
also demands a high degree of autonomy in data generation 
and model development. AI/ML models require continuous 
adaptation; and manually doing so will slow AI-enabled 
scientific discovery. We are at the cusp of access to 
tremendous exascale computing power capable of designing 
self-driving AI systems (e.g., as discussed in Chapter 04), 
which can be scaled to zettascale systems and beyond. 
Automating critical functions in building and refining AI 
systems will be critical given the expected diversity of AI-
enabled DOE applications that require extreme customization 
and continuous adaptation. Simply put, accelerating DOE’s 
discovery processes in science, energy, and security will rely 
upon the availability of robust software tools and frameworks 
that enable a wide range of AI/ML models across different 
applications. 

11.5 What Is Needed to Start Now? 
The ARDs cut across the grand challenges and approaches 
identified and are an indication of the broad needs for critical 
advances. Key efforts needed in the near term include the 
following: 

 Develop extensible, large-scale evaluation suites for 
science, energy, and security: 

 Create open abstractions and pipelines for grand-
challenge problems to spur community engagement and 
advances across the software stack. 

 Engage multiple frameworks and ecosystems to 
understand trade-offs and to accelerate future advances. 

 Create testing and validation suites, standards, and 
APIs. 

 Develop standards and APIs to enhance greater 
composability across scientific software and ML 
frameworks: 

 Increase the modularity and ease-of-use of sub-
monolithic framework blocks into an ecosystem of 
interoperable and composable microservices. 

 Facilitate the communication of requirements and AI-
ready capabilities as technologies evolve. 

 Sustain efforts to automate capability discovery and 
composition of software blocks by AI technologies. 

 Expand differentiable programming in scientific software 
so that it is endowed with properties similar to those of an 
artificial neural network: 

 Propagate known switches/conditionals up the stack to 
enable differentiation. 

 Express known dependence structures to be exploitable 
by the rest of the software–hardware stack. 

 Enable seamless interoperation of autodiff for scientific 
simulation and differentiable programming for AI that 
accounts for resource constraints for complex workflows. 

 Further the degree of performance portability and 
interoperability: 
 Expose additional hardware-software-workflow 

configurations. 

 Provide performance models and simulation capabilities 
for virtual testbeds of emergent hardware architectures 
and environments. 

 Facilitate performant re-use of energy-intensive, 
leadership-class ML capabilities: 

 Train and store large-scale AI models.  

 Enable the ability to recommend a base model and 
retrain for downstream application and software–
hardware instantiation.  

 Establish “born qualified” trustworthiness for software 
and framework artifacts: 

 Increase PPL adoption and development. 

 Accelerate adoption of UQV&V-ready capabilities.  

 Escalate extensibility and representability beyond what 
consumes current development: 

 Enable software-generating environments.  

 Facilitate computational resources (measured in 
“Machine Learning Operations,” or MLOps) for 
continuous deployment on and refinement of new 
problems and environments. 

 Sustain interaction among the scientific software 
development community; ML framework developers; 
computational facilities; and emerging science, energy, and 
security opportunities. 

 Enable the rapid design, development, and training of 
fast-learning and reusable AI/ML models for DOE 
scientific data and to make the reusable models FAIR by 
leveraging recent advances in the open-source data and 
model management tools. 

These ARDs are crosscutting and should not be viewed in 
isolation. We have illustrated key steps for acceleration in 
compact activities, and advancements along multiple ARDs 
have the potential for multiplicative effects when realized in 
concert. 
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12. MATHEMATICS AND FOUNDATIONS 
The current science and engineering paradigm is rooted in 
mathematical models that are validated against experimental 
data. These mathematical models are derived by scientists 
and engineers based on first principles understanding and 
well-defined unifying concepts. Importantly, this is very 
different than modern machine learning, in which 
mathematical model forms are highly flexible and applicable 
to many domains [1]. First-principles models are naturally 
predictive beyond the datasets used to learn and validate the 
theories, because they are designed to be consistent with 
established science. In contrast, artificial intelligence (AI) and 
machine learning (ML) models may have challenges 
generalizing beyond their training data because they are 
much less constrained. However, first principles often are too 
complex to work with directly, necessitating approximations 
derived for certain domains of applicability and to fit various 
constraints. As scientists and engineers, we can use well-
established, domain-driven methodologies to evaluate the 
validity of these models, recognize inconsistencies, and 
identify improvements. Additionally, we have rigorous 
statistical and mathematical tools to work with domain-driven 
models and infer conclusions [2, 3]. Through the scientific 
process, these models evolve to fit new data and better 
reflect reality. 

The promise of AI/ML approaches, as detailed in Section 01 
of this report, is that they offer a pathway to develop 
principled, data-driven models to extract insight with data-
driven methodologies. These methods will complement 
domain-driven methodologies, and they will do so at the 
unprecedented scales of data generation we see today. 
Further, AI/ML models can be used to create systems that 
make decisions and perform inference with limited human 
input and involvement. These models complement traditional 
first-principles scientific models, as their flexible mathematical 
structures and learning methods enable the development of 
building models where first principles understanding does not 
exist or is too complex to practically leverage. Therefore, to 
deliver on the promise of AI/ML, methods are needed to 
bridge, in a fundamental way, domain-driven methods and 
data-driven methods.  

Among other advantages, AI/ML methods can automate the 
learning process while reducing dependence on scientists 
and engineers—humans with limited availability and capacity 
for scale and computation—to specify constraining 
assumptions. The more we can relax these constraints, the 
more we can harness AI systems to learn from highly diverse 
data sources—including those that scientists have not 
thought to leverage and those at scales beyond human 
capacity to leverage.  

In addition, the rapid advances in scale, capabilities, and 
applications of AI models in recent years have created new 
systems, many with emergent properties. However, the inner 
workings of these models are opaque—raising challenges in 
explainability, trust, and uncertainty quantification (UQ). 

Harnessing the opportunities possible with AI to advance the 
U.S. Department of Energy’s (DOE’s) scientific and 
engineering mission (Section 02 of this report) will require 
developing the mathematical foundations of scientific AI/ML, 
combining traditional domain-driven methods with newer 
data-driven methods in principled ways. This will build on and 
complement the foundations of AI/ML more generally, 
enabling us to ground new developments with the same 
mathematical rigor as has undergirded traditional scientific 
and engineering exploration, design, and operation. We want 
AI/ML that can predictably generalize, have understandable 
approximations with clear domains of applicability, integrate 
with other sources of knowledge, and propose improvements 
to the models when theory and/or data are inconsistent.  

12.1 Advanced Research Directions 
in Mathematics and Foundations 
Our understanding of mathematics and foundations for AI/ML 
ranges from the philosophy of science and epistemological 
foundations of AI/ML designing AI models and algorithms for 
efficient training. We have identified four Advanced Research 
Directions (ARDs) where current mathematics and 
foundations are not yet prepared to meet the needs for future 
AI necessary to support DOE science, energy, and security 
mission areas. We structure the balance of this chapter 
around these four ARDs, here describing them at a high level 
and in subsequent sections addressing their collective 
importance, the challenges that must be overcome, why it is 
urgent to begin now, and what steps are needed. 

12.1.1 ARD 1: DEVELOP FOUNDATIONAL 
PRINCIPLES AND ALGORITHMS FOR SELF-
GUIDED LEARNING OF AI SYSTEM WORKFLOWS 
AI must be more self-guided. These systems must be able to 
tune and optimize themselves to meet abstract specified 
goals by adjusting the AI implementation (e.g., learning 
methods, structure, models, hardware), select informative 
data, recognize/adapt to changing environments, and provide 
self-certified notions of trust. Progress in this direction will 
result in gradually relaxing the specifics of design constraints 
users must provide for the model, data, and task. 



 

12. MATHEMATICS AND FOUNDATIONS 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY  

113 

12.1.2 ARD 2: DEVELOP INFORMATION 
THEORETIC MECHANISMS TO INTEGRATE 
SCIENTIFIC PRIOR KNOWLEDGE, THEORIES, AND 
MULTIMODAL DATA 
Scientific AI systems must be able to synthesize existing 
scientific knowledge (e.g., physics or mathematics 
properties), heterogenous big data (e.g., multi-fidelity, 
multiscale, multi-phenomenology), and limited small data 
(e.g., rare events, expensive simulations/experiments) (see 
[4] and Chapter 04 for the case of digital twins). Integrating 
solutions for these challenges is critical for robust and 
trustworthy inference using AI. Further, new AI systems must 
be able to build on existing AI systems much as new scientific 
theories build upon the existing science. 

12.1.3 ARD 3: DERIVE FOUNDATIONAL 
PRINCIPLES AND THEORY FOR DECISION-MAKER 
TRUST IN AI 
DOE has been at the frontier of UQ and verification and 
validation (V&V) research for science and engineering 
modeling; adapting these methods to AI/ML and associated 
workflows will be central to addressing explainability, 
correctness, and trust. Together, UQ and V&V broadly 
include three sets of capabilities. First, UQV&V entails theory, 
methods, and algorithms that learn with uncertainties 
(e.g., Bayesian inference and ensemble methods). Second, 
they assess sensitivities to inputs, data, assumptions, model 
forms, and approximations (e.g., global sensitivity analysis). 
Finally, UQV&V methods validate against other sources of 
data (e.g., cross-validation), evaluating the correctness of 
algorithm (e.g., formal methods), or integrate human 
knowledge as an additional layer of validation 
(e.g., explainable/interpretable AI). If AI/ML models cannot 
improve, quantify, and communicate their robustness, they 
will lack the fundamental underpinnings necessary to be 
embedded in systems involving mission-critical decisions and 
processes (see specific examples in Section 02: Scientific 
Domains). Because AI systems will interact with humans, 
they must provide suitable evidence, as judged by the 
decision-maker, to establish confidence in the AI’s assertions. 
This demands new UQ, V&V, and explainable/interpretable 
methods [5] to communicate reliability and uncertainty, 
perform predictably (importantly, over multiple scales, 
different domains, and compositions with other models), 
adapt to changing environments, and operate securely. 

12.1.4 ARD 4: DEVELOP THEORY AND 
ALGORITHMS TO QUANTIFY AND OPTIMIZE 
TRADE-OFFS IN THE IMPLEMENTATION OF AI 
SYSTEMS UNDER RESOURCE, PERFORMANCE, 
AND ROBUSTNESS CONSTRAINTS 
New AI systems required by DOE missions must also scale in 
complexity to meet resource and robustness constraints. This 
ranges from scaling AI down—to operate within individual 

components of an experiment or instrument—to scaling AI up 
to support distributed learning in systems harnessing multiple 
DOE computing and other user facilities. Constraints force 
trade-offs within multiple dimensions including resources 
(e.g., cost, computation time, power, bandwidth, and data), 
performance (e.g., learning metrics, Quantities of Interest 
(QoI), accuracy, and rewards), and robustness 
(generalizability out-of-domain, stability, adaptability, 
representations of uncertainty, and integration of knowledge). 
The trade-offs among these dimensions—resources, 
performance, and robustness—must also be quantified. This 
will require new mathematical principles to explicitly translate 
resource, performance, and robustness specifications into 
metrics for the AI model. In turn, novel algorithms that can 
efficiently explore the Pareto front defined by these trade-offs 
will be required to support the design of AI systems to meet 
design criteria. 

12.2 Why Is It Important? 
Research in the mathematical foundations of AI/ML has been 
active in topics ranging from foundational questions of 
epistemology and statistical learning theory to theories of 
representation complexity of different learning models, to 
theories of optimization algorithms. This theoretical basis 
shares some foundations with existing domain-driven 
scientific learning methodologies (e.g., Bayesian 
epistemology), but in some respects differs significantly 
(e.g., domain-agnostic models and extreme over-
parameterization). It is thus of central importance to develop 
a foundation for scientific ML, integrating both domain-driven 
and data-driven approaches. This is necessary to develop 
and apply the science and engineering discoveries of a scale 
and complexity that is demanded by the DOE science, 
energy, and security missions. Because these scales and 
complexities exceed the limitations of human domain 
knowledge and expert judgment, AI/ML methods are not only 
critical to the scientific computations but also to their 
evaluation and certification. 

DOE mission challenges involve incredibly complex systems 
applied in high-consequence domains, involving a wide range 
of challenges stemming from either a paucity or deluge of 
data, integrating existing knowledge, computational and 
experimental resource constraints, and robustness and 
trustworthiness. For example, AI deployed for problems like 
climate prediction, nonproliferation, power grid operations, 
and complex system operations in inhospitable environments 
will present unique challenges. 

In contrast, AI research today is largely dominated by social 
media and internet industries, such as those dealing with 
scale in terms of millions of consumer devices or aggregate 
workloads comprising relatively small, and independent, 
applications and which focus on a very different set of 
challenges. These different downstream goals lead to 
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different problem formulations, different notions of model 
quality, and different technical requirements, often in 
important but subtle ways. For example, driven by goals of 
high-quality predictive models, industry has developed highly 
impactful but opaque AI methods that significantly outpace 
our ability to rigorously understand them. For many intended 
industry applications—for example, consumer services such 
as facial recognition in photo libraries or interpreting voice 
commands—UQ, V&V, or explainability are not required. 
Consequently, in order to adapt and leverage the rapid pace 
of industry AI innovation for advancing the DOE mission 
areas—which demand quantified robustness and 
explainability—we must develop the requisite mathematics 
and foundations. This requires substantial investments in the 
foundations of scientific AI/ML to complement the applied 
mathematics foundations underlying scientific computing, 
where DOE has a large body of expertise. Absent such 
investments, AI/ML methods will likely fail to support the 
robustness and complexity required for DOE mission areas of 
science, energy, and security. 

Finally, as complex AI systems demonstrate robustness and 
correctness, they will become integral to many processes that 
will inform designs of materials, components, or critical 
engineered systems, including complex systems and 
infrastructure operations. Here, robustness and correctness 
certifications that are not grounded in solid mathematical 
foundations and derived from theory-based tools (e.g., for 
UQV&V) would create false confidence. This would render 
them vulnerable to unanticipated failure modes, such as 
those associated with errors, overfitting, or even data 
poisoning by adversaries. In a real sense, this would be 
worse than having no certifications. Beyond the mission 
impact, AI/ML model failure in such cases would erode 
confidence in the use of AI/ML in the future and result in lost 
opportunities to fully realize the benefits such as outlined 
throughout this report. 

12.3 Why Can’t It Be Realized Now? 
Here, we discuss the current barriers in context of the four 
ARDs outlined above. 

ARD 1. The promise of autonomous discovery (Chapter 05) 
and complex systems and infrastructure control (Chapter 04) 
through ubiquitous AI requires tackling the challenges of self-
guided learning. We require AI to rapidly adapt and respond 
to large amounts of streaming heterogenous data from highly 
dynamic and nonstationary systems. One example of such a 
system is the future smart grid composed of millions of 
autonomous AI actors (e.g., systems within components or 
control infrastructure) making decisions for control through 
demand response, at different time and geographical space 
scales, from appliances to electrical distribution networks 
(Chapter 08). These AI systems need the ability to learn 
autonomously from partial information and to adapt and 

evolve in response to rapidly changing conditions. Self-
guided learning will enable AI actors to make (or recommend) 
decisions to the degree that they can develop full situational 
awareness and evaluate multiple potential responses and 
outcomes (Chapter 04). In the worst-case, a poorly self-
guided AI system will be highly confident but wrong because 
it is acting on an outdated and/or inadequate understanding 
of the system, which can cause unreasonable and potentially 
catastrophic decisions. Therefore, we need to be able to 
apply physical constraints on the operation of self-guided AI 
for safety (e.g., closed-loop stability in control). 

Active learning, optimal experimental design, control theory, 
and reinforcement learning (RL) provide a strong foundation 
for self-guided AI. One critical challenge, however, is learning 
subject to multiple objectives or with poorly defined objective 
functions [6]. Specifically in autonomous discovery, it 
becomes difficult to define the task and cost functions that 
guide these algorithms. Therefore, research is needed to 
identify new, goal-oriented, and information theoretic learning 
paradigms for self-supervised learning that can learn, in 
effect, everything interesting that can be learned from the 
available data. A second challenge centers around the data 
and computational complexity of existing self-guided 
methods. RL training is often computationally expensive, 
requiring large volumes of training data and many training 
iterations to effectively navigate in the high dimensional 
optimization space [6]. This is particularly true in online 
settings where the algorithms must balance exploration and 
exploitation and where learning must be done sequentially. 
We must develop new algorithms for training, more compute- 
and data-efficient RL, hierarchical models that learn at 
different levels of abstraction and spatial-temporal scales [7], 
and methods to leverage prior information (e.g., physical 
constraints, ARD 2). 

ARD 2. We must learn how to incorporate prior knowledge 
from science and engineering theory into AI systems. This 
will entail work in areas including first principles theory 
(e.g., physics), mathematical models, structure preservation, 
and models of uncertainty [8]. This encompasses developing 
useful data representations for common science and 
engineering data, like those that exist for natural language 
processing (NLP), that can be used to integrate scientific data 
into common models. This is particularly critical for foundation 
models (Chapter 02) that often rely on transformers that, in 
turn, rely on tokenizers, embeddings, and positional 
encodings [9, 10]. This means defining notions of concepts 
and context for scientific data, as tokenizers and embeddings 
for scientific data would segment the data into concepts with 
defined relationships while the positional encoding retains 
important contextual information about how and where those 
concepts occur in the data. We also must learn how to 
reduce scientific datasets to be efficiently ingested by AI. 
Scientific experiments and simulations often have very large 
output (e.g., snapshots from decadal climate simulations for 
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many different choices of parameters). Current training 
methods and models such as transformers scale poorly with 
the dimension of the input space, making it essential to 
develop algorithms for reducing datasets and scalable 
training. 

Conversely, we must also learn how to extract interpretable 
knowledge from AI and translate it into scientific theories. A 
good example of this is when AI is used for autonomous 
discovery of novel physics (Chapter 05). Similarly, we need to 
develop a more robust theory of transfer- and multi-task 
learning that identifies commonalities between data, models, 
and tasks to enable robust information fusion. Self-
supervised learning frameworks (ARD 1) should improve 
learning by using AI capabilities to autonomously seek out 
and utilize extant data and other models. Data reduction also 
plays a role as AI will learn to optimally reduce past datasets 
into salient summaries to train future models when new data 
is available. Reconstructing past datasets from the models 
and data summaries is also needed when the original data is 
lost. Data summaries will impact models, particularly 
foundation models, derived from data that is too large to store 
in totality but will need to be periodically updated. Therefore, 
foundation models that are designed for efficient sequential 
updating both in terms of adding new data and prototyping 
new model structures for improved performance will be 
necessary. 

ARD 3. We need to extend and adapt current V&V 
frameworks for application to AI/ML models. Throughout this 
report, particularly in Sections 01 (AI Approaches) and 02 
(Scientific Domains), large-scale and/or complex AI systems 
are discussed. V&V will be critical to underpinning trust in 
every step of the ML pipeline by certifying the performance of 
each step in the pipeline and identifying those that are 
problematic. Such V&V frameworks would, for instance, 
isolate the providence of poor performance to identify a faulty 
training algorithm, an inappropriate ML model, or an issue 
with data [11]. This will require not only developing methods 
that test a given AI algorithm for generalizability and 
prediction accuracy but also assess the reliability of data, 
modeling assumptions, and even implementations of the AI 
algorithms themselves on novel hardware/software 
environments. Ultimately, we need rigorous mathematical 
theories that can provide quantifiable assessments of the 
suitability of various AI methods to address a specific 
problem, quantify sensitivities to errors and adversaries, and 
provide certifiable performance bounds. Additionally, theory 
must be developed to quantify the utility of a dataset 
(particularly for any that are small) and determine if it is 
sufficient for the intended learning objective. V&V-like 
methods must also be developed to quantify the operational 
envelope of a given AI system, which is a critical aspect in 
creating composable AI systems for tasks like control of 
cyber-physical systems (Chapter 04). Rigorously addressing 
these AI and V&V concerns using current algorithms such as 

Bayesian UQ requires many assumptions and 
approximations in how we represent information such as 
priors (ARD 2) and how we solve the UQ problem tractably 
[12] where addressing resource demands has significant 
impact on quality [13]. Research is needed to better 
understand these and similar trade-offs (ARD 4). Additionally, 
algorithms and approaches that provide UQ for cutting edge 
architectures must be explored because it is unclear to what 
extent UQ methods developed for one architecture translate 
to new architectures. For example, introducing Bayesian UQ 
for attention-based deep learning models is a nascent area of 
research. Existing approaches must be adapted in order to 
best fit our conceptual understanding of the self-attention 
mechanism, and they must also still be efficiently trainable 
with back-propagation [13, 14]. 

In order to facilitate adoption, stakeholders require not only 
UQV&V capabilities, but also methods for effectively 
integrating them into decision-making processes. This will 
mean addressing questions such as how to present UQ in a 
way that is actionable and understandable in specific 
operational contexts from the standpoint of decision-makers. 
Explainability and interpretability will be critical ingredients to 
trust, particularly as AI models become increasingly complex 
and otherwise opaque. New methods must be developed that 
can identify the type of information (e.g., modalities, datasets, 
task similarities) that is being used to inform decisions, 
particularly in the adoption of AI foundation models 
(Chapter 02). Finally, it will be important to explore 
connections with advances in self-guided learning 
(e.g., optimal experimental design) to identify new ways that 
AI system users can identify potential weaknesses and 
suggest improvements in AI systems. This will both mitigate 
concerns and provide stakeholders with the information 
necessary to support operational use. This will require theory-
based tools for parsing stakeholder needs and translating 
them into criteria for the AI to present evidence of trust and 
improve itself. 

ARD 4. DOE science, energy, and security missions face 
particularly challenging operational requirements, such as 
those associated with very short timescales, high-
consequence decisions, or inhospitable operational 
environments. These resource constraints force trade-offs 
that must be understood between resources (e.g., cost, 
compute time, power, bandwidth, data), performance 
(e.g., learning metrics, QoI accuracy, rewards), and 
robustness (generalizability out-of-domain, stability, 
adaptability, representations of uncertainty, and integration of 
knowledge). Quantifying these trade-offs–and developing 
solvers for designing AI in the face of these constraints–is a 
grand challenge that will uniquely impact DOE missions. One 
specific need that we foresee is simplifying large foundation 
models. These models often have billions of parameters, 
making them too large for hardware constrained problems. 
One strategy would be to tune them for specific tasks. 
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12.4 Why Is It Reasonable to Start 
Now? 
ARD 1. As we move to increasingly complex and automated 
systems for discovery and control, AI must be more self-
guided. The success of large industry models (e.g., as 
discussed in Section 01 of this report, ranging from 
foundation models to property inference and inverse design) 
suggests that we embrace even greater expectations for how 
AI will affect science and engineering. This means 
broadening our expectations for what AI can tune via 
exploring and identifying meaningful prior knowledge, data 
modalities, model structures, learning algorithms, training 
hardware, and UQV&V methods. This ultimately will make all 
steps in the AI pipeline self-guided. 

ARD 2. Without tackling problems of information fusion, our 
AI/ML methods will be limited to standard, supervised, and 
often data-intensive learning approaches where AI learns 
only from data gathered from the target task. Many problems 
of interest cannot provide these datasets due to limitations 
such as that the data is too expensive, does not exist for the 
exact target process, or is too unstructured with poorly 
understood relationships between observables. Recent 
advances in AI/ML have illustrated the power of going beyond 
the standard view of learning (supervised, single-task, data-
centric) to facilitate learning particularly in limited data 
settings [15, 16, 17]. These advances increasingly replicate 
the critical human capability of leveraging prior and disparate 
knowledge sources to draw inferences. 

The possibility of integrating prior knowledge either encoded 
by scientists (e.g., physics-informed neural networks [18, 19]) 
or captured by prior AI tasks (e.g., transfer learning, 
foundation models) is a significant opportunity and necessary 
for three reasons [12]. First, prior knowledge, when 
appropriately applied, fills in gaps in the data, providing much 
better generalizability in AI. Second, prior knowledge can 
constrain (e.g., with physical laws, multi-fidelity models [20]) 
AI systems to make them more trustworthy and predictable, 
as we know they will behave in certain desired ways. Third, 
building upon prior knowledge allows for the scaffolding of 
knowledge that is central to science and engineering. 

Another profound opportunity is the integration of 
heterogenous data from a variety of tasks. Multi-task learning 
methods, like those foundation models, demonstrate the 
single models that learn many different tasks by leveraging 
latent commonalities in tasks [15, 21]. This even allows them 
to perform tasks for which they have not been trained 
(e.g., zero-shot learning). This integration of diverse data 
sources is exactly what we are looking for in autonomous 
discovery to identify novel processes and relationships in 
complex science and engineering data (see Chapter 04). 
While individual task-specific data may be limited, DOE 
facilities are generating exponentially more data from a 

diversity of tasks, and these can be integrated and leveraged 
to train such multi-task learning models. 

ARD 3. DOE has a long history of leadership in UQV&V for 
science and engineering. Leveraging this expertise and 
integrating it into state-of-the-art AI provides a significant 
opportunity to uniquely contribute to AI and harness its 
potential to support ever-increasing demands spanning DOE 
mission areas (see Section 02). We have identified three 
specific directions where the DOE can contribute in the near 
term to maximize opportunities: identifying principled UQ and 
V&V, quantifying and communicating trust for stakeholders, 
and certifying composability. 

First, principled and certifiable UQV&V are central to using AI 
on challenging problems, particularly those in DOE mission 
spaces that involve limited data, out-of-domain predictions, 
and high consequence decisions. Secondly, the lack of 
adequate basis for trust limits the adoption of and ultimately 
investment in AI capabilities by stakeholders. By 
understanding the components of trust necessary to enable 
stakeholders to rely on AI systems (i.e., to quantify and 
minimize risk), we will be able to increasingly integrate it in 
DOE mission spaces. Finally, we see specific opportunities in 
providing robust and certifiable composability of AI systems 
to enable the systems-level thinking that is a central part of 
many DOE mission spaces, ranging from the certification of 
the nuclear stockpile (Chapter 10) to the design of future 
power grids (Chapter 08) to the control of complex systems 
using digital twins assembled from individual component 
models [4] (Chapter 04). 

ARD 4. Resource-constrained problems are common in 
many DOE challenge areas where AI is being applied or 
considered, including control and optimization of complex 
engineered systems, autonomous discovery, AI-at-the-edge 
[22], large-scale foundation models, federated learning [23], 
and surrogate models in high-performance computing (HPC). 
If we do not tackle foundational challenges in understanding 
and navigating trade-offs, DOE will find it increasingly difficult 
to leverage private industry’s rapid advancements in AI due 
to differences in operational requirements. For example, large 
AI models, which have become popular in industry, will 
require significant optimization to fit DOE mission constraints 
like robust operation to adversarial attacks or operating on 
limited computing hardware. Additionally, as AI becomes 
increasing intensive, resources required to train models could 
become unsustainable [15] in terms of data collection, 
computational resources, and efforts needed for V&V. 

12.5 What Is Needed to Start Now? 
12.5.1 GOALS FOR 1–3 YEARS 
Goals include creating AI algorithms, especially for federated 
learning and foundation models, with defined performance 
and computing (e.g., bandwidth, memory, and computation 
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time) constraints at scales spanning from embedded systems 
to HPC.  

 Theory and methods to assess data requirements for an AI 
task. 

 Foundational studies on key aspects of stakeholder trust 
through both AI/ML and cognitive science [24]. 

 Empirical research into scientific data representations and 
multi-task learning for foundation models in science and 
engineering to guide future theories. 

 Algorithms and model forms that allow sequential updating 
of foundation models with new datasets and prototyping of 
new model structures. 

12.5.2 GOALS FOR 3–5 YEARS 
Goals include creating theory and methods to translate 
requirements (e.g., V&V, resource constraints, and 
explainability) from natural human descriptions for self-guided 
and resource-constrained AI. 

 Theory and methods to translate human descriptions of 
prior knowledge into AI models and cost functions. 

 Domain-specific representation of scientific data for 
science and engineering foundation models. 

 Theory and methods to predict transfer learning/multi-task 
learning success. 

 Theory of robust AI that can quantify expectations of 
composability, operational envelopes, out-of-domain 
performance, etc. 

 V&V for the AI/ML pipeline. 

12.5.3 GOALS FOR 5–10+ YEARS 
Goals include creating a common representation of scientific 
data for science and engineering foundation model. 

 Framework for end-to-end self-guided AI for autonomous 
discovery/control that can adaptively tune itself to fit 
different high-level design requirements and resource 
constraints. 
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13. AI WORKFLOWS (EDGE, CENTER, CLOUD)
Any substantial artificial intelligence (AI)-enabled application 
requires many distinct interconnected components, including 
software and systems to collect, process, and prepare data 
needed to train AI models; and processes to update those 
models and make them available to operate on diverse 
platforms, from HPC systems and edge devices [1]. AI 
“workflows” comprise many different programs on multiple 
computing platforms: not just “AI” programs but also 
computational simulations; data discovery, preparation, and 
curation systems; and others. Effectively harnessing the 
advances outlined in Section 01—from surrogate and 
foundation models to inverse design or automated 
laboratories—will not only entail much larger and diverse data 
flows and sources relative to traditional modeling and 
simulation, but will also introduce opportunities for the use of 
AI to optimize, automate, and accelerate the workflows 
themselves. To develop and train such workflows effectively 
will require the creation of digital twins (discussed in Chapter 
04) of the workflows and the underlying scientific 
infrastructure—which is itself a complex engineered system—
with AI-based control systems to design, optimize, and 
operate end-to-end scientific experiments, and innovations in 
workflow system software. 

AI workflows facilitate monitoring and control of experimental 
apparatus (computational and observational), software 
(including AI models), and data sources and flows. A 
particular scientific “campaign” will involve many iterations 
and experiments using these resources in various 
combinations and sequences. The realization of an AI-
enabled campaign thus typically involves a collection of 
workflows, each responsible for the orchestration of elements 
of the campaign’s data and control flow—engaging a variety 
of computers, storage systems, scientific instruments, and 
other devices, from the edge to the exascale. A workflow 
supporting such a campaign is an encoding of the scientific 
method and may ultimately be instantiated in an AI 
foundation model (Chapter 02). A workflow may also be 
considered the broad realization of “programming in the 
large.” It provides the connective tissue to coordinate and 
manage computing and data resources and is the integrative 
glue for the software infrastructure. AI systems for discovery 
will require novel ways to compose workflows, capabilities to 
coordinate computational and data resources, and software 
services, with the ability to support new and diverse 
components, such as post-exascale system architectures or 
quantum computing systems. These novel workflows can in 
turn enable new breakthroughs by automating the lifecycle of 
AI-driven discovery. In this chapter, we identify the 
requirements, capabilities, and challenges as well as a 
conceptualization of a path to accelerate development. 

Workflows and AI are inextricably linked. Workflows directly 
enable AI campaigns in their execution during the inference 
phase (using trained models), but they are also critical in 
setting up training phases to develop AI models and to collect 
the raw material (such as programming language traces) to 
instantiate the AI harnesses needed to develop new models. 
Workflows can include crucial functions such as those 
necessary to determine when AI models drift outside of their 
trained regime and need to be retrained, including generating 
or collecting training data on demand in active learning. 
Concurrently, the AI models themselves can be used to 
optimize future workflows. In addition to fine-grain resource 
tuning, an AI-enabled workflow can include models that 
evaluate and inform coarse-grained resource allocation and 
job placement, determining an appropriate mix of edge, high-
performance computing (HPC) center, and cloud resources to 
complete a federated science campaign. These components, 
and workflows, may in turn use AI models to be automated, 
or “self-driving,” and eventually autonomous [2] as detailed in 
Chapter 05. Moreover, AI models that orchestrate workflows 
and learn failure patterns will enable the workflow to be self-
adapting and self-healing, providing resilience to changing 
conditions in both the computing and communication systems 
and in the science domain. 

Critical research directions in AI workflows from edge to HPC 
center to cloud are discussed below. We expand on why 

PROJECT SPOTLIGHT 
Project Name: Autonomous workflow for single crystal 
neutron diffraction 

PI: Junqi Yin 

Organizations Involved: Oak Ridge National 
Laboratory, National Center for Computational Sciences, 
Computer Science and Mathematics and Neutron 
Scattering Divisions 

Goal: Create an AI-based autonomous workflow at the 
SNS DEMAND instrument for single-crystal neutron 
diffraction studies. 

Significant Accomplishment: Combines an edge-
inference capability with continuous integration to update 
AI models on the Summit supercomputer and present 
them in a user dashboard to control the workflow. 

In the News: Junqi Yin, J., Zhang, G., Cao, H., Dash, S., 
Chakoumakos, B. C., Wang, F., 2022, Toward an 
autonomous workflow for single crystal neutron 
diffraction, presented at the Smoky Mountains 
Computational Sciences and Engineering Conference, 
Kingsport, TN, August 23–25. 
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AI-enabled and AI-driven workflows are important for the 
U.S. Department of Energy (DOE) mission, what is needed to 
bring developments in this field into full realization, and why 
this is the ideal time to accelerate the work. 

13.1 Advanced Research Directions 
in AI Workflows 
The science of workflows—enabling applications with 
functions distributed among multiple networked resources—
has been an active research topic for over three decades. 
The maturity of workflow systems provides insight into how AI 
innovations can address emerging challenges and 
opportunities, such as those arising from unprecedented 
complexity and/or scale or those associated with new 
approaches to AI (Section 01 of this report). 

13.1.1 ARD 1: ESTABLISH DIGITAL TWINS FOR 
DOE APPLICATIONS AND FACILITIES 
WORKFLOWS 
Digital twins (Chapter 04) for workflows will enable AI models 
to be developed to represent, analyze, and optimize the 
operation of facilities and system workflows across the DOE 
complex. Digital twins comprise models for subsystems and 
their interactions within complex engineered systems—such 
as the power grid, an HPC center, an experimental 
instrument—or the resources making up a scientific workflow. 
Establishing digital twins as frameworks for workflow 
development will enable the design, testing, and adoption 
underpinning AI workflow systems with tools, methods, and 
policy parameters to connect facilities more efficiently. 

13.1.2 ARD 2: INSTANTIATE AI SYSTEMS OF 
WORKFLOW CONTROLLERS 
The potential to create foundation models (Chapter 02) 
trained by workflow execution data suggests the potential for 
general-purpose foundation models that can be used to 
create new workflows—that is, a master model that will 
provide control and optimization while using operational data 
from workflows as training data for continuous refinement. 
The workflow master model will include AI-reasoners 
(predictor, classifier, optimizer) for various categories of 
workflow campaigns, including optimization of workflows such 
as control, domain-dependent semantics, resilience to 
disruptions, and resource-constrained operations. Reasoners 
will also monitor science exploration, detect outlier results, 
classify new phenomena, and respond with appropriate 
actions such as launching new tasks for analysis. 

13.1.3 ARD 3: DEVELOP AND DEPLOY AI 
BUILDING-BLOCKS AND WORKFLOW CODE 
GENERATORS 
The DOE complex will need AI-driven cross-facility workflow 
code generators, leveraging the emerging approaches 

described in Chapter 06. We formulate in this activity an 
approach and methodology for science-based AI-driven code 
generators. These will establish specific activities such as 
data collection and reduction at a facility, time-dependent and 
data-dependent processing, and support for autonomous 
feedback loops. The scientific intent of a campaign is in this 
way realized in an instantiated workflow. 

13.1.4 ARD 4: CAPTURE DOE COMPLEX-WIDE 
WORKFLOWS SYSTEM STATE 
Data repositories for edge-to-center operations are critical to 
capturing the programming environment and runtime 
monitoring information of workflow data, and they allow 
expansion to science-driven domain-specific modalities and 
their influence on data. This is vital to improving digital twins 
and setting up training environments for automatic 
instrumentation as well as to the ability to gather information 
for programmatic (workflow-driven) control. 

The broader workflows area of research depends on but also 
drives the realization of approaches described throughout 
Section 01. For instance, collected data will help inform how 
we might construct a workflow to train a surrogate model, 
create a foundation model, or adapt a workflow developed 
within one domain to be applied in a different domain. 

13.1.5 ARD 5: INNOVATE TRUSTWORTHY 
WORKFLOW TECHNOLOGY FOR AI-
ACCELERATED SCIENCE 
Modern science campaigns are iterative, nonlinear 
ensembles of thousands of activities in a complex search 
space that cannot be realized without commensurate 
breakthroughs in workflow science itself. Workflows must 
self-describe, self-drive, self-adapt, and self-heal with minimal 
human effort, thereby providing dynamic initialization, 
execution, switching, and termination of tasks in support of 
active, continual, reinforcement, and foundational learning. 
Workflows of the future will drive the multimodal exploration 
of a problem space, federating foundation models, surrogate 
models, computational models, physical experiments, and 
observational data across multiple sites. Perhaps most 
importantly, workflows must enable trust in their outcomes by 
validating models, flagging uncertain results, and retraining 
models before potential errors are propagated downstream. 

13.2 Why Is It Important? 
Workflows and workflow frameworks capture optimized 
practices for creating, executing, and optimizing scientific 
experiments, enabling campaigns involving many 
experiments. Without explicit workflow support, these 
practices manifest as bespoke systems for individual 
scientific teams. Thus, absent an intentional, comprehensive 
workflow development initiative, DOE’s investments in the 
application of AI systems will involve many redundant efforts 
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producing an inefficient collection of custom software and 
tools to support the immediate needs of each individual 
science campaign. The availability of systematic, domain-
agnostic workflows that are easy to deploy will give scientists 
a straightforward path to designing experiments and 
executing campaigns, accelerating and effectively reinventing 
DOE science and engineering practices using AI tools and 
techniques. 

Building new, world-leading AI systems entails more than 
simply training a single AI model. Every innovation outlined in 
Section 01 of this report and every application detailed in 
Section 02 require a broad range of tasks, from data 
acquisition, aggregation, and curation; to model design, 
development, hyperparameter studies, large-scale training 
and validation studies; and model comparisons, deployment, 
and continuous learning. For the many campaigns that 
require observational data from user facilities, field 
laboratories, and other instruments, AI workflows also include 
integrating the AI models running in edge systems 
(e.g., providing in situ data analysis and real-time control)—
potentially involving the orchestration of hundreds or 
thousands of such components and their data flows. 

Many and varied needs are converging on not only optimizing 
workflows for AI but also using AI to optimize the workflows 
themselves: 

 Domain communities must compose dynamically updated 
AI models for systems control and surrogate model 
development. 

 Workflows are needed to couple multiple spatial and 
temporal scales, from real-time control of observational 
sensors (beamlines, scopes, radars, etc.) in experiments, 
to scheduling computing facilities, to responding to 
disruptions and load demands in nationwide energy grids. 

 AI is making it possible—indeed, necessary —to mix and 
match hybrid models that require auto-selecting control 
set-points and appropriate surrogates, forward simulations, 
data proxies, hyperparameter optimizers, and so on. 
Campaigns will be optimized on the fly, requiring a deep 
understanding and improvement of the state of the art in 
workflows. 

 For data protection in edge-to-multi-exascale campaigns, 
federated learning models are required, and these will be 
implemented as workflows in and among protected and 
sensitive data facilities. 

 In many instances, scientific communities will collaborate 
on building, training, and using foundation models 
(Chapter 02), which will require workflows for training from 
diverse, multimodal data sources, with tasks ranging from 
data provenance to evaluation and training for specific 
downstream tasks (see Chapter 19: Data Infrastructure 
and the concept of active collective memory). 

There are significant data and model management 
challenges for workflows [3] as they orchestrate the data, 
system, middleware, and applications, functioning in a real 
sense as the operating system of a set of related complex, 
distributed AI functions and resources. These functions of AI 
workflows can be illustrated by considering a sample of the 
capabilities described in Section 01 for the new AI 
approaches, requiring workflow technology that can: 

Create and deploy surrogate models. Training and 
incorporating surrogates [4] in forward simulations or data—
integral to digital twins—requires effective workflows to 
incorporate multimodal training data and AI models for 
inference, updating them systematically with on-line training. 

Deliver foundation models and move toward general 
applicability. To create and refine foundation models that 
are generally applicable across domains will require adapting 
the end-to-end workflow with training data from a diversity of 
experiments within a particular domain or set of domains. 
Here, general-purpose workflow frameworks are essential to 
support the equally diverse community of scientists and 
teams collaborating to build and use shared foundation 
models. 

Address questions of inverse design. Inverse design 
models capture data representing prior experience to improve 
system processes and rules–effectively playing a generative 
workflow in reverse. This is an unexplored area with 
transformative potential detailed in Chapter 03. 

Design, engineer, and execute complex experiments and 
manage complex engineered systems. Timescales of 
workflow control and execution may vary from minutes to 
weeks. Operating with diverse data types and modalities, 
geographically distributed facilities from edge to center 
require AI models that are continuously trained by data from 
experiment iterations incorporating deep “understanding” of 
the dynamics of various classes of experiments as necessary 
to optimize, respond to disruptions, and ultimately make 
structural and procedural improvements to the workflow. 

Develop autonomous laboratories. The use of AI to 
automate laboratory experiment campaigns will entail AI 
workflows involving not only traditional components such as 
data collection, analysis, and operation but also the operation 
of traditionally stand-alone laboratory equipment. This will 
require incorporating new application programming interfaces 
and even instrument operating systems into the control, 
monitoring, and adaptation workflow functions. 

Create AI for (and through) programming automation. 
Creating AI models that can assist with, or carry out, software 
engineering and programming tasks will also require 
workflows that manage and prepare training data. The critical 
nature of software throughout every layer of infrastructure 
and experiment also underscores the importance of workflow 
functions that evaluate correctness, robustness, and security 
vulnerabilities. 
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13.3 Why Can’t It Be Realized Now? 
Workflows are currently static in definition. We do not yet 
have the methodology to respond to changing science needs, 
the AI models to inform the workflow, or mechanisms to 
harness data about experiments for training the AI model 
responsible for optimizing the workflow. These building 
blocks, in turn, are needed to fully realize the potential for AI 
models that can design new workflows, predict or detect 
flaws, and optimize workflows over time. Consequently, the 
use of AI in workflows would require individual domains to 
create their own bespoke systems, resulting in a number of 
challenges, including: 

 Surrogate generation and construction are tied closely to 
the particulars of the domain and need deeper 
generalization research to apply to other domains. 

 Complex systems are diverse in resource use and 
heterogeneity; their control through workflows driven by AI 
needs a further systematized definition of workflows and 
their operations. 

 Foundation models are only beginning to be used for 
particular functional tasks; how we might have foundation 
models support multiple functional domains is an unsolved 
problem. 

 Large-scale AI for workflows is a field hampered by the 
manner in which traditional AI currently operates for 
simulation campaigns and well-known datasets. Edge-to-
center workflows will need a training-to-inference loop, and 
this is still an area of active research. 

 Autonomous systems and their control workflows are 
unable to generate training data because most systems—
both software and hardware—are not sufficiently 
instrumented. 

 Code generation with AI is in its infancy, and development 
of programs for heterogeneous resource-constrained 
platforms is as yet a nascent area of research. 

13.4 Why Is It Reasonable to Start 
Now? 
AI models outperform humans on tasks that range from the 
mundane to those that were only recently regarded as 
uniquely achievable by humans—such as on-the-fly language 
translation or prompt-based image generation. The stunning 
pace of these advances surprises even researchers familiar 
with the underlying mathematics and recent history. Applying 
these principles to scientific systems—which differ 
significantly from natural language processing—could enable 
DOE to create AI models with the goal of outperforming 
humans in efficiently programming supercomputers, 
analyzing results, and even in formulating promising scientific 
hypotheses, thereby automating workflows for a significant 
fraction of the process of computational scientific discovery. 

These advances, and others described in Sections 01 and 02 
of this report, are decadal in nature.  

The AI models described throughout this report will require 
extensive computational resources for training and execution, 
with the potential for inverse design capabilities that could 
themselves be used to propose both improvements in 
resource use and new designs for resources—from 
instruments to supercomputers. These designs could, in turn, 
drive AI-enabled automated design and manufacturing to 
orchestrate their construction, operation, and use. 

For the scale and uniqueness of DOE mission areas, the 
realization of these advances will require building 
infrastructure to support the embedding of AI in workflow 
systems, incorporating performance and results data to 
continuously self-train, and advancing workflow technology to 
enable further breakthroughs in the use of AI for DOE 
mission areas. Ultimately, an AI model for adapting, or 
creating new, workflows for a scientific campaign will 
incorporate the coding of its subsystems as well as execution 
provenance and workflow descriptions. We may imagine an 
AI-driven workflow controlling scientific exploration of a single 
problem on a single supercomputer. This trajectory might 
begin with a scientific seed prompt (SSP), from which AI 
identifies three component classes to satisfy the prompt: 
(1) the known—parts of the problem that have been solved 
and can be reused, (2) the discoverable—the parts of the 
problem known to be solvable but for which the answer must 
be sought by generating code and running it on a 
supercomputer, and (3) the unknown—the parts of the 
problem that cannot currently be solved and in the immediate 
term require human intuition. As much as possible, AI would 
operate this workflow independently and generate discovery 
artifacts for review by scientists. Human-machine 
collaboration will be required to explore the unknown and 
advance beyond it. 

We are at the start of a decade in which we find workflows 
proliferating across the DOE complex, while at the same time 
pockets of AI-driven work are appearing at specific steps 
within these workflows. We must create research and 
development activities that connect workflows and AI 
(Figure 13-1). The workflows community has matured and is 
converging on an action plan [5, 6, 7, 8]. Integrated research 
infrastructure (IRI) needs across DOE’s Advanced Scientific 
Computing Research (ASCR) community are driving the 
expanded deployment of workflows. The need for AI-driving 
and AI-driven interfaces, encapsulators, and descriptors to be 
composed flexibly—to be tracked and trained for prediction 
and altering of campaign trajectories—will grow significantly. 
It is most fruitful to start now to guide the tools and 
technologies as they emerge.  
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Figure13-1. Resource-optimal AI workflow. 

13.5 What Is Needed to Start Now? 
Workflows will be the glue to connect facilities and systems 
across the DOE complex. These workflows will be operated 
by large-scale AI foundation models that will be continuously 
trained by data from the execution and results of workflows. 
This transformation will require the following immediate steps. 

 Establish digital twins and virtual environments for a set of 
several specific scientific workflows that are characteristic 
of experiments already operating in distributed fashion 
today. The digital twin will emulate the various parts of 
each pilot system, including both edge-to-center and cross-
facility campaigns. The objective of these pilots will be to 
create an initial set of AI models that execute and learn 
from experiment iterations, and in turn can be evaluated for 
use in other campaigns with similar characteristics. In 
addition, it will drive the development of descriptors and 
operators specifying operations and characteristics of the 
workflow’s constituent computing and experimental as well 
as the operations associated with data sources, flows, and 
curation. This will enable experiments to evaluate the 
mechanisms for defining workflows, including languages 
used, methods for expressing science goals, performance 
evaluation methods, and composition frameworks to 
identify and capture opportunities for autonomy. 

 Design and deploy the first AI-based workflow controllers 
for DOE facilities. This effort will create several initial 
foundation models and associated systems for various 
categories of workflow campaigns. This would include 
optimization of workflows to include control, domain-
dependent semantics, and resource-constrained 
operations.  

 Research and develop next-generation workflow software 
systems capable of dynamic control and the dynamic data 
services needed to support data generation, model 
generation, model training, inference, and analysis with a 
maximum of autonomy and resilience. 

 Instantiate a data repository of edge-to-center operations 
to capture programming environments and runtime 
monitoring information for workflow data and allow 
expansion to science-driven domain-specific modalities 
and their influence on data (Figure 13-2). This will address 
data collection, curation, and generalization challenges and 
shed light on the closed-loop need for datasets for AI, 
which will in turn modify and control workflows.  

 
Figure13-2. Edge-to-center operation (image courtesy of R. Churchill et al. 
2021 [9]). 

These initial experimental digital twins of intra-facility 
workflows (e.g., to create an associated foundation model) 
and inter-facility workflows connecting DOE facilities will help 
create the smart workflow systems required for the DOE 
community to achieve the potential breakthroughs fueled by 
the approaches described in Section 01. The resulting 
workflow systems will free the scientist from committing to 
hard choices early in the campaign (guiding the campaign 
with data/compute/surrogate choices) and create the 
capability to traverse resource-limited and sensitive 
(e.g., national security) environments (restricted data, edges, 
low-power). 

The advances in workflow definition methodologies will also 
be essential to accelerating progress in AI-generated code 
(Chapter 06). 

In five to ten years, we will need to establish ways for data 
from workflows in the field to be collected in a repository to 
feed AI models. Foundation models will be able to operate in 
a test environment to explore their applicability. We will move 
to a deeper specification of complex workflows that can be 
explored and analyzed to bridge data-driven insights with the 
physics-driven observations (Figure 13-3). This richer 
understanding will allow new developments in the domain 
and in AI that both enable workflows to adapt to emerging 
needs (dynamically as well as in their design) and allow them 
to become a seamless part of the scientific discovery 
process.  
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Figure 13-3. Bridging physics principles and observations with 
workflows. Image courtesy of Rama Vasudevan [10]. 
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14. DATA ECOSYSTEM 
Fully realizing the potential of artificial intelligence (AI) for 
U.S. Department of Energy (DOE) missions requires mission-
relevant data in forms and formats that can enable the next 
generation of AI systems. This is challenging, as DOE data 
are complex, combining simulations, observations, and 
experiments across a vast array of facilities, disciplines, and 
security requirements, and in many cases spanning decades 
of experiments, observations, and multiple generations of 
instruments. This heterogeneity of sources, disciplines, 
scales, and data types limits our ability to fully use DOE data 
for the development of present and future AI systems. 
Moreover, the high volume of data produced by DOE facilities 
is already too large to fully analyze. This dilemma will only 
intensify as future facilities come online, producing mission-
relevant data that will be too large, too complex, and too 
fragmented to use effectively.  

Consequently, there is urgent need for DOE to develop an AI-
driven data ecosystem as a comprehensive solution for the 
many aspects of managing and using this critical data to fully 
exploit the potential of AI and drive advances in strategic 
areas of research and economic competitiveness. This data 
ecosystem must be structured around using AI to manage the 
complete lifecycle of data, comprising: 

 A DOE complex-wide and accessible data universe with 
open standards, intelligent archiving, and built-in 
safeguards for security and privacy. 

 AI-enabled data librarians that assimilate new data while 
identifying gaps in the completeness of that data. 

 The use of AI for curating, annotating, and maintaining 
these data and their provenance to help ensure their 
longevity and usefulness. 

 AI-enabled methods for data navigation, visualization, 
transport, integration, and delivery that enable these data 
to be easily utilized and leveraged. 

 AI-enabled data search to find the data relevant to training 
or driving an AI model. 

 Machine readable interfaces to enable automated access 
to interpretation of, and use of the data. 

This comprehensive, AI-driven data ecosystem would have 
profound impact on the DOE as it is requisite for the 
development of AI systems harnessing any and every 
capability detailed in Section 01 of this report. Acquiring the 
ability to automatically manage and intelligently stage 
federated and distributed data will enable groundbreaking 
results in both scale and impact. The breakdown in barriers to 
data will democratize data and fully engage the DOE 
workforce, enabling a strong sense of mission and 

engagement. Novel methods for AI-driven maintenance, 
curation, and modernization of the data will drastically reduce 
data wrangling costs, thereby enabling a more efficient AI 
model development cycle. The use of a data-historian and AI-
driven search will enable both legacy and currently generated 
data to be used and visualized more effectively. The DOE 
scientific community, empowered by an AI-driven data 
ecosystem, will make, keep, and find the right data at the 
right time for the right problem. 

14.1 Advanced Research Directions 
in Data Ecosystem 
Developing an AI-driven data ecosystem to manage critical 
scientific and economic data presents considerable scientific 
and technical challenges. The role of AI is fundamental to the 
success of this ecosystem due to the ability of AI models to 
perform tasks at a scale that is well beyond what manual data 
librarians can achieve. The information that must be 
managed has already scaled to exabytes in magnitude, 
creating the need for a holistic data strategy that enables 
capturing the potential that this data represents. The 
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Advanced Research Directions (ARDs) that follow focus on 
key areas necessary to create, optimize, and leverage such a 
data ecosystem. 

14.1.1 ARD 1: THE DOE DATA ECOSYSTEM 
The primary need is for a complex-wide data universe, built 
upon open-standard hardware and software, that brings the 
profusion of DOE data to the AI researcher’s fingertips. Such 
an exabyte-scale data universe requires novel global data 
management and data infrastructure that can locate and 
deliver relevant data in usable forms for modern workflows. 
As detailed in Chapter 13, these workflows often couple 
multiple independent analysis codes, experiments, or 
simulation models. They are often distributed across multiple 
platforms from supercomputers to edge processors and must 
adhere to strict security and privacy concerns. These 
requirements greatly increase the complexity of creating this 
universe, which means that AI systems are necessary for 
optimizing the layout and management of the ecosystem. 
Simply put, the data ecosystem is a “complex engineered 
system” with the properties, and AI approaches, described in 
Chapter 04. 

14.1.2 ARD 2: AI DATA LIBRARIANS THAT 
IDENTIFY GAPS AND COLLECT DATA 
Given a comprehensive data universe, research is needed to 
develop an AI system that will locate existing data across 
multiple sources, assess its relevance for a given task, and in 
the process identify (and help to fill) any gaps in coverage. 
Prior to running an experiment, a DOE researcher should be 
able to know whether it has been carried out before and if the 
data exist already. 

14.1.3 ARD 3: AI DATA LIBRARIANS THAT 
CURATE, MANAGE, AND ANNOTATE DATA 
Data in the DOE ecosystem will also require annotation with 
metadata to enable rapid AI-driven searches. When data are 
incomplete, the AI librarian will generate complementing data 
and construct a data production workflow that integrates 
experiments and simulations through code composition. The 
data ecosystem must also support workflows that 
automatically and intelligently move data to where it is 
needed, for instance, from a user facility at one laboratory to 
a computational facility at another, and from there into a DOE 
data ecosystem storage cache that may be at a third location. 

14.1.4 ARD 4: AI FOR DATA NAVIGATION AND 
MEANING 
AI approaches such as those described in Section 01 will 
greatly facilitate the requirement that data are searchable and 
visualizable, thus bringing meaning/importance to the 
researcher. These data will have open standards, while 
safeguarding both proprietary and security concerns. 
Workflows will prioritize the ability to bring in wide varieties of 

data to develop a comprehensive view of the research 
direction. An AI-powered data navigator should automatically 
highlight important features and help the researcher make the 
most of the data. 

These ARDs will require the use of every approach outlined 
in Section 01 and will, in turn, be critical to the scientific and 
engineering mission objectives laid out in Section 02. 

14.2 Why Is It Important? 
The lack of a comprehensive AI-driven data ecosystem is 
already weakening national competitiveness in several ways. 
Currently, high-performance computing (HPC) systems do 
not support the data usage patterns needed for AI at scale, 
for instance, to train surrogate (Chapter 01) or foundation 
(Chapter 02) models. This gap prevents basic capabilities 
such as controlling and optimizing complex systems 
(Chapter 04), or developing inverse design methods 
(Chapter 03), all of which require high volumes of multi-modal 
data for model training. Absent a data ecosystem as 
described above, our capacity to harness multiple datasets 
into a comprehensive and more accurate view of the 
problems of interest is limited.  

The lack of a common data ecosystem infrastructure creates 
structural barriers that impede research. A unified ecosystem 
with a built-in transferability and portability will streamline the 
process of managing data and workflows. This ecosystem, to 
be built on commonly accepted standards, will enable code 
development (required for the application of AI methods to 
programming and software engineering, described in 
Chapter 06) and workflow. This ecosystem will, in turn, 
improve reusability, ultimately increasing efficiency and 
accelerating scientific discovery. Given the rich datasets that 
are currently managed by DOE, investments will be needed 
to ingest the wide variety of existing formats and thus make 
them more widely accessible to broader research 
communities. 

The scale and velocity by which data are being generated 
compounds these structural problems. With the data 
ecosystem infrastructure described above, the data 
generated will be fed directly into surrogate models to 
evaluate and modify experiments, optimize the operation of 
user facilities, or even to improve the efficiency of an 
autonomous production plant. Directly coupling data creation 
and evaluation and use through AI models will provide new 
opportunities, as well as challenges that differ from the 
traditional approach of archiving data before its use. 
Supporting a move to this new paradigm will require new 
methods to facilitate tighter integration between the 
computational and experimental instruments that produce 
data, the AI models that perform analysis, and the AI-enabled 
data storage and management systems comprising the data 
ecosystem. Lacking these integrated capabilities, the AI-
based tools and platforms that are currently being developed 
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will be limited in scale and application, at best addressing 
narrow problems or those that are of limited relevance to 
DOE’s science, energy, or security mission needs. 

Data curation is the most resource-intensive component of AI 
research, requiring many experts, as selecting the right data 
requires considerable knowledge of science goals and AI 
techniques. For many research domains, wrangling data into 
useful forms can dominate the timeline of work required to 
create, optimize, and train an AI model. As detailed in the 
context of software development in Chapter 06, the use of AI 
systems for these labor-intensive tasks will not only improve 
productivity and reduce timelines, but will also reduce errors 
and ultimately result in models that can create new and more 
effective methods (as described in Chapter 02 with respect to 
foundation models). 

The use of AI systems to resolve research or production 
questions more quickly will create agility in several areas. 
Often, experiments (whether with laboratory instruments or 
computational models) are duplicated or employ sub-optimal 
methods due to the inaccessibility of data and optimization 
insights from similar experiments. Realizing efficiencies in 
these areas will help remove barriers to accessing AI-based 
knowledge creation—barriers that DOE and its researchers 
face in rolling out technology developments to industry and 
other partners. 

Below are examples of the benefits of a comprehensive data 
ecosystem. 

Pervasive data collaboration and increased 
transparency. Projects with smaller databases need data 
improvement to use AI effectively. Activation barriers will be 
reduced by making more effective use of effort and expertise. 
Better utilization of archival experience across the DOE 
complex will enable DOE to parlay this expertise to yield 
benefits years after initially applied. 

Low latency between data and decisions. Active learning, 
as required for nearly every AI approach discussed in Section 
01, requires responsive, intelligent data sources. The 
amount, size, and rates of data will vary between challenges, 
making one-size-fits-all solutions unrealistic. The AI-enabled 
data ecosystem will enable the mixing of multiple sources 
and allow the level of effort required to be more easily 
recognized to realize a research goal. The mixing of data 
from many sources requires coherent interfaces for quality 
assurance. The data ecosystem must also track provenance 
and detect potential vulnerabilities such as the accidental 
inclusion of bad or intentional insertion of “poison” data [1]. 
The data management systems must acquire the ability to 
learn when and how to trust the data as a filter. 

Reduced data wrangling for surrogate modeling. The 
ecosystem will significantly reduce the time it currently takes 
to prepare data for model training and improvement. Steps 
that need to be optimized include: 

 Gathering the data needed across disparate sources. 

 Transforming the data. 

 Evaluating the data/building validation datasets. 

 Connecting to active learning data. 

 Dealing with data of different scales and modalities. 

 Building persistent databases and data movement in 
surrogate computational infrastructure 

Hardware and software capable of handling massive 
datasets. The infrastructure needed to handle massive 
datasets has several requirements. The data ecosystem will 
provide hardware and software that enables:  

 Filesystems capable of massive and random-access reads. 

 In-transit processing capabilities. 

 Smart storage: that is, computing that is devoted to 
managing the data. 

 Autonomous learning that makes the data subsystems 
work better. 

 Anticipation of data needs for new applications. 

 Intelligent search capabilities and automatic metadata 
inference. 

Foundation models for DOE experimental facilities. A 
potential benefit of AI foundation models (detailed in 
Chapter 02) is the ability, once trained to critical mass, to 
capture, maintain, and preserve all of the experimental data 
from user facilities. Establishing this element eliminates the 
loss of usable information, in that it preserves the entire 
storage of generated experimental data at today’s production 
rates. This effort will require: 

 Development of good, heterogenous data production 
test beds that assimilate the results from multiple 
complementary experimental facilities and domains.  

 Foundation models that operate on heterogenous and 
distributed computing and storage infrastructure. 

 Comprehensive data policy that preserves privacy and 
security concerns. 

 Resiliency and consistency for data storage across the 
facilities. 

 The leveraging of industry innovations where possible. 

 Reproducibility and validation capabilities. 

 Clear definitions of what constitutes a self-supervision 
learning task for each modality of multi-modal data. 

 Invariants between data fields—rules for physics 
constraints within multi-modal data. 

14.3 Why Can’t It Be Realized Now? 
There are several barriers to developing this comprehensive 
data ecosystem. Much of this challenge arises due to the 
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wide variety of DOE research and production efforts. This 
diversity creates several requirements that must be 
managed. Security considerations involving classified, 
proprietary, and scientific results further complicate data 
usage. These considerations and others have resulted in 
individual facilities developing their own methods of 
collecting, curating, and archiving data. DOE currently lags 
behind industry standards and best practices; however, with 
significant investments, the opportunity exists to leapfrog 
industry. One common concern with respect to promoting 
data access across multiple fields is that domain scientists 
are not accustomed to sharing data due to a lack of protocols 
and standardized tools. This state of the practice is 
complicated by current solutions, which are typically ad-hoc 
and domain specific.  

Current repositories do not enable real-time access to data, 
do not capture the dynamic nature of data that changes over 
time, and cannot access data in different granularities. In 
addition, there is no current way to query data repositories 
efficiently to bring relevant data to the forefront that can help 
researchers with novel situations. Another major concern is 
data sparsity, where many surrogate models train on 
incomplete datasets. This is the case when there are only a 
few data points measured. The lack of access to large 
datasets is of particular concern to developing foundational 
models. Uptake of findable, accessible, interoperable, and 
reusable (FAIR) data standards has been slow, in large part 
due to the large investment in resources needed to modify 
current data and data collection pipelines [2–5].  

Because metadata and data standards are not uniform 
across the DOE complex, an AI-enabled data ecosystem (if it 
existed today) would suffer from data sparsity. The current 
repository systems do not capture enough information to 
enable users to determine whether a dataset has been 
generated by experiments or is a synthetic dataset, with 
many lacking even basic information like authorship, origin, 
and data types and limitations. Solutions need to integrate a 
multilayer metadata approach to enable users to handle 
sparsity in training data. 

14.4 Why Is It Reasonable to Start 
Now? 
The need for developing a DOE-wide, comprehensive, AI-
enabled data ecosystem has become acute. Across the DOE 
complex, there is a push for DOE assets (whether from 
microscopy to HPC assets or from neutrons/light sources to 
HPC assets) to become more interconnected [6, 7]. 
Expanding integration with other federal agencies and 
partners is also driving the need. The great strength of DOE 
is its ability to create large interdisciplinary teams and pair 
them with cutting edge infrastructure to solve problems that 
span the needs of the federal government. The 

comprehensive data ecosystem will greatly facilitate the 
ability of DOE to help our federal partners. 

DOE expertise with HPC is one such asset. DOE 
computational facilities at the Office of Science (SC) and 
Office of Defense Programs (DP) are widely used in scientific 
and national security areas for addressing a wide range of 
problems. Their experience with high-end computing enables 
them to manage exascale and similar large data flows. By 
lowering the data barriers to helping our partners, we enable 
utilization of larger datasets from more sources. This 
expansion will provide unique solutions to the data needs, of 
which foundation models are an important example. These 
facilities offer performant HPC for achieving faster training, 
higher-accuracy models. This capability enables training with 
enough speed that these surrogate models can be used in 
ongoing simulations/experiments. 

DOE is well poised to construct an AI-enabled data 
ecosystem through success in multiple avenues of data 
science. It already has preliminary success applying its 
expertise in areas of national impact. Following are areas 
where DOE is making impacts through the use of AI and 
machine learning (ML). All of these grand challenge areas 
require advances in this data ecosystem to realize success. 

 Optimization of manufactured/synthesized material 
microstructure and properties [8].  

 Nuclear deterrent systems that are survivable in radiation 
environments.  

 Optimization of electrical grid operation under evolving 
demand environments. Grid storage field data are fed back 
to design efforts at DOE labs. 

 National Institutes of Health (NIH) interactions, particularly 
in response to infectious diseases, such as Covid-19. 

 Climate solutions such as carbon sequestration and better 
understanding of climate processes. 

DOE’s current involvement in these foundational areas is 
strong motivation for beginning immediately on developing an 
agile and robust AI-driven data ecosystem. This data 
ecosystem will greatly assist current DOE mission areas. 

14.5 What Is Needed to Start Now? 
Following is a roadmap of near-, medium-, and long-term 
goals that need to be realized to accomplish the objectives 
outlined in this chapter. 

14.5.1 GOALS FOR 1–3 YEARS 
Short-term goals include efforts to: 

 Establish policy involving data standards and privacy, 
proprietary, and security concerns for both experimental 
and simulation data. 
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 Begin creating a database and training a data curation 
engine by leveraging existing standardized databases in 
select vanguard fields, such as astronomy and high-energy 
physics. 

 Research low-latency data retrieval and movement 
systems, including advanced data compression algorithms. 

 Begin building AI-based query models for scientific data 
that can locate and assess data relevance from new user 
queries on select, curated databases.  

 Create a data validation framework and capabilities that 
can detect faulty and/or incomplete data and perform 
testing on curated databases. 

14.5.2 GOALS FOR 3–5 YEARS 
Medium-term goals include efforts to: 
 Extend curated databases and engines to account for 

multimodal data, including published data. 

 Develop automated pipelines and infrastructure for 
continual data imputation and augmentation.  

 Develop interfaces for enabling scientific data search using 
context-aware natural language queries. 

 Develop visualization tools for exploring the available data. 

 Establish common data interchange formats. 

14.5.3 GOALS FOR 5–10 YEARS 
Longer-term goals include efforts to: 

 Test and validate data retention policies as facilities 
upgrade. 

 Couple data infrastructure and AI librarians to enable self-
improving search models. 

 Incorporate data across the DOE complex and across 
classification levels. 

 Build configurable data preparation and augmentation 
pipelines, including a recommender model that can 
interrogate the available data for data 
selection/recommendation/classification/labeling [9]. 

 Complete the DOE data ecosystem, searchable via natural 
language queries. 
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15. AI-ORIENTED HARDWARE ARCHITECTURES 
Over the past several years, artificial intelligence (AI) has 
begun to show significant potential to enable a sea change in 
computational science and engineering, allowing scientists to 
address critical questions in national security, energy 
security, and leadership science with a level of agility and 
accuracy that will fundamentally change how we address 
risks in an uncertain world. These advances, detailed in 
Section 01 of this report, also require fundamental changes in 
the nature of scientific applications and workflows, both 
exploiting new hardware architectures and involving new 
forms of data flows and shifts in computational methods, such 
as the use of surrogate models. The scientific, energy, and 
national security challenges to which AI can make 
groundbreaking contributions are numerous. Fully realizing 
them—supporting these new forms of applications and 
workflows—will require revolutionary advancements in AI-
oriented hardware architectures. These advances are driven 
by requirements spanning the new approaches described in 
Section 01 as well as the crosscutting areas detailed in 
Section 02. 

The U.S. Department of Energy’s (DOE’s) approach to 
developing and deploying computational resources also must 
be revisited, particularly with respect to the “co-design” 
methodology. Deep co-design for the Exascale Computing 
Project (ECP), has resulted in breakthroughs in cluster-level 
and even node-level architecture, system software, workflow 
tools, and applications, but with limited influence over the 
central/graphical processing unit (CPU/GPU) design—
designed and produced for consumer workloads. To fully 
harness new AI approaches (Section 01) to reinvent the 
broad and diverse scientific, energy, and security domains 
outlined in Section 02, the co-design process and timeframes 
of interactions must extend to the CPU/GPU design and 
beyond to encompass new materials and techniques 
necessary for future zeta-scale machines, which are to be 
constructed within rational constraints with respect to costs, 
especially power.  

15.1 Advanced Research Directions 
in AI-Oriented Hardware 
Architectures 
Each of the fundamental AI approaches described in 
Section 01 promises unprecedented advances across the 
entire suite of DOE scientific domains detailed in Section 02. 
These six AI approaches present unique challenges with 
respect to the hardware architectures underpinning those 
advances. Preliminary analysis of the requirements in each of 
these areas, for example a growing number of large-scale 

industry-driven AI models, suggests a need for three orders of 
magnitude improvement in computational efficiency over the 
next 15 years. This is driven by the need to support the 
magnitude of processing required for training of brain-scale 
neuro-symbolic models, such as surrogate (Chapter 01) and 
foundation (Chapter 02) models. These advances will only be 
realized through Advanced Research Directions (ARDs) 
targeting optimizations for unique DOE needs and major 
improvements in energy-efficient computing from the edge to 
the largest-scale high-performance computing (HPC) facilities. 

15.1.1 ARD 1: ARCHITECTURES OPTIMIZED 
FOR DOE 
DOE has unique hardware architecture needs that are driven 
by the complexity of our HPC and AI applications, which 
comprise massive multi-scale modeling and simulation and 
the integration and analysis of experimental data necessary 
for training of AI models for specific domains (many unique to 
DOE). Architectures that support these capabilities will push 
the limits of extreme heterogeneity, reconfigurability, and 
DOE-specific optimizations: 

 True hardware reconfigurability, enabling frictionless 
composition of discrete components of the hardware; 

PROJECT SPOTLIGHT 
Project Name: Flexible neuromorphic computation in 
networks of superconducting oscillators 

PI: Christoph Kirst and Co-PI: Dilip Vasudevan 

Organizations Involved: Lawrence Berkeley National 
Laboratory and the University of California–
San Francisco  

Goal: Design and evaluation of superconducting 
oscillatory networks using collective dynamics principles 
of neural activity. 

Significant Accomplishment: Designed hardware for 
superconducting oscillatory neural network with pixel 
error detection for image recognition and software for 
modeling the superconducting oscillatory computing.  

In the News: One of the five teams selected for DOE 
neuromorphic computing funding (awarded for two 
years). R. Cheng, C. Kirst, and D. Vasudevan, 2022. 
Superconducting-Oscillatory Neural Network with Pixel 
Error Detection for Image Recognition, presented at 
Applied Superconductivity Conference (ASC 2022), 
Hawaii, October. 
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 Specialized micro architectures and components (chiplets, 
analog, non-von Neumann, compute in network/storage);  

 Symbolic and probabilistic computing;  

 Able to run in harsh environments (radiation and/or 
vacuum); 

 Uncertainty quantification (UQ)-capable processing 
elements; 

 Hardware-enabled trust.  

15.1.2 ARD 2: ENERGY-EFFICIENT COMPUTING 
(EDGE TO HPC)  
DOE must lead the nation in energy efficient HPC and edge 
computing. Current technology trends are realizing a slowing 
in energy efficiency that will cause our competitiveness in 
science, energy, and security to stagnate. This must be 
addressed through a focused set of research topics: 

 Edge computing platforms that are as capable as today’s 
multi-petaflop systems. 

 An ability to dynamically control numerical precision, 
frequency, and resiliency for total dissipated power.  

 Alternative hardware (analog, non-von Neumann).  

 Massive increases in compute density within a fixed power 
budget. 

 Differentiable computing hardware from the gate to 
component level. 

 New materials and approaches to support ultra-low-power 
computation both in the aggregate (HPC systems) and at 
the edge (battery/solar powered devices). 

Deep co-design of each of the DOE AI approaches alongside 
the ARDs will be necessary to meet the performance, 
scalability, resiliency, and reliability requirements they 
impose. To date, efforts and investments from industry have 
been driving rapid advancement in AI-oriented hardware 
targeted at a limited number of general-purpose use cases, 
such as recommender systems, speech and image 
recognition, and language translation. The financial benefits 
have driven industry to create more specialized AI-oriented 
hardware for these specific use cases (e.g., tensor cores, 
bfloat16 data format, low-precision/low-bandwidth data 
processing units [DPUs], etc.). 

This hyper-optimization for divergent workloads in isolation 
will have limited benefit for DOE’s diverse, unique set of 
science, energy, and security grand challenges. 
Advancements driven by strategic national priorities, such as 
many of those outlined in Section 02, will benefit from some 
facets of industry work, such as data management and 
workflow systems for training large-scale surrogate or 
foundation models, conceptual architectures for digital twins, 
or advanced transformers, but their application to DOE 
domain areas will require significant adaptation and, in some 

cases, a complete refactoring. Such efforts are under way in 
other countries, notably in China, where industry, academia, 
and government laboratories are inextricably connected. 
China’s “New Generation Artificial Intelligence Development 
Plan” was established in November 2017 and coordinated by 
the Ministry of Science and Technology [1]. As of November 
2022, China is the world’s largest producer of super-
computers, and Chinese supercomputers dominate the 
TOP500 rankings—hosting 160 systems, nearly twice the 
number of U.S. systems [2]. DOE’s ECP program has kept 
the U.S. competitive for traditional simulation and modeling, 
but today must be augmented to pivot to new AI approaches, 
without which the United States will most certainly decline in 
national competitiveness [3]. China, Japan, and the European 
Union continue to make bold bets on AI, which represents an 
opportunity to erase, if not leapfrog, decades of 
U.S. leadership—largely reliant on the DOE complex. 

15.2 Why Is It Important? 
Here, we walk through the six new and emerging AI 
approaches detailed in Section 01 of this report, noting the 
hardware architecture demands unique to both the approach 
and the DOE target domain areas (Section 02). 

AI and Surrogate Models for Scientific Computing 
(Chapter 01) require rapid inference using large, complex 
models [4][5][6] that are trained on data from instruments and 
simulations on a massive scale. UQ [7] and training robust 
models bring unique requirements that require hardware 
innovations to support multi-path AI training [8] in which data 
is labeled with probability distributions. and training is 
conducted across multiple discrete samples of the 
distribution. Large-scale training data with uncertainty 
distributions can be generated with microarchitecture 
advances that are transparent to the simulations used to 
generate them [9]. These active learning workloads will 
require frictionless composition of discrete components of the 
hardware, such as UQ-capable processing elements, neural 
network accelerators, and high-performance memories that 
are shared across these components, driving the need for 
memory-rich, chiplet-based architectures that are 
composable at runtime (Figure 15-1). These advances will 
enable massive scale UQ ensembles to be run in line with 
active learning workflows that train models on the 
distributions generated by these ensembles, ultimately to 
generate AI-based surrogates capable of achieving multiple 
orders of magnitude higher performance than traditional fine-
grained modeling techniques.  

AI Foundation Models for Scientific Knowledge Discovery, 
Integration, and Synthesis (Chapter 02) outlines some of the 
most demanding computational and data requirements in 
existence. Just a few years ago, the BERT [10] model, a 
forerunner of modern foundation models, was the largest 
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sequence-to-sequence model in existence, with 110 million 
parameters. Google broke the one billion mark in 2016.  

 
Figure 15-1. Conceptual view of an architecture optimized for DOE, 
composed of optically interconnected AI accelerators, HPC 
processors, and advanced memory technologies coupled via 
3D organic and silicon integration. 

Trillion-parameter models are now commonplace, and 
models with hundreds of trillion parameters are not unheard 
of [11]. As the complexity of these models and the data on 
which they operate continue to grow, so also does the need 
for radically new hardware architectures that go beyond 
simply increasing throughput and focus on accuracy and 
latency to meet the needs of active learning with timely 
feedback. Specifically, the differentiation between the self-
supervised network core and the network periphery 
supporting task adaptation provides a unique opportunity for 
AI hardware architecture co-design. 

Computational systems are complex, multi-layer, engineered 
systems, the complexity of which—illustrated by today’s 
exascale machines--demands new design techniques. AI for 
surrogate or foundation models, applied to challenges such 
as AI for Advanced Property Inference and Inverse Design 
(Chapter 03), requires the ability to operate on massive 
datasets that tie structure/organization to desired properties. 
These data can span simulations, observations, experiments, 
publications, and more. Training for inverse design will 
require exabytes of simulation data coupled with many more 
exabytes of imaging or other experimental data. The data is 
often sparse, presenting unique requirements to efficiently 
manipulate these data structures at a level of performance 
and scalability that is relevant for large inference engines. 

AI-Based Design, Prediction, and Control of Complex 
Engineered Systems (Chapter 04) drives the need for ultra-
fast predictive control, allowing decision making that is 
anticipatory rather than reactive for everything from 
hypersonic vehicles to fusion reactors. Intelligent edge 
devices that can handle the massive data volume and 
velocity will require rethinking how sensors integrate with 
these devices. Real-time inference with quantified 
uncertainties will be required for these high-consequence 
scenarios. This will require such innovations as differentiable 
computing elements that enable global loss-function 
optimization that is orders of magnitude more efficient in 
space and power. Hardened and resilient computing 
architectures that can withstand harsh environments and can 
degrade gracefully over time while continuing to meet 
threshold performance limits are required. Constraints on the 
power envelope and operating environment will necessitate 
deep co-design of these processor-in-sensor devices.  

AI and Robotics for Autonomous Discovery (Chapter 05) 
brings major challenges in pushing high-intensity computing 
capabilities deep into scientific instruments and facilities. The 
compact muon solenoid experiment at the large hadron 
collider, with 1 billion detector channels, will generate a 
petabyte per second of data that must be processed in situ. 
This will necessitate edge computing platforms that are as 
capable as today’s multi-petaflop systems. Perhaps more 
challenging will be the need to run these systems in harsh 
environments (radiation and/or vacuum) and/or remote 
locations with limited communication capacity (e.g., climate or 
ecological observatories). Massive increases in compute 
density within a fixed power budget may necessitate entirely 
new process technologies and major advances in cooling and 
radiation hardening techniques. AI for autonomous discovery 
will require synchronization of DOE computing with data 
resources that span the DOE complex. This organization of 
compute and data resources will drive the co-design of AI 
hardware architectures that facilitate distributed workloads, 
which in turn incorporate modeling/simulation and AI 
training/inference, with data access and control systems at 
the edge. 

AI for Programming and Software Engineering (Chapter 06) 
promises to fundamentally change how we approach 
computational science and engineering. With the potential to 
reduce multi-decade efforts in code development and 
validation to a few short months or even weeks, AI in 
programming and software engineering will allow us to 
answer questions of national importance in a truly agile way. 
The impact of such a capability cannot be overstated: It 
provides a means to gain an understanding of complex 
systems instead of being limited to often superficial levels of 
detail. Accomplishing this will require the ability to routinely 
train massive neuro-symbolic models that combine 
knowledge of algorithms, methods, programming languages, 
and architectures. These neuro-symbolic models will 
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integrate symbolic languages for knowledge representation, 
neural networks for pattern recognition, and probabilistic 
inference to establish causal relationships between 
entities [12].  

All of this will require several critical AI hardware advances. 
For the neural network component, hardware will need to 
scale to support AI models of up to a quadrillion parameters 
as well as training times in days rather than months—far 
beyond what is feasible today. The ability to dynamically 
control numerical precision, frequency scaling, and total 
dissipated power during training will be the path to achieving 
this goal. Coupling this with symbolic reasoning and 
probabilistic methods will require even more aggressive 
architecture changes [13]. 

15.3 Why Can’t It Be Realized Now? 
Today’s AI hardware technologies—built from commodity 
materials and components, albeit assembled and operated 
through co-designed architecture efforts—are simply 
incapable of scaling to the level of throughput required for our 
most pressing challenges, particularly in foundation models, 
surrogates, complex systems, software development, and 
engineering. Each of these areas requires a function step 
change in the nation’s ability to train on massive datasets and 
parameter spaces that dwarf what is possible in even one-off 
“hero calculations” today. Analysis of the requirements in 
each of these areas indicates a need for at least three orders 
of magnitude improvement in efficiency over the next 
15 years. This is driven by the need to support routine 
training of brain-scale neuro-symbolic models with an agility 
and responsiveness 100 times more than the current state-of-
the-art while achieving a 20-times improvement in energy 
efficiency. Currently, the largest model requires 
approximately 175 to 540 billion parameters to describe its 
state space and took the equivalent of half of the combined 
computing resources of the top ten supercomputers in the 
world for over a month.  

Future systems must be capable of routinely training models 
with over a quadrillion parameters. Incrementally training 
models this large in real time will require hardware with 
adaptive resilience, differentiable resources, lattice-structures 
of memory and computation, and dynamic precision. 
Adaptive resilience will enable architects to place resiliency 
on control paths while relaxing it on data paths where there is 
more error tolerance (due to the inherent error of the 
underlying data). Dynamic precision will enable massive 
improvements in efficiency while improving model 
robustness. Differentiable hardware resources will enable 
global optimization among compute elements in loss function 
minimization, further improving performance and the ability to 
backtrack when errors are encountered that would otherwise 
result in ad hoc “solutions” to convergence that are currently 

 
3 HBM = high-bandwidth memory. 

based on trial and error rather than causal analysis. Lattice 
structures will enable major gains in efficiency and the ability 
to drive massive hybrid parallelism (model and data) that are 
out of reach on today’s systems. These technology advances 
coupled with deep co-design are the path to meeting our 
grand challenges. 

New hardware architectures will also be required to address 
daunting challenges in computing at the edge. This is 
particularly true for complex systems and autonomous 
discovery, where hyper-local decision making is often 
needed. Harsh and inaccessible environments will prevent 
the routine use of a remote HPC environment for active 
learning, inference, and control, necessitating a level of AI 
computational density that far outstrips what is available 
today. These requirements will drive further advances in 
critical dimension shrink, integration, and novel architectures 
to achieve power/performance requirements while improving 
the latency of response by several orders of magnitude. 
These architectures will need to be engineered for graceful 
degradation over time with predictable reliability and 
performance. In essence, we will need to achieve a “resilient 
petaflop and petabyte at the edge” over the next 15 years. 
Such a capabilities would catalyze an entirely new ecosystem 
of technologies to support the diversity of workloads from the 
largest scale HPC environments to embedded computing at 
the far edge. 

15.4 Why Is It Reasonable to Start 
Now? 
The ECP [14][15] has driven major technological advances in 
HPC and AI to meet the scientific and national security goals 
of the project. The Frontier supercomputer achieved the first 
sustained exaflop of double-precision floating point 
performance in the world. Beyond the remarkable power 
efficiency of this system for this level of performance, Frontier 
has delivered new networking, storage, and packaging 
technologies that will provide the foundation for an entire 
ecosystem of supercomputing technologies moving forward. 
The El Capitan supercomputer is driving major advances in 
processor manufacturing; the MI300A accelerated processing 
unit (APU) is “a 3D chiplet design with AMD CDNA3 GPUs, 
Zen 4 CPUs, cache memory and HBM3 chiplets” [16]. The 
Aurora system is driving advances in 3D packaging (Foveros) 
and chiplet interconnects (EMIB). These processor and 
packaging advances have revolutionized how computing 
technologies are designed and built and will enable major 
breakthroughs in systems moving forward.  

While major advances have clearly been achieved, some 
compromises had to be made along the way. The first 
generation of exascale systems are highly optimized for 
dense and uniform computations, which are important—but 
insufficient to meet our future goals. Advances in the ability to 
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handle sparsity due to an explosion of parameter space 
and highly divergent workloads that will be needed in 
neuro-symbolic AI will require new hardware technologies, 
some of which are beginning to emerge in prototype form.  

Moore’s law (technology shrink) has slowed significantly over 
the past two decades, and Dennard scaling (frequency 
increases) has halted entirely. This has driven scientists and 
engineers to tackle the continued demand for performance 
improvements in other innovative ways, such as 3D chip 
stacking and interconnecting of multiple chiplets. Wafer-scale 
manufacturing of tightly interconnected processing and 
memory fabrics is another approach that is being actively 
explored.  

We expect these trends of tight integration of heterogeneous 
chiplets to continue and hybrid approaches to emerge. 
Advances in silicon photonics coupled with advanced 
packaging technology will result in highly connected discrete 
multi-package modules, each of which will be capable of 
many petaflops of performance and orders of magnitude 
higher memory bandwidth than today’s most capable 
computing systems. This massive increase in connectivity 
between computing technologies will enable the first truly 
reconfigurable systems, in which complex workflows with 
divergent computing and data requirements will adapt the 
hardware on demand to their requirements. The implications 
of this change are profound, enabling supercomputers to be 
designed with a variety of processing and memory 
technologies that are individually optimized for particular 
components of a workflow but can then be assembled and 
operate in unison as if they were a single piece of silicon. 
Other innovations, such as cryogenic complementary metal 
oxide semiconductor (CMOS) design, which cools the entire 
system to around 77 K, present a tremendous power-saving 
potential for centralized computing facilities. Joint 
optimization of device and design will further enable total 
power savings of more than 30%, including the cooling power 
for the complete system [17]. 

Concurrent with these technological advances, there has 
been a tectonic shift in the economics of hardware design 
and manufacturing [19][20]. In the past, technologies 
providers and foundries were vertically integrated 
organizations. This is no longer the case. Technology 
providers are now separate from foundries, either in 
completely different companies or in different business units. 
Fabrication through these foundries is now much more 
accessible, particularly at larger process nodes, which has 
enabled an explosion of technology vendors pursuing highly 
optimized, near-specialized accelerators for extremely 
specific workloads. The availability of licensable and open 
intellectual property (IP) (ARM and RISC-V) is further 
lowering the barrier of entry for hardware designers. Custom 
processing technologies no longer cost $400 million for each 
design and tape-out cycle; customization can be done for as 
cheaply as a few million dollars today. As a result, over the 

past decade, we have witnessed over 140 fabless 
(i.e., without foundries) design companies emerge to take 
advantage of the confluence of changing economics in 
hardware design and the need for customized technologies to 
meet our grand challenges. These technologies include 
coarse-grained reconfigurable architectures, spatial 
streaming dataflow architectures, machine learning (ML) 
inference engines, ML training accelerators, graph analysis 
accelerators, processors in memory, and programmable 
network and storage devices. This diversity of computing 
technologies is currently the most likely path toward 
achieving the 2,000-times improvement in end-to-end 
efficiencies needed to meet our requirements. 

While encouraging, many of these technologies remain quite 
immature and the marketplace is highly fractured. 
Architecture research, design, and fabrication still has a 
significant lead time, necessitating early engagement with 
commercial vendors, including not only system integrators, 
but also technology component vendors of processors, 
accelerators, memory storage systems, etc. The fledging 
marketplace also requires the timely development of 
standards for interoperability. DOE’s involvement can ensure 
the neutrality and openness of the marketplace. The CHIPS 
and Science Act of 2022 will provide significant resources 
and support public–private partnerships to drive such 
interoperability standards [21]. 

Deep co-design [22] is needed to ensure that the most 
pressing science, energy, and security challenges are 
addressed by these component technologies. Technology 
maturation of these co-designed technologies will require 
enduring partnerships with scientists and engineers at the 
national laboratories. To meet our grand challenges, no 
single component technology is sufficient, necessitating a 
level of technology integration at a massive scale that no 
single organization can achieve. Similarly, the massive 
diversity of technologies, a veritable Cambrian explosion, will 
require deployments of multiple systems across major 
computing facilities within the DOE, where each system will 
focus on a set of technologies aligned with a broad, but 
potentially not exhaustive, set of grand challenge workloads. 

The timeframe to achieve ECP advances and to transition 
from development to operation has been on the order of 7–
10 years. The reinvention of DOE’s modeling and simulation 
through adoption and development of AI approaches and the 
design and construction of the necessary AI system 
architectures will be a similarly long pipeline. With the ECP 
transitioning from development to operation, any delay risks 
stalling this pipeline. 

15.5 What Is Needed to Start Now? 
This project is a unique opportunity for DOE to lead the 
nation in developing new AI-aware hardware that addresses 
DOE and national missions. The time is ripe for deep 
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engagement on component technologies (e.g., processors, 
memory, accelerators, network, storage) as the 
aforementioned market forces accelerate. Beginning 
immediately, DOE must invest in the following: 

 Deep co-design activities that span fundamental 
technology design, from materials and processor 
architecture to algorithms and applications. While drawing 
upon prior experience in co-design before and throughout 
the ECP, this co-design process must encompass a much 
broader set of technologies and recognize our ability to 
shape technologies, up to and including the fundamental 
microarchitecture. 

 Investment in fast-forward/path-forward activities driven by 
the national laboratories, which will require an ability to 
reason about and shape technologies, algorithms, and 
applications at a very deep level while preserving a high 
degree of productivity and agility. 

Longer term, a roadmap for the developments in this area 
includes the following: 

 AI driven hardware design and optimization to achieve 
2,000-times improvement in efficiency (20-times power 
reduction and 100-times performance improvement).  

 Exploration and evaluation of new edge device systems 
integrating edge-AI, sensing, and workflows for critical 
DOE mission environments, including experimental 
instruments/facilities and autonomy in complex systems, 
such as laboratories or vehicles. 

 Tool building to enable computational scientists, applied 
mathematicians, computer scientists, and computer 
engineers to productively reason about and shape 
applications, algorithms, and architectures. 

 Interdisciplinary centers that couple fast-forward/path 
forward-like activities with subject matter experts and 
advanced tools for application-, algorithm-, and 
architecture-based co-design. 
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SECTION 04: INFRASTRUCTURE AND WORKFORCE 
REQUIREMENTS 

 

Advancing and leveraging new AI capabilities, translating decades of investment and 
advancement of DOE’s world-leadership in modeling, simulation, and infrastructure into 
world-leadership in AI-empowered science, energy, and security systems will require the 
DOE workforce, scale of operation, computational and data resources, and 
instrumentation to be similarly transformed to meet the challenges and achieve the vision 
captured in this report. We survey each of these areas in this section, noting the current 
state, the grand challenges, and the path forward to meeting those challenges. 
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16. WORKFORCE AND ETHICS 
Progress in artificial intelligence (AI) for U.S. Department of 
Energy (DOE) mission science requires a growth in the 
workforce across the DOE, especially when considering what 
is needed with respect to the advanced research directions. 
Moreover, it is essential for DOE to lead in critical areas of 
ethics and safety, for instance developing and embracing 
principles such as accountability, which relates to AI 
researchers having a clear understanding of the liability 
involved with application of AI and potential unintended 
consequences. Concurrently, the impact of AI on workforce is 
multi-dimensional challenge. In this chapter we discuss the 
need for DOE workforce development as well as the 
importance of ethical considerations related to the use of AI.  

16.1 Current State 
Nationally, the demand for AI researchers and practitioners 
has grown rapidly. Achieving transformational artificial 
intelligence (AI) for U.S. Department of Energy (DOE) 
mission science requires not only robust AI methods but 
integration of AI research with advanced computational skills 
and methods in concert with domain-specific knowledge. As 
DOE expands its AI workforce, it is also essential to 
emphasize broadening participation among groups 
underrepresented in STEM fields and within DOE labs. In 
addition, DOE must stimulate and accelerate the 
development of AI expertise and experience within the 
existing DOE workforce through collaborations, training, and 
career development. 

DOE has a data-rich environment often including major 
instruments. It possesses mature state-of-the-art 
computational models with access to the world’s most 
advanced computers. Moreover, its existing scientific 
workforce is highly interdisciplinary and collaborative. These 
assets offer an attractive learning environment for new and 
existing staff to explore transformative AI for a range of DOE 
missions. 

The DOE has a long and productive history of partnering with 
other agencies, universities, and industry to advance the 
nation’s innovation leadership and stimulate technological 
breakthroughs. From fundamental to applied research, the 
DOE ecosystem offers a ripe environment for maturing the 
full complement of AI-related skills in individuals, teams, and 
institutions. These skills include but are not limited to 
computer and computational science, information science, 
statistical sciences and uncertainty quantification, applied 
mathematics, and theory of complex systems. 

It is also important that the DOE workforce reflect U.S. 
demographics. When considering underrepresented 
communities in science, technology, engineering, and 

medicine (STEM, i.e., women, African American/Black, 
Hispanic/Latino, American Indian/Alaskan Native), the current 
DOE technical research staff consists of 20% female and 
13% ethnic minoritized communities (African American/Black, 
Hispanic/Latino, American Indian/Alaskan Native) [1]. In 
contrast, the 2021 U.S. demographics indicate 32.2% ethnic 
minoritized communities and 51% female [2]. To provide the 
transformative science needed to ensure America’s security 
and prosperity, it is critical to have a highly skilled DOE 
workforce that fully utilizes all the talent available in America. 

Targeted alliances such as the Stewardship Science 
Academic Alliances (SSAA) Program, NNSA’s Predictive 
Academic Alliance Program (PSAAP), Minority Serving 
Institution Partnership Program (MSIPP), and others will 
ensure that new opportunities to develop AI skills necessary 
to participate in DOE AI research and development is 
available to students. 

Concurrently, the research, development, and application of 
new AI capabilities—including the adaptation of industry 
results where possible—requires new skills and experience 
that are in high demand not only within DOE but in industry. 
This competition for talent suggests that DOE must examine 
new models for collaboration with industry. 

In addition to addressing the skills competition with industry, 
this report lays out several areas where AI models will 
perform some tasks that currently require “humans-in-the-
loop,” whether in operating laboratory instruments, or in data 
management and curation, or even in software development. 
Such automation can have the effect of increasing the time 
for scientists to focus on creative and innovative tasks to 
advance the science resulting from the elimination of 
mundane tasks. Further, the job areas automated with, or 
assisted by, AI models are likely to have the greatest effect 
on entry-level jobs in the tech workforce, which require the 
least amount of experience or subject matter expertise. 
Consequently, DOE’s workforce training efforts must 
accommodate this shift, including skills related to using new 
AI tools and frameworks, by developing new strategies for 
early-career staff, including engineers and scientists. The 
DOE will also need to work closely with partnering 
universities through their academic alliance programs (such 
as the Stewardship Science Academic Alliances (SSAA) 
Program, NNSA’s Predictive Academic Alliance Program 
(PSAAP), Minority Serving Institution Partnership Program 
(MSIPP), etc.) to ensure that new hires have the AI skills 
necessary to perform these jobs. 

With respect to the ethics of AI, the White House (Office of 
Science and Technology Policy) has released the “Blueprint 
for an AI Bill of Rights: Making Automated Systems Work for 
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the American People.” [15] as a starting point. However, with 
the release of large language models in the late 2022 and 
early 2023, it is clear that more work is needed. Here, the 
series of AI@DOE Roundtables held in late 2021 and early 
2022 provide valuable guidance.  

16.2 Grand Challenges 
16.2.1 GROW AND FOSTER AI AT A DOE 
WORKFORCE THAT REFLECTS THE U.S. 
DEMOGRAPHICS 
To achieve the AI that will foster transformative scientific 
breakthroughs for DOE science, energy, and security, it is 
critical to have the diversity of thought that comes from fully 
engaging a broad cross-section of the scientific workforce. 
For some communities, achieving representation that 
matches the U.S. demographics requires increases in 
unprecedented multiples of their current representations, that 
is, changes on a scale that could accurately be described as 
a grand challenge.  

Ample evidence suggests that the benefits from a diverse 
workforce are broad and significant. A more diverse 
workforce does scientific research differently and does both 
different and more innovative scientific research. 

 Doing science differently: Just as a black cosmologist 
who is also a jazz musician develops physics theories 
inspired by a black music tradition [3], a more diverse 
workforce can bring a diversity of approaches to using AI to 
accelerate advances in DOE science, energy, and security. 

 

 Doing different science: Just as a black research 
software engineer who has confronted stigma in other 
arenas might feel emboldened to embrace a widely 
stigmatized programming language [4], a more diverse 
workforce might be inspired to explore the benefits of novel 
language choices in DOE AI programming environments. 

 Inspiring innovation: The application of machine learning 
to text analysis of the publications of a near-complete 
population of 1.2 million U.S. doctoral degree recipients 
between 1977 and 2015 demonstrated that the 
underrepresented groups that diversify organizations 
produce higher rates of scientific novelty [5]. Paradoxically, 
the same study showed that scientific researchers from 
underrepresented communities had less successful 
careers due to such factors as their work being taken up 
less by others. 

 Rethinking “entry level” skills: The use of AI models for 
many rudimentary tasks will also change the nature of 
training and learning opportunities for early career 
individuals, both by introducing new workflows and tools 
and by raising the bar with respect to minimum job skills 
required and the content and extent of resources that will 
be required for effective training and onboarding. 

16.2.2 DEMOCRATIZING AI FOR DOE SCIENCE 
Developing a workforce ready to advance AI for the DOE 
mission requires broadly exposing and engaging both the 
existing computational and disciplinary workforce to AI as and 
future generations of the DOE workforce. This will entail 
democratization to consider the full educational ecosystem—
K-12, two-year institutions, higher education, graduate 
programs, and alternative paths (e.g., code camps and other 
mechanisms for retraining). The DOE complex comprises 17 
national laboratories, all of which have developed resources 
for the various components of the educational ecosystem [6]. 
To provide the training needed for AI for DOE mission areas, 
it is important that the associated research be made available 
in appropriate ways for the different levels of the educational 
ecosystem, with special attention given to significantly 
engaging students from underrepresented communities and 
the shifting of entry-level skills toward more advanced AI, 
science, and engineering requirements. 

At the same time, the competition for talent in science, 
technology, and mathematics will only increase and DOE 
must increasingly focus on attracting and retaining early 
career individuals, particularly in AI, computer and 
computational sciences, and mathematics. 

16.2.3 ETHICS OF AI SYSTEMS AND 
APPLICATIONS 
The DOE AI Roundtable events in late 2021 and early 2022 
included ethics discussions throughout many breakout 
sessions. These discussions identified the need for an 

PROJECT SPOTLIGHT 
Project Name: Sustainable Research Pathways (SRP) 

PI: Mary Ann Leung  

Organizations Involved: Sustainable Horizons Institute 

Goal: Connect scientists at eight DOE labs with faculty 
and students from underrepresented groups at 
community colleges, four-year colleges, and doctoral 
degree-granting research institutions. 

Significant Accomplishment: Since its 2015 inception 
at Lawrence Berkeley National Laboratory through its 
current eight-lab operation, SRP has fostered hundreds 
of new research collaborations between national lab 
scientists and faculty and students at a variety of 
institutions, including Historically Black Colleges and 
Universities (HBCUs) and Hispanic-Serving Institutions 
(HSIs). 

In the News: HPCWire Workforce Diversity and Inclusion 
Award 2021, available at: https://www.hpcwire.com/off-
the-wire/hpcwire-reveals-winners-of-the-2021-readers-
and-editors-choice-awards-during-sc21/, accessed 
December 5, 2022. 

https://www.hpcwire.com/off-the-wire/hpcwire-reveals-winners-of-the-2021-readers-and-editors-choice-awards-during-sc21/
https://www.hpcwire.com/off-the-wire/hpcwire-reveals-winners-of-the-2021-readers-and-editors-choice-awards-during-sc21/
https://www.hpcwire.com/off-the-wire/hpcwire-reveals-winners-of-the-2021-readers-and-editors-choice-awards-during-sc21/
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advisory framework within DOE to “help guide and address AI 
R&D ethical questions, advise on concerns, and maintain 
awareness of social and technological challenges” [16]. The 
concerns arising from widespread adoption of large language 
model-based applications (e.g., OpenAI ChatGPT, Google 
Bard, Microsoft Bing) in early 2023 underscores and indeed 
increases the urgency of this recommendation. The need for 
developing effective ethics and safety guidelines and guard-
rails underscores the urgency of advancing fundamental 
research understanding complex AI systems—as discussed 
in Chapter 12: Mathematics and Foundations and throughout 
Section 03 of this report. 

16.3 Path Forward 
16.3.1 DIVERSE LAB WORKFORCE FOR AI AT 
DOE: NEAR TERM 
Success will require normalizing inclusion so that 
underrepresented communities become an integral part of 
the scientific enterprise from the initial spark of an idea to that 
heady moment when an experiment actually works. To 
address and retain a scientific workforce that is 
representative of the U.S. demographics, it is important to 
address issues related to recruiting (i.e., expanding the 
networks and partnerships leveraged to seek candidates), the 
hiring decision process (i.e., are inclusive factors considered 
in hiring decisions), and the need for an inclusive 
environment where all voices are valued and considered with 
respect to promotion and advancement. 

To address the recruiting issue, we need to bridge the gap 
between multiple sectors, bringing researchers into close 
collaboration across institutional, geographic, and cultural 
divides. We need to expand the professional networks of AI 
at DOE researchers by supporting collaborations across 
institutions in ways that differ from long-established patterns 
[7–11]. It is important to establish long-term connections with 
minority-serving institutions, workforce development 
organizations such as the Graduate Degrees for Minorities in 
Engineering and Science (GEM) consortium [9] and 
Sustainable Horizons Institute [12], which organizes the 
Sustainable Research Pathways (SRP) program (see 
Figure 16-1), and as well as to have visibility at diversity 
conferences. The existing DOE diversity programs, such as 
Minority Serving Institutions Internship Program (MSIIP) and 
Minority Serving Institution Partnership Program (MSIPP), 
need to be strengthened and grown to promote hiring of 
diverse candidates. The individual national laboratories can 
leverage each other’s work by approaching events or 
partnerships with the aim of representing not only the lab 
itself but also the DOE complex. In this way, we significantly 
increase impact through a collaborative approach. 

 
Figure 16-1. Sustainable Horizons Institute landing page (sample). 

Further, it is important to continuously identify and diagnose 
bias in hiring and promotion practices and outcomes. A 
common activity is to provide bias training for staff. It is 
recognized, however, that one-time training does not result in 
cultural change. It is important to apply bias diagnosis in 
ways that affect hiring and promotions, for example, by 
analyzing the language used in job descriptions and revising 
as necessary to be more inclusive. Similarly, organization-
wide (and laboratory-wide) climate surveys can be used to 
identify issues about the culture and practices of the 
organization. Disaggregated promotion and retention data 
can be analyzed to further identify issues in these areas. 

It is recognized that affinity groups are important to creating 
inclusive environments, as such groups often provide a sense 
of belonging, informal mentoring, and a sharing of narratives. 
It is important to leverage affinity groups at all scales: within 
individual labs (e.g., employee resource groups), across labs 
(e.g., national laboratory women of color community forum), 
and via professional societies and organizations 
(e.g., National Society of Black Engineers and Advancing 
Chicanos/Hispanics & Native Americans in Science).  

To gauge impact, such efforts must include assessments that 
measure outcomes—as distinct from more common 
measures such as regarding participation in activities. For 
inclusion to be normalized and for any new partnerships to be 
sustainable, such partnerships must ultimately be productive. 
To have sustained and transformative impact, there must be 
concrete evidence that diversifying the workforce involved in 
AI for DOE advances the cause of science. Researchers 
must see objective evidence that the partnerships and 
inclusive programs lead to breakthrough science. This 
ultimately suggests that the investment in this grand 
challenge must reflect expectations of transformative impact. 
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16.3.2 DIVERSE LAB WORKFORCE FOR AI AT 
DOE: LONG TERM 
The next decade will witness a democratization of AI such 
that the high school students of tomorrow will conduct studies 
that today require the training and resources of Ph.D. 
students. It is important to consider the full educational 
ecosystem with respect to developing the needed workforce 
for AI for DOE science, energy, and security in the long term. 
Achieving this goal will mean partnering with organizations 
such as Level Playing Field Institute, which organizes the 
Summer Math and Science Honors (SMASH) program [13], 
and CSforAll, which is a national consortium working with 
state and city educational systems to provide resources to 
improve the quality of computer science education to all 
children [14]. Partnerships with such organizations can 
involve providing grade-appropriate materials relevant to AI 
for DOE science, energy, and security to excite students 
about STEM disciplines. Such investments today will have a 
long-term impact. 

With respect to two-year institutions, higher education, 
graduate education, and alternative pathways, the labs offer 
internships and visiting faculty positions to help students and 
faculty, especially from underrepresented communities, 
engage in the research to advance AI at DOE. 

16.3.3 ACCELERATING DEVELOPMENT 
Accelerating the path to an AI for DOE workforce that reflects 
the U.S. demographics requires intentionality, which implies 
that it is a top priority for everyone and is woven into the way 
we conduct the science. Much as a fully connected neural 
network can encode rich information about complex inputs 
that escape the grasp of a single-layer perceptron, a research 
community in which ideas flow freely among diverse 
researchers enables the otherwise daunting challenges of 
leveraging AI for the most pressing problems in DOE mission 
science.  

16.3.4 DEVELOPING EFFECTIVE AI ETHICS 
GUIDELINES FOR DOE 
DOE’s wide-ranging mission space creates a breadth and 
depth of scientific and technological innovation that has 
applications in scientific discovery, energy research and 
production, nuclear security, and environmental 
management. The AI ethical principles established for DOE 
will need to provide a framework for balancing scientific 
discovery against societal impact, while not compromising 
national security. It is important for DOE to be strategic in its 
AI investments, while determining policies to ensure the safe 
development and ethical application of AI technologies 
consistent with our Nation’s values, policies, and priorities. 
There has been considerable discussion around AI related 
ethics in both government and industry. Public statements on 
AI tend to address broad principles, but often neglect to 
discuss tools for implementation. Recurring themes include 

the need for principles that are specific to the organization, 
that principles should be implementable through actionable 
practices and procedures, and the importance of 
acknowledging that considerable scientific advances are 
necessary to fully enable ethical pursuit of AI. A future 
framework for ethical AI development and use at DOE should 
not only specify a set of principles to guide research and 
development of AI, but must also deliver guidance for 
implementing these principles.  
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17. SCALE 
17.1 Current State 
Between 2022 and 2024, the U.S. Department of Energy 
(DOE) will successfully launch its first exascale computing 
machines. In 2022, it launched Frontier at Oak Ridge 
Leadership Computing Facility (OLCF, Figure 17-1). In 2023, 
it will add Aurora at Argonne’s Advanced Leadership 
Computing Facility (ALCF) and then El Capitan at Lawrence 
Livermore National Laboratory (LLNL). DOE has also 
deployed the sixth generation of the Energy Sciences 
Network (ESnet6) and the National Energy Research 
Scientific Computing Center Supercomputer (NERSC-9, or 
Perlmutter). These new facilities will support commonly used 
AI/ML environments, and DOE will invest in development of 
additional AI-focused supercomputing capabilities in the next 
decade, along with environments facilitating development of 
large-scale AI models, (e.g., the foundation models), and 
real-time federated learning across multiple experimental 
facilities. 

Recent advances in AI have emerged from the ability to use 
large high-performance computing (HPC) facilities to collect, 
store, and process large, labeled datasets. The DOE’s HPC 
facilities represent some of the world’s largest computational 
and data ecosystems to generate, move, and analyze 
experimental and simulation data. These facilities are 
uniquely positioned to be centers for advances in AI research 
and applications and must therefore prepare to fully support 
these capabilities in the next decade [1]. Improving 
integration among DOE experimental user facilities will 
ensure domain scientists have the resources to apply AI 
methods in their research. 

 
Figure 17-1. Frontier Supercomputer, DOE Exascale Computing Project. 

The unique position of DOE’s HPC facilities to support the 
advances in AI discussed throughout this report stem partly 
from the scale at which DOE’s Exascale Computing Project 
(ECP) deployed data and computing resources in 2022 [2]. In 
this regard, traditional rankings such as the Top500 list do not 
fully capture scale [3]. For example, the performance of the 
first ECP machine, Frontier, at DOE-OLCF is nearly as 
powerful as the sum of the rest of the machines in the list’s 
top 10 in June 2022. At 1.102 exaflops, Frontier is 2.5x more 
powerful than Fugaku, ranked second at 0.442 exaflops. The 
sum of the remaining eight top 10 systems is 0.724 exaflop 

[3]. Nevertheless, a system at this scale is designed to 
support a relatively small number of the largest projects, and 
the integration of AI methods and approaches brings different 
types of scale challenges to HPC centers. The computational 
requirements for training large-scale models, whether 
surrogates, foundation models, or others, will increase the 
scale of a number of projects demanding HPC resources. 
The workforce requirements, particularly with foundation 
models, will increase the scale of teams from dozens to 
hundreds of scientists, each with unique training and 
execution workflows. We discuss these and other scaling 
challenges below. Simply put, the reinvention of DOE’s 
modeling and simulation approaches—required to achieve 
the promise of new AI approaches outlined in Section 01 of 
this report—has the potential to overwhelm DOE’s 
computational resources. For example, generating the 
training to create a surrogate model for an ECP application 
will in itself require ensembles of tens to hundreds of 

PROJECT SPOTLIGHT 
Project Name: CANDLE (CANcer Distributed Learning 
Environment) 

PI: Rick Stevens, Georgia Tourassi, Fred Streitz, Tanmoy 
Bhattacharya, and Eric Stahlberg 

Organizations Involved: Argonne National Laboratory, 
Oak Ridge National Laboratory, Lawrence Livermore 
National Laboratory, Los Alamos National Laboratory, 
Brookhaven National Laboratory, and Fredric National 
Laboratory for Cancer Research 

Goal: Use deep learning at scale on DOE leadership 
computing resources to address molecular, cellular, and 
population-level problems in cancer research and beyond. 

Significant Accomplishment: Members of the CANDLE 
team contributed to three Gordon Bell COVID-19 Special 
Prize Finalists during a pivot in 2021 from cancer to 
COVID-19 in response to a request by the Secretary of 
Energy. 

In the News: CANDLE team members and others 
presented significant results on COVID-19 in the Gordon 
Bell COVID-19 special track, including: (1) Language 
Models for the Prediction of SARS-CoV-2 Inhibitors; 
(2) Intelligent Resolution: Integrating Cryo-EM with AI-
Driven Multi-Resolution Simulations to Observe the SARS-
CoV-2 Replication-Transcription Machinery in Action; and 
(3) #COVIDisAirborne: AI-Enabled Multiscale 
Computational Microscopy of Delta SARS-CoV-2 in a 
Respiratory Aerosol. 

https://sc21.supercomputing.org/?post_type=page&p=3479&id=gbv104&sess=sess249
https://sc21.supercomputing.org/?post_type=page&p=3479&id=gbv104&sess=sess249
https://sc21.supercomputing.org/?post_type=page&p=3479&id=gbv104&sess=sess249
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instances—an illustration of the maxim, “things will get worse 
before they get better.” 

17.2 Grand Challenges 
The uniqueness of DOE’s missions on science, energy, and 
security requires not only supercomputing capabilities, but 
also scalable evaluation and benchmarking suites for 
assessing trustworthiness of AI models, integration of AI into 
experimental facilities for cross-lab AI-guided federated 
scientific experiments, and large-scale interdisciplinary AI 
teams to achieve the AI research objectives discussed in the 
previous chapters. The expected outcome will be a DOE-
level scalable AI environment that provides the resources and 
environment that support the advances detailed throughout 
this report. The user community will range from scientists 
solving scientific problems to operational engineers 
controlling the power grid to National Nuclear Security 
Administration (NNSA) weapon development and 
maintenance. 

17.2.1 IMPROVE PREDICTIVE CAPABILITIES OF 
HPC-BASED MODELING AND SIMULATION BY 
INTEGRATING LARGE-SCALE SCIENTIFIC DATA 
DOE’s ECP has invested to leverage AI and scientific data to 
improve the accuracy and efficiency of scientific prediction on 
modern HPC [2]. A common routine for AI-based data model 
integration initially uses a scalable simulator to generate 
many training samples that complement the missing 
information in experimental data; then uses the combined 
training set to build a surrogate model (e.g., deep neural 
networks); and finally uses the trained surrogate to reduce 
time-to-solution in computationally expensive tasks, such as 
solving inverse problems. For example, the Cancer 
Distributed Learning Environment (CANDLE) project built a 
scalable, deep neural network code to solve large-scale 
machine learning problems for cancer-related pilot 
applications, such as the drug response problem and the 
treatment strategy problem. DOE’s ECP project, ExaLearn, 
has demonstrated initial applications of fast neural network 
emulators to computational cosmology, as well as AI-based 
inverse solvers to back out complex materials structure from 
neutron scattering data. However, even with the success of 
those pioneering efforts, a wide gap still exists between the 
current and the ideal situation. Large-scale scientific datasets 
are usually heterogenous and multimodal, and exascale 
computational models often consist of modules that simulate 
multi-scale, multiphysics processes. These differences 
present a major challenge in data-model integration. Blindly 
integrating data of an incorrect type into an exascale model 
may deteriorate the performance or undermine the accuracy 
of the original model. Moreover, unlike the reduced-precision 
HPC systems used in the industry, DOE’s AI mission requires 
a completely new co-design of HPC and AI systems that 
support mixed precisions with a significant portion of double 

precision machines, to support the accurate AI-based 
inference and prediction for high-risk scientific applications.  

Thus, domain scientists need an AI-based, goal-oriented, 
data-model integrating system to help find the best model 
and the best data for their problems. This AI system can 
initially be trained by prior knowledge and then be actively 
updated by users’ experiences. The constant AI system 
update requires massive computing resources to 
automatically select informative data (e.g., data that are new 
to the AI model) and pre-processing data, update AI model 
parameters, and re-validate AI model predictions. 
Furthermore, each DOE supercomputer will support many of 
these AI systems for different scientific domains and user 
facilities. Building an effective hardware and software 
workflow infrastructure presents another challenge to fulfill 
this objective (Chapter 13). 

17.2.2 EVALUATION AND TRUSTWORTHINESS 
OF AI-BASED DECISION-MAKING AT SCALE 
DOE has a broad range of responsibilities, including 
managing and overseeing the U.S. energy sector (e.g., power 
grids and oil reserves) and nuclear arsenal. DOE often must 
make urgent decisions but may lack sufficient related data 
and appropriate models (or knowledge of the data and model 
on which to rely) to inform reliable decisions with high 
consequences. AI technologies have potential to play an 
important role in providing suggestions in this urgent 
decision-making process. However, such decisions rely on 
trust in the AI-assisted predictions. This means that every 
step to establish, select data, train, and evaluate AI models 
should integrate assessments of trustworthiness instead of 
adding such assessments as an afterthought. 

Despite considerable industry advancement of AI models, the 
resulting methods to assess trustworthiness do not 
necessarily accommodate exascale simulation and large-
scale scientific data. Risk and reliability of AI-assisted 
predictions are often measured using uncertainty 
quantification (UQ) or probabilistic training [4]. The calculation 
of a risk or reliability metric usually requires training and/or 
evaluating a large ensemble of AI models, therefore the 
computational resources required to assess trustworthiness 
of AI models may be dominant in future AI modeling, 
especially in making high-consequence decisions. For 
example, the electricity grid has more uncertainties when 
distributed generation, storage, and dynamics of use 
(e.g., private solar panels, whole-home batteries, and electric 
vehicles) are added [5]. An AI-based grid controller must 
consider the large-scale uncertainties in making operational 
decisions, but non-scalable UQ and trustworthiness methods 
may not provide a reliable solution in time. Therefore, building 
a large-scale evaluation suite to benchmark DOE’s AI models 
will require a major crosscutting effort across scientific 
domains, workflows, software, and hardware. 
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To address this challenge, DOE HPC systems will play a 
critical role in assessing AI-based predictions for timely 
decisions in urgent situations. In addition to the surge in 
computational resource requirements associated with AI 
model training, this urgency represents a significant 
departure from the traditional operational model for HPC 
systems, where no time-critical integration with experimental 
or operational instruments or facilities exists. We discuss this 
challenge next. 

17.2.3 INTEGRATION OF AI INTO LARGE-SCALE 
EXPERIMENTAL USER FACILITIES 
The concept of AI-enabled smart laboratories and facilities 
(Chapters 04 and 05) has attracted much attention in the 
scientific community, and small-scale, self-driving 
laboratories, from autonomous chemical synthesis to 
materials discovery, have been successfully demonstrated. 
However, integrating AI into the operation of DOE’s large-
scale experimental user facilities is much more challenging. 
To close the loop between experiments and AI modeling, we 
need to integrate many independent components into a 
single integrated platform. Most DOE user facilities were 
established many years before the recent AI advances, so 
experimental instruments were not designed to accommodate 
AI technologies, and do not have sufficient sensors to collect 
operational data for an AI agent to steer experiments. It may 
be feasible to upgrade a small-scale research laboratory to 
an AI-assisted autonomous laboratory by adding sensors 
and/or controllers to instruments and connecting them to a 
small computing cluster. However, it is orders of magnitude 
harder to upgrade a large-scale DOE scientific user facility to 
accommodate AI techniques.  

For example, the DOE’s entire Spallation Neutron Source 
(SNS) facility is an integrated system with a mercury target 
station, a neutron beam accelerator, and twenty different 
instruments. Integrating AI into SNS will require a systematic 
upgrade to all the components of the facility, including adding 
sensors to the target station to predict the mercury target’s 
lifetime and adding controllers to the accelerator to 
automatically detect and maintain the neutron beam’s 
stability. These upgrades require intrusive modification of the 
core hardware of the facility, which may be impractical due to 
potential safety issues.  

This HPC integration is essential, however, as small-scale 
clusters cannot fulfill the computing and networking resources 
needed to enable AI at these large-scale DOE facilities. 
Leveraging DOE’s HPC resources will be essential to 
providing sufficient computing power for autonomous 
experimental facilities. Because the HPC and experimental 
facilities are at different geographical locations (many across 
the country), making seamless connections between them 
presents another significant challenge. Experimental facilities 
typically generate a large amount of data for each 
experiment, and the current paradigm of sending all the data 

to HPC for analysis is already increasingly intractable; data 
reduction at the edge is needed. At the same time, the data 
cannot be reduced to the point of losing critical physics 
information. The expertise of domain scientists is needed to 
design a plan that balances data reduction and networking 
bandwidth to connect HPC and experimental facilities. 
Similarly, edge-analysis is required in many cases, 
particularly where AI models are used to control and optimize 
an experiment—where the latency of analyzing data on a 
remote HPC system is prohibitive. Therefore, enabling AI at 
DOE’s existing large-scale experimental facilities presents 
significant challenges from the perspective of hardware, 
software, and infrastructure, which requires strategic 
investment.  

17.2.4 BUILDING AND MAINTAINING LARGE-
SCALE INTERDISCIPLINARY AI TEAMS 
To conduct large AI projects in industry, AI research groups 
increasingly comprise more than a thousand team members. 
Scientific teams typically include researchers with diverse 
knowledge backgrounds and expertise, and, on scales 
involving dozens of participants, the knowledge and 
communication gaps between team members are relatively 
easy to manage. At scales of hundreds of participants, 
however, organization, team building, communication, 
tracking, operational security, and similar functions need 
much more sophisticated methods. Moreover, to fully achieve 
DOE’s objectives of using AI to advance science, energy, and 
security technologies, large-scale interdisciplinary AI 
research teams with members from significantly different 
scientific communities with many facets of AI will be 
necessary. Unlike typical AI teams in industry, DOE’s AI 
teams will need both AI experts and scientists with critical 
domain expertise but possibly very little AI or even computing 
knowledge. DOE has a long history of successfully 
performing research and development with large-scale 
interdisciplinary teams, from the Manhattan Project to ECP. 
The breadth of impact that AI can have, as outlined in earlier 
chapters, will encompass nearly every aspect of DOE’s 
research and development (R&D) and operational missions. 
Consequently, DOE’s future AI teams will include some of the 
most diversified and interdisciplinary teams ever assembled.  

One example is development of a general AI foundation 
model for scientific discovery for use in a variety of 
downstream applications, such as material design, chemical 
synthesis, or drug design. This would require highly 
coordinated collaboration between physicists, chemists, 
biologists, mathematicians, and computer scientists. Thus, 
leveraging DOE’s experience to develop organizational 
support functions to build and train DOE’s AI teams presents 
a significant challenge. Moreover, all AI models evolve as 
they continuously learn, and need regular updates to adapt to 
and incorporate new hardware, software, and AI approaches. 
Even though DOE has extensive experience in managing 
large-scale codes, maintaining the AI models for DOE 
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requires a sustainable approach to AI teams. Addressing this 
challenge requires a strategic plan on AI workforce 
development for prioritized scientific and security areas 
(Chapter 16). 

17.3 Path Forward 
The DOE’s first three Advanced Scientific Computing 
Research (ASCR) facilities—Frontier (OLCF), Aurora (ALCF), 
and El Capitan (LLNL)—support the most popular AI 
platforms, which are typically much smaller scale than HPC 
systems. In the coming decade, DOE will develop more AI-
focused HPC systems, as well as AI environments for sharing 
AI models, architectures, weights, and hyperparameters 
across the DOE complex. The deployment of scalable 
scientific data management systems to form the foundation 
for curating high-quality datasets is needed (Chapter 14). 
This work will continue with the deployment of ESnet-
integrated data gateways, which in turn are controlled and 
optimized by AI workflow and data management models, that 
facilitate the transfer of data among instruments, 
experimental facilities, and computational facilities. 

The outcomes of ECP, including exascale simulators for 
science, energy, and security applications; scalable software 
libraries; and the exascale data infrastructure, will be 
transformed and integrated into DOE’s scalable AI 
ecosystem. These capabilities will be accessible by the broad 
scientific community. For example, the scalable simulators 
will be used to generate datasets to train and validate AI 
models, and data-driven AI models will be integrated into the 
exascale simulators to add missing physics to improve the 
predictive capabilities of the simulators. Concurrently, DOE’s 
scientific experimental facilities will gradually integrate new AI 
capabilities. To achieve the goal of AI-based self-driving 
facilities within the next 10 years, AI technologies will be 
deeply integrated into facility daily operation. 

To realize AI-assisted federated facilities and self-driving 
experimentation across facilities in the DOE complex requires 
at least several additional exascale machines. These 
additional machines will train AI foundation models, fully 
integrate edge computing at experimental facilities for AI data 
processing and steering experiments, and further the 
interconnection of all facilities with an upgraded, next-
generation ESnet. Without the support of DOE HPC facilities 
and these resource expansions, the scientific community will 
struggle to take advantage of the promise of AI. With 
appropriate direction, funding, and cross-facility cooperation, 
DOE can achieve a seamlessly interconnected DOE 
complex.  

17.3.1 LARGE-SCALE FEDERATED LEARNING 
Training a large-scale AI foundation model on an HPC 
system will in most cases require experimental and 
simulation data at the scales of peta- to exabytes, generated 

from multiple DOE experimental facilities and computational 
models. Often, regulations or limited network bandwidth 
prevent sharing of some data. Here, AI-based federated 
learning techniques can accelerate AI model development by 
training a high-quality, centralized model, where the training 
data remains distributed over many locations. For every 
iteration in training, each experimental facility computes an 
update of the current model based on its own data and then 
pushes the update to an HPC facility at another location, 
which aggregates all the updates from different experimental 
facilities to obtain a new globally, optimized model [6]. 
Federated facilities can enable scalable information fusion 
and decentralized control of assets in a reliable fashion. The 
realization of federated facilities requires not only exascale 
computing systems, but also scalable data infrastructure 
(Chapter 19) and AI workflows (Chapter 13), in order to 
enable on-the-fly training or updating of AI models using large 
streams of data generated in situ at multiple DOE facilities.  

Usually, raw experimental data cannot be used directly to 
train AI models. Both AI practice in industry and experience in 
the scientific community show that significant effort is 
required to prepare data for each AI project. Currently, we 
lack the infrastructure and policies to facilitate curating high-
quality AI-ready datasets at the scale needed for the AI 
projects outlined in this report, which are critical to fully 
realize the potential of AI [7]. The findability, accessibility, 
interoperability, and reusability (FAIR) data principles provide 
guidelines to reach this goal, but the effort needed to 
implement such systems is daunting [8]. The scale of data 
involved in advancing AI requires focused investment to 
further develop data management, curation, publication, 
standardization, and streaming software and services—with 
an emphasis on exploring the use of AI methods for these 
tasks (Chapters 13 and 14). A variety of independent 
activities along these lines is already taking place at every 
DOE facility. However, the progress needed in this area will 
require a tightly coordinated effort across the DOE complex. 
For example, user facilities need edge computing 
ecosystems that can integrate data preprocessing for AI and 
connect to the next-generation ESnet. These edge 
ecosystems will automatically process (compress, label, 
reformat, restack, tokenize, etc.) raw data for in situ 
experiment control or for migration to other facilities via ESnet 
to train or update AI surrogates or foundation models [9, 10].  

17.3.2 SMART CYBERINFRASTRUCTURES 
THROUGH AI AT THE EDGE 
DOE has invested in high-performance, national-scale 
cyberinfrastructure, such as the ESnet, to support large-scale 
scientific research [11]. ESnet interconnects the entire 
national laboratory complex, including its HPC and user 
facilities, allowing scientists to access data independent of 
time and location through fast connections to the facilities at 
speeds up to 100 gigabits per second. Today, ESnet carries 
approximately 20 petabytes of data each month, and DOE’s 
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Basic Energy Science (DOE-BES) Program predicts that its 
use alone will increase by an order of magnitude in the 
coming decade. We envision using a large portion of the data 
handled by ESnet to train AI models. To enable AI-ready 
ESnet to make intelligent decisions and coordinate actions 
across the globe, cyberinfrastructure operation—from 
local instrument to facility to laboratory scale—requires 
embedded edge AI capabilities throughout the entire ESnet 
system [12, 13] (Chapter 04).  

In addition, DOE’s Biological and Environmental Research 
(BER) Program recently began building large-scale urban 
integrated field laboratories, establishing the first instances in 
Chicago, Baltimore, and on the Texas Gulf Coast. These and 
additional laboratories planned for 2023 and beyond will 
integrate new field measurement infrastructure with climate 
and environmental models, relying on AI approaches, from 
edge-AI-enabled sensors to foundation and surrogate 
models, to explore climate change and its impact on urban 
communities.  

17.3.3 AI-ASSISTED SELF-DRIVING 
EXPERIMENTATION ACROSS FACILITIES 
An exciting scientific discovery possibility for interconnected 
instruments across facilities lies in going beyond today’s 
human-in-the-loop experiments to enable large-scale AI 
models to evaluate results and steer experiments. One 
example is material imaging. Studying atomic structure and 
properties of a new material usually requires multiple types of 
imaging experiments, such as x-ray, electron microscopy, or 
neutron scattering, each of which unveils certain properties of 
the material [14]. New, scalable AI and data infrastructures 
(Chapters 13 and 19) and foundation models (Chapter 02) 
will enable new scenarios unheard of with today’s 
infrastructure. For instance, X-ray crystallography work at 
DOE’s Advanced Light Source (ALS) at LBL will generate 
data to train models using HPC at Argonne’s ALCF. There, 
inverse analysis using AI-based foundation models will refine 
the atomic structure of the material and pass the suggested 
neutron experiment setup to SNS at ORNL to perform a 
neutron scattering experiment [15, 16]. The interaction 
among those facilities—located in three different regions of 
the country—could repeat several iterations until 
experimenters obtain the desired results. The implementation 
of this process as a self-driving experimentation at scale will 
further require not only sufficiently fast networking and 
computing powers, but also large-scale, reliable AI-based 
controllers to coordinate, optimize, and operate experiments 
(Chapter 05). This type of AI-enabled self-driving material 
design, synthesis, and evaluation will increase the pace of 
scientific discovery by orders of magnitude.  

Additionally, integrating AI and supporting instrumentation, 
such as traditional and new edge-AI-enabled sensors 
(Chapter 15), into experimental facilities must be considered 
during the design phase of new facilities or upgrades of 

existing facilities. For example, DOE has approved the design 
and construction of the Second Target Station (STS) at the 
SNS to address emerging science challenges [17]. The target 
station and associated instrument designs must readily 
accommodate current and future AI technologies by installing 
additional sensors and controllers for AI agents to perceive, 
learn, and control entire STS operations.  
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18. COMPUTATIONAL RESOURCES 
Computational sciences have in the past several decades 
become integral to virtually all science and technological 
breakthroughs, and sustained progress is intimately tied to 
the capacities, usability, and capabilities of available 
computational resources. However, with the diversity of 
application classes that have emerged, including the critical 
operations underpinning artificial intelligence (AI) model 
training and execution, data preparation, and other functions, 
computational resources are no longer characterized solely in 
terms of traditional measures such as floating-point 
operations per second (flops). In the increasingly diverse 
hardware ecosystem, having the right type of resources at 
the right place and with the right connectivity is at least as 
important as the nominal flop count. There now exists a wide 
range of computational tasks and challenges, from running 
massively parallel simulations to training machine learning 
(ML) models and from controlling experiments using edge 
computing to mobile sensor swarms. Each of these 
applications relies on different mixes of hardware, software, 
storage, communications, and other technical requirements, 
each calling for specialized solutions. Consequently, each 
application space represents both a new opportunity for AI 
and ML to have a significant impact and also unique 
challenges to developing and deploying effective AI-driven 
solutions. It is therefore important to understand what 
computational resources exist today; how they match to the 
current and predicted workflows, applications, and 
challenges, especially in relation to AI; and what type of 
computing must be provided or, if necessary, designed and 
developed to address future needs and drive new innovation. 

18.1 Current State 
The U.S. Department of Energy (DOE) has a long tradition of 
designing and deploying some of the largest supercomputers 
in the world, regularly fielding multiple systems ranked in the 
top 10 fastest supercomputers worldwide as tracked by the 
Top 500 list [1]. In addition to such flagship systems as 
Frontier [2], Summit [3], Sierra [4], Perlmutter [5], and Polaris 
[6], DOE facilities also deploy a wide variety of smaller 
systems from a wide range of vendors and with different 
architectures and performance characteristics. 

Until recently, the fundamental drivers for deployment of 
these systems have been simulation codes that enable 
scientific discovery and support national security missions, 
such as stockpile stewardship. Lately, however, the explosion 
of AI in commercial applications, among other trends, has 
caused a shift toward the use of accelerators rather than 
general-purpose central processing units. Following this 
trend, most of the recent DOE systems also rely heavily on 

accelerators, which, from the perspective of modeling and 
simulation, has caused significant challenges in porting 
applications to new machines and achieving even a fraction 
of the code’s theoretical peak performance. 

However, in the context of AI-based research at DOE, this 
architecture choice has turned out to be fortuitous, as many 
of the current systems are well suited to address the 
computing needs for much of the initial, small-scale AI 
workloads. At the same time, at larger scales it has become 
apparent that current supercomputers are materially different 
from the computing environments that industry is using to 
drive the impressive recent advances in AI, such as the 
creation of foundation models and models with powerful 
natural language processing capabilities (Chapter 02). 
Furthermore, the AI challenges in science and engineering 
also differ substantially from those addressed by industry AI 
systems: DOE applications typically require much larger per-
sample data, have more stringent constraints related to 
robustness and uncertainty quantification (UQ), and involve 
far more diverse data types. These needs have led to the 
development of custom toolchains, such as the Livermore Big 
Artificial Neural Network (LBANN) toolkit [7], both to exploit 
DOE-specific hardware and to solve challenges specific to 
science, energy, and security applications. 

The DOE is also continuing to explore next-generation 
computing concepts and architectures, working with industry 
on various testbeds to define future directions. This work 
includes significant investments in AI-specific hardware from 
partners, such as Cerebras [8], SambaNova [9], Graphcore 
[10], Groq [11], or Habana [12]—deployed for example in the 
Argonne Leadership Computing Facility AI testbed [13] or the 
Livermore Computing machines [14]. Conceptually, all of 
these architectures refine the notion of a general-purpose 
accelerator based on graphics processing units, such as 
those available from NVIDIA [15] and AMD [16], to focus 
nearly exclusively on the deep-learning use case. However, 
each of these architectures has its own peculiarities, 
specialized interfaces, and unique integration mechanisms, 
which makes even testing capabilities—let alone deploying 
code in production—challenging. There also exist forays into 
cloud-based computing environments [17], Arm-based 
systems [18], and continuous efforts to define future 
generations of supercomputing systems [19]. Finally, DOE’s 
large-scale experimental facilities have started to deploy 
more general-purpose edge computing resources such as 
those that embed AI hardware within sensor devices [20], in 
addition to the traditional streaming processing necessary to 
manage live data streams from particle colliders or light 
sources. 
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18.2 Grand Challenges 
Although many of the computational resources discussed 
above are now used to support the development and 
deployment of AI-driven solutions, few were designed 
explicitly with this goal in mind. We highlight four grand 
challenges here. 

As AI becomes more central to DOE’s mission and the 
techniques become more specialized and sophisticated, the 
dual purpose of computing resources (i.e., supporting both 
traditional simulation and AI) will require careful 
consideration. For example, as discussed in Chapter 02, 
there will be a need to develop large-scale foundation models 
that integrate massive volumes of diverse, multimodal data 
across many subdomains to support large science 
communities. Given that the initial industry-developed 
foundation-style models, trained primarily with text and 
images, are reaching trillions of parameters, training 
foundations for science domains, using much more diverse 
and voluminous data, will certainly require leadership-class 
computing and push the boundary of what is feasible. For 
example, training the Megatron-Turing NLG 530B [21] model 
in 2021 already reached a sustained throughput of roughly 
380 petaflops, a number on par with the 102 petaflops and 
4.4 exaflops quoted for the 2021 Gordon Bell Prize [22] or the 
171-petaflop to 1.1-exaflop range for the 2020 Gordon Bell 
Prize [23]. However, the architectures used were very 
different.  

The Megatron project used 480 of NVIDIA’s DGX nodes [24], 
while the 2021 Gordon Bell Prize [21] used almost 108K 
Sunway nodes [25] (with a total of 42M compute cores). This 
discrepancy raises a question about how future resources will 
be structured to address all future needs. On one end of the 
spectrum, the current model may prevail, in which 
fundamentally scientific computing resources are adapted to 
AI workloads through custom tool chains. The other extreme 
would be dedicated AI hardware, potentially built with 
specialized compute cores. Independent of the specific 
solution, the overarching grand challenge is to provide 
computing resources dedicated to AI-focused workloads 
on par with—and potentially surpassing—the large 
simulation workloads. Just as for current cutting-edge 
simulations, we expect the most complex possible AI model 
to be determined by the size of the largest supercomputer 
available and how effective that machine is solving the 
respective problem. 

The second grand challenge is the need for ubiquitous 
access to AI-ready computing resources through the 
complex. As highlighted in the technical sections, there exist 
a plethora of potential use cases for AI in virtually all aspects 
of DOE’s mission, and we expect this number to only 
increase as AI technologies mature. Exploring these 
possibilities will require access to relevant resources for all 
stakeholders.  

The third grand challenge will be the unique need within 
DOE applications to couple AI-driven solutions to 
existing simulations, experiments, or sensors. This need 
will favor a compromise in which the various stakeholders co-
design future systems to be as broadly applicable as possible 
and a tight coupling between resources both within and 
across facilities.  

The final grand challenge is the need to support the many 
DOE-specific edge cases, whether these are operating in 
hard radiation, on the edge of large-scale experiments, or 
in autonomous sensors and drones. In the absence of 
commercial drivers for such use cases, it will be up to DOE 
scientists to adapt, extend, and develop the necessary 
solutions.  

18.3 Path Forward 
To become a leader in AI for mission-relevant problems, DOE 
will need to field substantial, AI-focused compute resources 
on par with current supercomputing systems. Depending on 
the direction of the commercial systems and in collaboration 
with vendor partners, DOE will need to determine whether to 
pursue a hybrid approach in which flagship systems are 
suitable for both scientific computing and AI workloads or 
whether there is a need to purse independent, specialized 
solutions. Given the need for integration (discussed later in 
this section), the first approach appears more suitable, but 
the unavoidable price in peak performance of a hybrid system 
will need to be evaluated.  

Beyond the raw compute power necessary for the largest and 
most complex models, DOE faces a number of additional 
challenges equally important to the overall success of 
leveraging emerging AI approaches to drive scientific 
discovery. To support an ever-growing number of use cases, 
DOE will need to provide easy access to small- and mid-
range, AI-ready computing resources for any application 
scientist and engineer within the complex. However, as 
mentioned above, AI applications require different hardware, 
software stacks, and data infrastructure than most other 
computing-based problems. Addressing this need will require 
all DOE sites to house—and support the user communities 
of—AI-focused systems of sufficient capacity and to provide 
easy access for model training and development. 
Furthermore, this access must include support for a variety of 
AI software stacks, as well as resource management tools 
adapted to AI needs (e.g., on-the-fly access to compute 
nodes during training). Unlike the flagship resources and 
problems which are typically driven by specialized tools and 
dedicated efforts, the commodity use of AI within DOE will 
have to rely on commercially driven software stacks. These 
stacks are typically less well adapted to DOE’s security 
needs, science requirements (e.g., UQ, explainability), and 
hardware and thus may require additional effort for 
deployment. Alternatively, cloud-based resources could 
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supplement local shortfalls and provide additional flexibility. 
Commercial cloud resources could provide elasticity, though 
at the cost of additional challenges in data movement and 
information security. A DOE-wide cloud could provide an 
interesting alternative that rather than moving data to the 
compute resource, as in commercial systems, could instead 
move compute resources (in the form of cloud allocations) to 
the data, that is, to whatever facility is currently housing it. 
Finally, on-premises clouds are already used to mirror 
commercial development practices and provide a seamless 
integration with commodity software stacks. As a final 
challenge, these resources must be easily accessible to 
outside partners at universities or other agencies 
(e.g., Department of Defense, Department of Homeland 
Security) to facilitate collaboration and reduce barriers. 

Another hallmark of DOE applications is the need for a tight 
coupling between the resources and components involved in 
a particular problem (as also discussed in Chapter 13). A 
typical example is the notion of a self-driving facility for 
autonomous discovery (Chapter 05). Here, data from sensors 
are collected and processed on edge-based computing 
resources and integrated into AI-based models, which 
themselves are trained at and integrated with leadership-
class facilities. These high-performance computing (HPC) 
resources in turn execute high-fidelity simulations (e.g., a 
“digital twin” of the laboratory process) to provide real-time 
control to robotic systems operating and optimizing the 
experiment. Such an approach not only requires AI-enabled 
systems throughout the entire chain from experiment to 
supercomputer but also relies on tight connections between 
these components to achieve the overarching goal. A similar 
coupling exists in many other situations, for example, when 
integrating fast inference into a simulation or when guiding an 
ensemble for optimization. Such use cases fundamentally 
require a mix of different computing solutions either in the 
form of hybrid systems not optimized for either simulations or 
AI but able to adequately serve both or through a tight 
coupling of specialized resources. Hybrid systems likely will 
require more concerted efforts in co-designing hardware with 
various vendors, as DOE will have particular needs that will 
differ from most other customers, whereas tight coupling will 
put more pressure on networks, resource management, and 
workflows. 

Finally, within the DOE mission, there exist many important 
niche applications with unusual requirements. An example is 
already emerging in DOE research and development in edge 
computing and sensing hardware that must operate in 
extreme or hazardous environments; such hardware might 
include ultrafast edge devices or low-power sensor swarms. 
These devices may require dedicated hardware designs 
developed in collaboration with industry partners. 
Furthermore, the notion of dedicated or at least highly 
specialized hardware may not be limited to the deployment 
environment. For example, DOE has a strong need for robust 

models and reliable uncertainty quantification. Most of the 
existing techniques that begin to address these concerns rely 
on ensemble-style training and inference, random variations 
in the training data, or similar approaches. These strategies 
might drastically increase the already large computing 
resources required to train models. One potential solution is 
to express the necessary replications directly in silico using 
specialized UQ-enabled chips, which could alleviate such 
problems. Similar concerns might apply for model and data 
provenance or adversarial defense. In summary, DOE will 
require a large range of AI-ready compute resources—from 
leadership-class systems to dedicated hardware—to drive the 
next generation of scientific discovery and technological 
progress. 
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19. DATA INFRASTRUCTURE 
The modern deep learning revolution has been driven in large 
part by access to enormous quantities of labeled data [1]. 
However, most of these datasets have been assembled for 
reasons other than science, and few have any relevance to 
the scientific, energy, or security applications that are of 
interest to the U.S. Department of Energy (DOE) as outlined 
in Section 02 of this report. The advancements in those areas 
as envisioned in this report will require a sustained effort on 
the acquisition, curation, preparation, and management of 
large quantities of new and extant scientific data and on the 
infrastructure required to support those activities. 

19.1 Current State 
DOE has made major investments to ensure that world-class 
scientific data are produced at its computational, 
observational, and experimental facilities. These facilities 
(e.g., light sources, supercomputers, environmental 
observatories and field campaigns) and those of DOE’s 
partners (e.g., Large Hadron Collider [LHC], Rubin 
Observatory) generate enormous and exponentially growing 
quantities of data at scales that dwarf those seen at most 
other federal agencies. DOE laboratories have also invested 
in data infrastructure, particularly at DOE’s high-performance 
computing (HPC) centers (including Leadership Computing 
Facilities, NERSC, and Trilab facilities), some of which have 
100’s of petabytes of storage. DOE researchers are pursuing 
a growing volume and variety of projects that employ artificial 
intelligence (AI) methods to analyze, manage, and otherwise 
make use of DOE data. DOE efforts to foster a broadly 
deployed yet integrated research infrastructure are also 
bearing fruit. The new (sixth generation) of the Energy 
Sciences Network (ESnet6) connects DOE laboratories and 
facilities at up to 400+ Gbps. High-speed “Science DMZs” [2] 
and data transfer nodes, along with the near-ubiquitous 
Globus software, today allow scientific applications with 
diverse requirements to use this bandwidth effectively, so that 
transferring petabytes is now routine [3]. 

While DOE data clearly have high scientific value, much of 
DOE’s data infrastructure lags that of adversarial nations and 
even other U.S. domestic agencies (e.g., National Institutes 
of Health data infrastructure), as well as industry standards 
and best practices. While DOE data clearly should be curated 
and preserved for use by current and future generations, 
many DOE facilities that generate large quantities of data 
lack sufficient long-term storage capacity and thus are forced 
to roll-off data to avoid astronomical growth and to prevent 
untenable data inertia.  

Beyond managing the data lifecycle and moving bulk data 
among facilities, many science disciplines supported by DOE 

require that data be shared within large and diverse 
communities [4]. Yet the current state of infrastructure makes 
this far from routine. Today’s fragmented DOE data storage 
ecosystem, with equally fragmented and often inflexible 
retention and access policies, leads to repetition of effort and 
dilution of capabilities that weaken the return on DOE’s 
investment in data production and storage. In almost all 
cases, the requirements (e.g., formats, metadata, access 
methods) of large-scale AI model training are not 
contemplated, confounding our ability to leverage these data 
resources as necessary to unlock the potential of the AI 
approaches—requiring unprecedented volumes of multi-
modal training data to be prepared, evaluated, and used—as 
detailed in Section 01 of this report. Additionally, DOE has 
unique security concerns related to classified and other 
sensitive data that often prevent effective data integration and 
use. A unifying system for integrated but distributed data 
storage with robust and secure AI at all levels in the 
infrastructure would optimize the ability of researchers to 
extract scientific knowledge from the data that is produced 
across the DOE complex. 

Imminent developments exacerbate a number of these 
problems. Next-generation instruments, as discussed in more 
detail in the next section, will increase data volumes by 
orders of magnitude. An increased push to federate 
instruments (e.g., microscopy, light sources, neutron sources 
linked with HPC) introduces additional new data challenges. 
So too will more automated generation of data via automated 
facilities as discussed in Chapter 05. Today, data are rarely 
generated systematically at scale but rather to address 
specific user questions. A transition to systematic and 
automated data generation will be transformative in many 
fields [5]. Other AI approaches such as foundation models, as 
discussed next and in Chapter 02, also introduce new 
requirements. 

19.2 Grand Challenges 
We envision a future in which the DOE laboratory system has 
created an AI-enabled and AI-enabling data infrastructure 
such that all data and models produced within DOE are 
organized and connected to permit effective discovery, 
adaptation, curation, and reuse, subject to security concerns 
that ensure that confidential information is not revealed 
inappropriately. This infrastructure will allow new data to be 
produced and enhanced via a co-design process that 
maximizes the value of collected data for AI-driven discovery. 
Additionally, powerful integrating models (e.g., foundation 
models or surrogates underpinning digital twins) are created 
and updated automatically over time as new data are 
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generated—and all of these capabilities are available for use 
to guide discovery and innovation. We coin the term active 
collective memory to denote this integrated and integrating 
data infrastructure, with the aspiration that, similar to human 
memory, it will permit retrieval of relevant information in many 
different settings, at different levels of detail and abstraction 
depending on context, while evolving and adapting to 
maintain dynamic consistency with evolving experience and 
knowledge. 

Realizing this vision of a DOE-wide active collective memory 
will require overcoming important challenges as detailed in 
the following. 

1. Creation of an AI-driven data and model observatory. 
Large quantities of data and trained machine learning (ML) 
/ active learning (AL) models are of little value if data are 
not structured, discoverable, and accessible in ways 
suitable for AI applications. The challenge here is to 
enable AI agents—for example, engaged in prediction and 
control of complex engineered systems—to rapidly 
locate/integrate similar data and models, from across and 
indeed beyond the DOE complex (Figure 19-1). In the 
case of digital twins (Chapter 04), this approach would 
entail selecting optimal models for the overall system and 
for each subsystem. The rich complexity of large datasets 
renders human-supplied metadata insufficient for fully 
capturing relevant characteristics as necessary to enable 
discovery. Here, AI-driven indexing and search methods 
are likely required, particularly those that can discover and 
characterize patterns and internal relationships. For 
example, in the case of an additive manufacturing system 
tasked with generating a new design, this system should 
be able to locate data from dozens of similar runs in high-
dimensional embedding space, select and fine-tune the 
associated model(s)—themselves data objects that can be 
discovered—and with those models produce an optimal 
manufacturing schedule. 

 
Figure 19-1. An AI-driven data and model observatory should allow for 
discovery of datasets (e.g., Exp_i, Exp_k) and associated trained models 
(e.g., Model_j) within a high-dimensional embedding space. 

2. Data infrastructure for creating foundation models. As 
described in Chapter 02, foundation models [6]—large AI 

models trained on large quantities of unlabeled data, 
usually by self-supervised learning—have emerged as an 
important technology exploiting deep learning due to the 
wide variety of downstream tasks to which a trained 
foundation model can be applied. Technology companies, 
such as Google and Meta, have demonstrated the ability 
to train foundation models on large quantities of text, which 
to date are focused on natural language processing and 
other applications atypical of DOE science and energy 
research. However, these models and the techniques for 
creating them can be leveraged within DOE to build and 
train foundation models on the large collections of 
scientific text and/or on large bodies of experimental, 
observational, and simulation data. In pursuit of the active 
collective memory concept introduced above, we may 
imagine a malleable, tiered set of AI foundation models 
with high bandwidth connections. A compact 
representation of the data will allow usage of this 
information across a hierarchy of computational 
infrastructure. The data representations, tailored for AI 
foundation models (Chapter 11 discusses data 
representation research challenges), would evolve over 
time as new measurements are made at DOE facilities, 
field laboratories, and scientific instruments. These varying 
foundation models would also connect and coalesce, as 
relationships are discovered between the different data 
sources, either by the growing understanding of domain 
scientists or through connections made by computational 
analysis at scale. This integrated endeavor could be made 
to act similar to a collaboration suggestion engine for 
complementary but unwittingly isolated efforts across the 
DOE complex. 

Realizing these goals will require substantial effort and 
investments at many levels. One immediate challenge is 
that DOE data (e.g., documents preserved by DOE’s 
Office of Scientific and Technical Information; data 
produced at experimental facilities) are not organized in 
forms suitable for use by foundation models. The current 
push to make data more easily findable, accessible, 
interoperable, and reusable (FAIR) [7] can be a step in the 
right direction but is typically oriented toward the needs of 
human consumers rather than AI training applications. 
Overall, data management for foundation models (as well 
as surrogate models, discussed in Chapter 01) is a 
multidisciplinary problem that will require sustained effort 
from data, AI, disciplinary science, and other experts. 

3. Hierarchical federated learning across sources and 
scales. DOE scientists produce and use data in many 
locations and many sources. Certain important data are 
sensitive: for example, data relating to national security 
applications (e.g., NNSA) and from commercial partners 
(e.g., data from power grid operators). Methods are 
needed to allow AI agents to learn effectively from 
distributed data: for example, from multiple sensors at a 
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single facility, in which case rapid coordination is the 
primary concern; from a single sensor type at multiple 
facilities, in which case confidentiality is the primary 
concern; and in more complex cases involving sensor-to-
sensor, facility-to-facility, and region-to-region federations. 
Such methods would enable, for example, an AI agent to 
learn to predict brownouts based on pooled power grid 
operator data without the need to reveal sensitive 
operations data. Significant innovation will be required to 
enable such hierarchical federated learning across scales, 
among facilities, and encompassing both observation and 
simulations. The ability to perform active learning over 
non-IID (independent, identically distributed) data will be 
important, as will the ability to integrate data from external 
sources (e.g., literature) and to encode negative results. 
These tasks can be tackled in collaboration with industrial 
partners (e.g., grid operators, battery manufacturers [8], 
materials companies) who want to learn how to improve 
processes without revealing sensitive data. 

Security and federated learning mechanisms also need to 
be built into the architecture of federation for the AI 
foundation models just discussed. This capability will allow 
access and connections to the information through access 
control processes that are developed explicitly for 
multilevel privacy in distributed data-parallel training, also 
known as federated learning. This system would be much 
like how humans evolve and adapt or explicitly edit their 
own memories as their worldview changes, keeping 
dynamic consistency with our evolving experience and 
knowledge. Cross-agency security is itself akin to the 
human ability to control our own release of information 
depending on social context. 

4. Co-designing massive datasets. Many methodological 
innovations in AI over the past decade have been driven 
by access to large, labeled datasets that were generated 
essentially at no or very little cost as a side effect of 
business processes (e.g., storing consumer photographs, 
consumers clicking on ads). In scientific AI, on the other 
hand, data collection and data labeling tend to be 
expensive. Furthermore, accuracy is far more important for 
scientific applications, given that the goal is fundamental 
understanding of nature rather than targeted advertising. 
These considerations suggest a need to develop AI 
models, science applications, and datasets together via a 
co-design approach, thereby maximizing the value of each 
experiment, observation, simulation, and human expert. 
Data collection processes need to be (1) designed with the 
end in mind; (2) automated and subject to quality control 
(QC) processes to ensure that proper contextual metadata 
are provided and that data meet quality standards; and 
(3) guided by applications and AI models to identify 
important sampling directions and to target data of 
maximum relevance to the scientific problem(s) at hand. 
For larger datasets, consideration needs to be given to 

downstream uses and to opportunities to combine with 
other datasets. These considerations all suggest a need 
for data curation and management to be considered as 
scientific and engineering skills in their own rights.  

5. Data infrastructure = compute infrastructure. Current 
DOE computational facilities are designed primarily to 
support specialized use cases: primarily large-scale 
simulation (at leadership computing facilities) and in some 
cases (e.g., high-energy physics facilities) massively 
parallel data analysis. Data science applications require 
new capabilities, such as fast, smart response to new data 
(e.g., from a new experiment); rapid, random access reads 
(e.g., when training a foundation model); edge or in-transit 
processing capabilities (e.g., to filter out interesting events 
from a high-rate experimental data stream); and continual 
update of data and knowledge bases as new data 
appears—for example to perform automatic metadata 
inference or to update foundation models. These new 
capabilities may be deployed at existing centers (where 
they would benefit from proximity to current high-end 
simulation capabilities) or in other locations (e.g., near 
experimental facilities). In either case, they require new 
thinking about data and software architectures. Solutions 
to these problems will allow DOE facilities and scientists to 
process and respond in a timely manner to massive data 
streams coming from many sources and allow for effective 
integration of ML models into ongoing simulations and 
experiments. 

6. Online prediction and control of high-data-rate 
facilities. DOE experimental and computational facilities 
face the unique problem of needing to identify interesting 
events and anomalies in multi-MHz, multi-Tbit/s data 
streams at decision-relevant speeds. As an example, in 
the case of a MHz ptychographic imaging facility used to 
scan a microprocessor or an optical fiber for defects 
(i.e., to enable rapid imaging of large devices), an AI agent 
needs to be able to combine historical and online data to 
detect interesting regions of the chip or fiber and to then to 
“zoom in” on those regions for more detailed investigation. 
To provide this capability, new methods are needed for 
online and continuous learning from high-data-rate 
sources; ultra-high-data-rate inference; integration of 
historical and online data and models; uncertainty 
quantification; and identification of important information 
for preservation. This work should be supported by pilot 
projects designed to demonstrate use of online control to 
achieve a factor of 10 or more improvement in scan speed 
for several different imaging processes. 

7. Low latency between data and decision. Making the 
most of AI’s ability to learn quickly from new data requires 
infrastructure that will respond rapidly to new data being 
generated. Approaches that rely on updating AI models 
given new data, such as self-driving laboratories or AI-
enhanced simulation codes, will have significantly different 
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requirements for active memory systems. First, data 
streams vary greatly in the quantities and dates of data 
involved, making one-size-fits-all solutions unrealistic. 
Second, some systems will generate data from many 
different levels of fidelity (e.g., fast checks performed 
before big investments), meaning that databases must mix 
data from many sources though coherent interfaces. Third, 
there is a strong need for autonomous quality assurance, 
as “garbage” inputs could lead to garbage decisions. Data 
management systems must know when to trust and when 
not to trust data. Examples of success include designing 
manufactured/synthesized material microstructures with 
optimized properties; engineering nuclear deterrent 
systems that are survivable in radiation environments; and 
optimizing operation of electrical grid under evolving 
demand environments.  

8. Pervasive data collaboration. The challenges above 
have emphasized the requirements of large, big data 
projects. But the many DOE projects with smaller datasets 
(projects that, in aggregate, comprise the vast majority of 
DOE scientists and facility users) also face profound 
challenges as they seek to leverage the entirety of DOE’s 
expertise and resources in advancing their own scientific 
goals while contributing their own products to the DOE 
knowledge base without compromising their own research. 
A DOE-wide knowledge base and secure, federated 
learning capabilities are both needed. Researchers need 
to be able to determine quickly and easily what data and 
models already exist relevant to their research problems. 
Methods are needed to allow data produced by small 
research teams to be captured, described, and published 
in ways that place manageable demands on research 
teams while maximizing value to others. Trustworthy and 
confidentiality-preserving federated learning will be 
essential if researchers are to make use of these 
capabilities. These are profoundly challenging 
requirements for which no solutions are currently known; 
extensive research and experimentation will be required to 
make progress. However, the benefits can be large, as 
evidenced by examples such as past DOE lab uses of grid 
storage field data from vendors, and polymer property 
prediction models trained across data from multiple 
teams [9]. 

19.3 Path Forward 
19.3.1 ADVANCES IN THE NEXT DECADE 
Both the opportunities and challenges associated with the 
use of DOE data for data-driven discovery are poised to 
increase substantially soon. New exascale and post-exascale 
computers will increase scientists’ ability to generate 
simulation data for AI model training by orders of magnitude. 
Major enhancements to experimental and observational 
facilities are also underway. For example, from 120 pulses 

per second to 1 million pulses per second at LCLS-II (2022); 
the brighter and more focused beam at the upgraded 
Advanced Photon Source (APS-U: 2024) will increase data 
rates by up to a factor of 1000; and the high-luminosity LHC 
(2029) will increase data rates by an order of magnitude. 
Other instruments are starting up as well, such as the Rubin 
Observatory, DUNE neutrino observatory, and high-
throughput materials science and biological laboratories. 
These and other developments will demand major advances 
in data collection, analysis, and storage capabilities. 

Work toward an integrated research infrastructure is also 
expected to advance quickly. Ultra-fast and reliable ESnet 
connectivity, broadly deployed data and computing 
connections, and extensive task automation [10] will make it 
trivial to implement and run flows that link experiments and 
simulations with AI agents, data repositories, and other 
elements of an AI-enabled and AI-enabling DOE science 
infrastructure. Continued work on policy will be required to 
avoid bureaucratic barriers to effective resource sharing and 
collaborative work. 

19.3.2 ACCELERATING DEVELOPMENT 
Research, infrastructure, and pilot projects are required to 
accelerate progress on the challenges articulated above: 
research to identify new approaches to known problems, 
infrastructure to support increasingly ambitious experiments, 
and pilot projects to build experience with solutions and to 
identify the as-yet-unknown challenges that will otherwise 
emerge, with perhaps fatal effect, only at much later stages.  

Research needs include new methods for producing 
embedded databases; encoding high-dimensional data; 
capturing and navigating hierarchical relationships; identifying 
and exploiting redundancy in data; and exposing and 
supplementing sparse information.  

New approaches are required for data storage, curation, and 
preservation: while current approaches to archival storage 
may provide cost-effective storage for large volumes of data, 
their contents are often hard to identify, access, digest, and 
process. AI advancements are needed to maximize the 
investments DOE makes in acquiring the best scientific data 
and to track the derived value of that data—information that 
can be used to inform dynamic retention policies. This effort 
should generate AI that acts as a foundation model for the 
instruments used at the DOE, encapsulating the behavior and 
properties of a palette of complementary instruments. We 
intend to generate AI that detects structure, functional 
relationships, and knowledge representations from large, 
diverse, and distributed datasets. 

Pilot projects are required in a range of data modalities and 
application needs, and these could be structured similarly to 
past programs, recognizing that the complexity and volume 
contemplated in this report far exceed those associated with 
prior “Big Data” pilot projects. To give just two examples: one 
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promising area will be to demonstrate use of aggregated data 
and models from 10 or more DOE cross-facility light source 
beamlines for advanced online prediction and control. A 
similar opportunity exists for additive manufacturing systems 
across labs and industry partners.  

19.3.3 EXPECTED OUTCOMES 
The work articulated in this chapter is intended to foster 
realization of an AI-enabled and AI-enabling active collective 
memory encompassing all information produced or used by 
DOE laboratories. Success in this endeavor will include an 
integrated data infrastructure spanning multiple DOE 
facilities, greatly increasing the quality and speed of the 
science performed within the labs, and the impact of DOE 
facilities on their external users. 

At a more granular level, the following are examples of 
specific advances that we expect to be enabled by such an 
infrastructure: 

 An AI-driven data and model observatory will allow AI 
agents to call upon the collective knowledge of thousands 
of experiments at dozens of facilities. 

 Online prediction and control methods permit AI agents to 
make timely decisions based on MHz and Tb/s data 
streams.  

 Hierarchical federated learning across data sources and 
scales enables AI agents to learn effectively from large, 
distributed data without centralization. 
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AA. AGENDAS 

Workshops 1, 2, and 3 
WORKSHOP 1: TUESDAY, JUNE 14, 2022 
Tennessee State University, Elliot Hall 
 
8:00 a.m. Registration and Breakfast 
 
8:45 a.m. Workshop Welcome 

• Doug Kothe, Associate Laboratory Director, ORNL, and Jason Pruett, ASC Program Director, 
LANL 

 
9:00 a.m. Tennessee State University Welcome 

• Dr. Quincy Quick, Interim Vice President for Research and Sponsored Programs 
 
9:15 a.m. Workshop Opening 

• David Womble, AI Program Director, ORNL, and Russell Bent, ASC Deputy Program Director, 
LANL 

 
9:20 a.m. AI4SES Overview 

• Rick Stevens, Associate Laboratory Director, ANL 
 
9:50 a.m. Morning Break 
 
10:00 a.m. Plenary Talks 

• Karen Wilcox, Director, Oden Institute for Computational Engineering and Sciences, University 
of Texas at Austin 

• Mike Grosskopf, Scientist, LANL 
 
11:30 a.m. Breakout Charge 

• David Womble, AI Program Director, ORNL, and Russell Bent, ASC Deputy Program Director, 
LANL 

 
12:00 p.m. Lunch 
 
1:00 p.m.  Domain Breakout Sessions Running Concurrently 

• T1D1: Large, Engineered Networks; location: HSB 103A  
• T1D2: Energy Generation and Scheduling; location: HSB 103B 
• T1D3: Physics, including High-Energy Physics, Fission, and Fusion; location: HSB 110 
• T1D4: Advanced Manufacturing; location HSB 114 
• T1D5: Facilities Operations; location HSB 205 
• T2D1: Energy Systems and Storage; location HSB 206  
• T2D2: Bio and Health Science; location HSB 210 
• T2D3: Materials Science; location HSB 243 
• T2D4: Climate Science and Earth Systems Predictivity; location HUM 313 
• T2D5: Multiscale Physics; location HUM 323 

5:00 p.m. Day One Concludes 

WEDNESDAY, JUNE 15, 2022 
Tennessee State University, Elliot Hall 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m. Domain Breakout Reports 

• T1D1: Large, Engineered Networks 
• T1D2: Energy Generation and Scheduling 
• T1D3: Physics, including High-Energy Physics, Fission, and Fusion 
• T1D4: Advanced Manufacturing 



 

AA. AGENDAS 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY  

160 

• T1D5: Facilities Operations 
 
10:15 a.m. Morning Break 

• T2D1: Energy Systems and Storage 
• T2D2: Bio and Health Science 

• T2D3: Materials Science 
• T2D4: Climate Science and Earth Systems Predictivity 
• T2D5: Multiscale Physics 

12:00 p.m. Lunch 
 
1:00 p.m.  Technology Breakout Sessions Running Concurrently 

• T1T1: AI Foundations and Mathematics; location: HSB 103A  
• T1T2: AI Software and Frameworks; location: HSB 103B 
• T1T3: Large-scale AI Workflows; location: HSB 110 
• T1T4: Data Capabilities and Management for AI; location HSB 114 
• T1T5: AI Hardware Architectures; location HSB 205 
• T2T1: AI Software and Frameworks; location HSB 206  
• T2T2: Bio and Health Science; location HSB 210 
• T2T3: Large-scale AI Workflows; location HSB 243 
• T2T4: Data Capabilities and Management; location HUM 313 
• T2T5: AI Hardware Architectures; location HUM 323 

5:00 p.m. Day Two Concludes 

THURSDAY, JUNE 16, 2022 
Tennessee State University, Elliot Hall 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m. Technology Breakout Reports 

• T1T1: AI Foundations and Mathematics  
• T1T2: AI Software and Frameworks 
• T1T3: Large-scale AI Workflows 
• T1T4: Data Capabilities and Management for AI 
• T1T5: AI Hardware Architectures 

 
10:15 a.m. Morning Break 

• T2T1: AI Software and Frameworks 
• T2T2: Bio and Health Science 
• T2T3: Large-scale AI Workflows 
• T2T4: Data Capabilities and Management 
• T2T5: AI Hardware Architectures 

 
12:00 p.m.  Lunch 
 
1:00 p.m. Leadership / Writing Team Convenes for Writing 
 
3:00 p.m. Workshop 1: Adjourn 
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WORKSHOP 2: TUESDAY, JULY 26, 2022 
University of California – Davis, California Hall 
 
8:00 a.m. Registration and Breakfast 
 
8:45 a.m. Workshop Welcome 

• J. Rob Neely, Program Coordinator for Computing Environments and CASC ADL, LLNL 
 
9:00 a.m. UC Davis Welcome 

• Cristina Davis, Association Vice Chancellor, UC Davis 
 
9:15 a.m. Workshop Opening 

• Bert de Jong, Group Lead, LBNL, and Brian Spears, Principal Investigator, LLNL 
 
9:20 a.m. AI4SES Overview 

• Rick Stevens, Associate Laboratory Director, ANL 
 
9:50 a.m. Q&A re: AI4SES 

• Laboratory Leadership 
 
10:00 a.m. Morning Break 
 
10:15 a.m. Plenary Talk: AI Applications in Next Generation Food Systems 

• Xin Liu, Professor, Computer Science, UC Davis 
 
10:45 a.m. Plenary Talk: AI for Scientific Computing at Scale – Opportunities and Open Challenges 

• Paris Perdikaris, Assistant Professor of Mechanical Engineering and Applied Mechanics, 
University of Pennsylvania 

 
11:15 a.m. Confronting (Un)Conscious Bias in AI 

• Tina Park, Head of Inclusive Research and Design, Partnership on AI 
 
11:45 a.m. Breakout Charge 

• Bert de Jong, Group Lead, LBNL, and Brian Spears, Principal Investigator, LLNL 
 
12:00 p.m. Lunch 
 
1:00 p.m. Domain Breakout Sessions Running Concurrently 
 
 Topic #1: AI for Advanced Properties Inference and Inverse Design 

• T1D1: Rational Design in Biochemistry, Chemistry, and Materials; location: California Hall  
• T1D2: Design and Operation of Multiscale and Multiphysics Systems; location: SCC-Meeting 

Room A 2nd Floor 
• T1D3: Automated Design and Optimization of Engineered and Manufacturable Systems; 

location: SCC-Meeting Room B 2nd Floor 
• T1D4: Resilient Water and Agriculture Resources; location: SCC-Meeting Room B Room 

2nd Floor 
• T1D5: AI for Energy Resilient Infrastructure; location: SCC-Meeting Room E 2nd Floor 

 Topic #2: Foundation AI for Scientific Knowledge Discovery, Integration, and Synthesis 
• T2D1: Biomedicine and Healthcare; location: SCC-Multi-Purpose Room 2nd Floor  
• T2D2: Synthesis of Diverse Data in the Physical Sciences; location: MU-De Carli Room 

2nd Floor 
• T2D3: Emerging Threats in the AI Era; location: MU-Fielder Room 2nd Floor 
• T2D4: New Approaches to AI Enabled Scientific Discovery; location: MU- Garrison Room 

2nd Floor 
• T2D5: Foundation Models for Decision Support, and Risk and Policy Analysis; location: 

MU-Smith Room 4th Floor 

5:00 p.m. Day One Concludes 



 

AA. AGENDAS 

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY  

162 

WEDNESDAY, JULY 27, 2022 
University of California – Davis, California Hall 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m. Domain Breakout Reports 
 Topic #1: AI for Advanced Properties Inference and Inverse Design 

• T1D1: Rational Design in Biochemistry, Chemistry, and Materials 
• T1D2: Design and Operation of Multiscale and Multiphysics Systems 
• T1D3: Automated Design and Optimization of Engineered and Manufacturable Systems 
• T1D4: Resilient Water and Agriculture Resources 
• T1D5: AI for Energy Resilient Infrastructure 

 
10:15 a.m. Morning Break 
 
10:30 a.m. Domain Breakout Reports 
 Topic #2: Foundation AI for Scientific Knowledge Discovery, Integration, and Synthesis 

• T2D1: Biomedicine and Healthcare 
• T2D2: Synthesis of Diverse Data in the Physical Sciences 
• T2D3: Emerging Threats in the AI Era 
• T2D4: New Approaches to AI Enabled Scientific Discovery 
• T2D5: Foundation Models for Decision Support, and Risk and Policy Analysis 

 
12:00 p.m. Lunch 
 
1:00 p.m. Technology Breakout Sessions Running Concurrently 

Topic #1: AI for Advanced Properties Inference and Inverse Design 
• T1T1: AI Foundations and Mathematics; location: California Hall  
• T1T2: AI Software Frameworks, Libraries, and Tools; location: SCC-Meeting Room A 2nd Floor 
• T1T3: Large-scale AI Workflows; location: SCC-Meeting Room B 2nd Floor 
• T1T4: Data Capabilities and Management for AI; location: SCC-Meeting Room B Room 

2nd Floor 
• T1T5: AI Hardware Architecture; location: SCC-Meeting Room E 2nd Floor 

Topic #2: Foundation AI for Scientific Knowledge Discovery, Integration, and Synthesis 
• T2T1: AI Foundations and Mathematics; location: SCC-Multi-Purpose Room 2nd Floor 
• T2T2: AI Software Frameworks, Libraries, and Tools; location: MU-De Carli Room 2nd Floor 
• T2T3: Large-scale AI Workflows; location: MU-Fielder Room 2nd Floor 
• T2T4: Data Capabilities and Management for AI; location: MU-Garrison Room 2nd Floor 
• T2D5: AI Hardware Architectures; location: MU-Smith Room 4th Floor 

5:00 p.m. Day Two Concludes 

THURSDAY, JULY 28, 2022 
University of California – Davis, California Hall 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m. Technology Breakout Reports 
 Topic #1: AI for Advanced Properties Inference and Inverse Design 

• T1T1: AI Foundation and Mathematics 
• T1T2: AI Software and Frameworks 
• T1T3: Large-scale AI Workflows 
• T1T4: Data Capabilities and Management for AI 
• T1T5: AI Hardware Architectures 

 
10:15 a.m. Morning Break 
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10:30 a.m. Technology Breakout Reports 
 Topic #2: Foundation AI for Scientific Knowledge Discovery, Integration, and Synthesis 

• T2T1: AI Foundation and Mathematics 
• T2T2: AI Software and Frameworks 
• T2T3: Large-scale AI Workflows 
• T2T4: Data Capabilities and Management for AI 
• T2T5: AI Hardware Architectures 

 
12:00 p.m. Lunch 
 
1:00 p.m. Building a Diverse, Equitable, and Inclusive AI Research Community 
 
2:00 p.m. Leadership / Writing Team Convenes for Writing 
 
3:00 p.m. Workshop 2: Adjourn 
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WORKSHOP 3: TUESDAY, AUGUST 16, 2022 
Bowie State University, Bldg. 20 - Student Center: Wiseman Ballroom 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m. Workshop Welcome 

• Dr. Carl B. Goodman, Provost and VP for Academic Affairs, BSU 
 
9:15 a.m. AI for Science: Overview 

• Rick Stevens, Associate Laboratory Director, ANL 
 
9:50 a.m. AI for Energy: Introduction 

• Sydni Credle, Technology Manager, NETL 
 
10:10 a.m. AI for Security: An NNSA Perspective 

• Ron Oldfield, Manager, SNL 
 
10:30 a.m. Morning Break 
 
10:45 a.m. Plenary Talk 

• Dr. Rosemary Shumba, Chair and Professor, Department of Computer Science, BSU 
 
11:15 a.m. Breakout Charge 

• Ian Foster, Division Director, ANL 
 
12:00 p.m. Collect Box Lunch and Proceed to Domain Breakout Sessions 
 

Domain Breakout #1: AI and Robotics for Autonomous Discovery – Autonomous (robotic) 
laboratories, e.g., in biology, chemistry, materials, choosing the next experiments 
BSU Bldg. 20 - Student Center: Wiseman Ballroom 

• Chair: Arvind Ramanathan, ANL 
• Co-chair: Joshua Schrier, Fordham University 
• Scribe: Dinali Jawardana, BSU 

 
Domain Breakout #2: AI and Robotics for Autonomous Discovery – Analysis of data from large 
instruments, e.g., in HEP and astronomy 
BSU Bldg. 20 - Student Center: Baltimore/Columbia 

• Chair: Luc Peterson, LLNL 
• Co-chair: Tom Peterka, ANL 
• Scribe: Tia Dean, BSU 

 
Domain Breakout #3: AI and Robotics for Autonomous Discovery – Scenarios in which AI is used 
to steer experimental apparatus, e.g., light sources, Z-machine 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1220 

• Chair: Marcus Noack, LBNL 
• Co-chair: Christine Sweeney, LANL 
• Scribe: Mariam Kiran, LBNL  

 
Domain Breakout #4: AI and Robotics for Autonomous Discovery – Additive and advanced 
manufacturing with autonomous control, e.g., materials, pits, microelectronics 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1221 

• Chair: David Stevens, LLNL 
• Co-chair: John Feddema, SNL 
• Scribe: Vivia Lewis, BSU 

 
Domain Breakout #5: AI and Robotics for Autonomous Discovery – Automation in field and 
inhospitable environments, e.g., NNSA materials 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1222 

• Chair: Philip Bingham, ORNL 
• Co-chair: Steve Buerger, SNL 
• Scribe: Joed Ngangmeni, SNL 
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Domain Breakout #6: AI for Programming and Software Engineering – HPC modeling and 
simulation, e.g., performance, productivity, using Transformer models to move data from one 
accelerator to another, using AI for hardware design 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1223 

• Chair: Damian Rouson, LBNL 
• Co-chair: Feiyi Wang, ORNL 
• Scribe: Nick Winovich, SNL 

 
Domain Breakout #7: AI for Programming and Software Engineering – AI hardware and edge 
devices, e.g., experimental systems, data architectures, neuromorphic computing, co-design 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1224 

• Chair: Siva Rajamanickam, SNL 
• Co-chair: Valerie Taylor, ANL 
• Scribe: Zack Morrow, SNL 

 
Domain Breakout #8: AI for Programming and Software Engineering – Data intensive science, 
e.g., AI methods for data analysis on HPC systems, deploying AI on HPC systems 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1225 

• Chair: Danny Dunlavy, SNL 
• Co-chair: Guojing Cong, ORNL 
• Scribe: Nathaniel Hudson, UChicago 

 
Domain Breakout #9: AI for Programming and Software Engineering – Real-time control systems, 
e.g., nuclear reactors, critical infrastructure, grid, etc. 
BSU Bldg. 19 – Thurgood Marshall Library: Library Special Collections 

• Chair: Draguna Vrabie, PNNL 
• Co-chair: David Womble, ORNL 
• Scribe: Valerie Hayot-Sasson, UChicago 

 
Domain Breakout #10: AI for Programming and Software Engineering – AI-assisted software 
development, e.g., vulnerability analysis of software, using AI to identify flaws / vulnerabilities in 
software, programming systems, transformation, modernization, performance analysis, 
optimization 
BSU Bldg. 19 – Thurgood Marshall Library: Library Auditorium 

• Chair: Rajeev Thakur, ANL 
• Co-chair: Chunhua Leo Liao, LLNL 
• Scribe: Qian Gong, ORNL 

 
5:00 p.m. Day One Concludes 

WEDNESDAY, AUGUST 17, 2022 
Bowie State University, Bldg. 20 - Student Center: Wiseman Ballroom 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m.  Domain Breakouts Report Out (10 min. each) 

• Domain Breakout #1: AI and Robotics for Autonomous Discovery –  
Autonomous (robotic) laboratories 

• Domain Breakout #2: AI and Robotics for Autonomous Discovery –  
Analysis of data from large instruments 

• Domain Breakout #3: AI and Robotics for Autonomous Discovery –  
Scenarios in which AI is used to steer experimental apparatus 
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• Domain Breakout #4: AI and Robotics for Autonomous Discovery –  
Additive and advanced manufacturing with autonomous control 

• Domain Breakout #5: AI and Robotics for Autonomous Discovery –  
Automation in field and inhospitable environments 

• Domain Breakout #6: AI for Programming and Software Engineering –  
HPC modeling and simulation 

• Domain Breakout #7: AI for Programming and Software Engineering –  
AI hardware and edge devices 

• Domain Breakout #8: AI for Programming and Software Engineering –  
Data intensive science 

• Domain Breakout #9: AI for Programming and Software Engineering –  
Real-time control systems 

• Domain Breakout #10: AI for Programming and Software Engineering –  
AI-assisted software development 

 
11:45 a.m.  Crosscut Breakout Charge  
 Ron Oldfield, Manager, SNL 
 
12:00 p.m. Collect Lunch and Proceed to Crosscut Breakout Sessions 
 

Crosscut Breakout #1: AI and Robotics for Autonomous Discovery – Software and Frameworks 
BSU Bldg. 20 - Student Center: Wiseman Ballroom 

• Chair: Brian Van Essen, LLNL 
• Co-chair: Mike Grosskopf, LANL 
• Scribe: Dinali Jawardana, BSU 

 
Crosscut Breakout #2: AI for Programming and Software Engineering – Software and 
Frameworks 
BSU Bldg. 20 - Student Center: Baltimore/Columbia 

• Chair: Prasanna Balaprakash, ANL 
• Co-chair: Aleksandra Ciprijanovic, FermiLab 
• Scribe: Pamela Moses, BSU 

 
Crosscut Breakout #3: AI and Robotics for Autonomous Discovery – Mathematics and 
Foundations 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1220 

• Chair: Tommie Catanach, SNL 
• Co-chair: Sven Leyffer, ANL 
• Scribe: Amina Ayodeji-Ogundiran, BSU 

 
Crosscut Breakout #4: AI for Programming and Software Engineering – Mathematics and 
Foundations 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1221 

• Chair: Rick Archibald, ORNL 
• Co-chair: Silvia Crivelli, LBNL 
• Scribe: Aditya Kashi, ORNL 

 
Crosscut Breakout #5: AI and Robotics for Autonomous Discovery – Workflows (Edge to Center) 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1222 

• Chair: Shantenu Jha, BNL 
• Co-chair: Peer-Timo Bremer, LLNL 
• Scribe: Hao Lu, ORNL 

 
Crosscut Breakout #6: AI for Programming and Software Engineering – Workflows (Edge to 
Center) 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1223 

• Chair: Arjun Shankar, ORNL 
• Co-chair: Nicola Ferrier, ANL 
• Scribe: Tom Uram, ANL  
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Crosscut Breakout #7: AI and Robotics for Autonomous Discovery – Data Management and Data 
Infrastructure 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1224 

• Chair: Rosalyn Rael, LANL 
• Co-chair: Deb Agarwal, LBNL 
• Scribe: Kadir Amasyali, ORNL 

 
Crosscut Breakout #8: AI for Programming and Software Engineering – Data Management and 
Data Infrastructure 
BSU Bldg. 18 – Center for Natural Sciences, Mathematics and Nursing (CSMN): Classroom 1225 

• Chair: Michela Tauffer, University of Tennessee Knoxville 
• Co-chair: Franck Cappello, ANL 
• Scribe: Casey Stone, ANL 

 
Crosscut Breakout #9: AI and Robotics for Autonomous Discovery – AI Hardware Architectures 
BSU Bldg. 19 – Thurgood Marshall Library: Library Special Collections 

• Chair: Frank Liu, ORNL 
• Co-chair: Jim Ang, PNNL 
• Scribe: Ana Gainaru, ORNL 

 
Crosscut Breakout #10: AI for Programming and Software Engineering – AI Hardware 
Architectures 
BSU Bldg. 19 – Thurgood Marshall Library: Library Auditorium 

• Chair: Galen Shipman, LANL 
• Co-chair: Clayton Hughes, SNL 
• Scribe: Khaled Ibrahim, LBNL 

 
5:00 p.m. Day Two Concludes 

THURSDAY, AUGUST 18, 2022 
Bowie State University, Bldg. 20 - Student Center: Wiseman Ballroom 
 
8:00 a.m. Registration and Breakfast 
 
9:00 a.m.  Crosscut Breakouts Report Out (10 min. each) 

• Crosscut Breakout #1: AI and Robotics for Autonomous Discovery –  
Software and Frameworks 

• Crosscut Breakout #2: AI for Programming and Software Engineering –  
Software and Frameworks 

• Crosscut Breakout #3: AI and Robotics for Autonomous Discovery –  
Mathematics and Foundations 

• Crosscut Breakout #4: AI for Programming and Software Engineering –  
Mathematics and Foundations 

• Crosscut Breakout #5: AI and Robotics for Autonomous Discovery –  
Workflows (Edge to Center) 

• Crosscut Breakout #6: AI for Programming and Software Engineering –  
Workflows (Edge to Center) 

• Crosscut Breakout #7: AI and Robotics for Autonomous Discovery –  
Data Management and Data Infrastructure 

• Crosscut Breakout #8: AI for Programming and Software Engineering –  
Data Management and Data Infrastructure 

• Crosscut Breakout #9: AI and Robotics for Autonomous Discovery –  
AI Hardware Architectures 

• Crosscut Breakout #10: AI for Programming and Software Engineering –  
AI Hardware Architectures 
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11:45 a.m. Concluding Remarks 
 Rick Stevens, Associate Laboratory Director, ANL 
 
12:00 p.m. Collect Lunch and Writing Group Convenes in the Ballroom 
 
3:00 p.m. Workshop 3 Adjourns 
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AB. COMBINED WORKSHOP REGISTRANTS 
FIRST NAME LAST NAME INSTITUTION 

Jonas Actor Sandia National Laboratories 
Omotoyosi Adams National Nuclear Security Administration 
Deb Agarwal Lawrence Berkeley National Laboratory 
James Ahrens Los Alamos National Laboratory 
Ahmad Al Rashdan Idaho National Laboratory 
Francis Alexander Brookhaven National Laboratory 
Boian Alexandrov Los Alamos National Laboratory 
Jonathan Allen Lawrence Livermore National Laboratory 
Kadir Amasyali Oak Ridge National Laboratory 
Oluwamayowa Amusat Lawrence Berkeley National Laboratory 
Gemma Anderson Lawrence Livermore National Laboratory 
James Ang Pacific Northwest National Laboratory 
Katie Antypas Lawrence Berkeley National Laboratory 
Rick Archibald Oak Ridge National Laboratory 
Daniel Arnold Lawrence Berkeley National Laboratory 
Pedro Arrechea IBM 
Lloyd Arrowood CNS (Y-12) 
Halima Audu Bowie State University 
Amina Ayodeji-Ogundiran Bowie State University 
Tyler Backman Lawrence Berkeley National Laboratory 
Prasanna Balaprakash Argonne National Laboratory 
Feng Bao Florida State University 
Jennifer Bauer National Energy Technology Laboratory 
Tom Beck Oak Ridge National Laboratory 
Pete Beckman Argonne National Laboratory 
Kristian Beckwith Sandia National Laboratories 
Carolyn Begeman Los Alamos National Laboratory 
Mehmet Belviranli Colorado School of Mines 
Russell Bent Los Alamos National Laboratory 
Debasis Bera Samsung 
Wahid Bhimji Lawrence Berkeley National Laboratory 
Philip Bingham Oak Ridge National Laboratory 
Aron Bishop Bowie State University 
Jonathan Bisila Sandia National Laboratories 
Anika Bissahoyo Bowie State University 
Johannes Blaschke Lawrence Berkeley National Laboratory 
Patrick Blonigan Sandia National Laboratories 
Harry Bonilla-Alvarado Ames National Laboratory 
Peter Bosler Sandia National Laboratories 
Kristofer Bouchard Lawrence Berkeley National Laboratory 
Peer-Timo Bremer Lawrence Livermore National Laboratory 
Thomas Brettin Argonne National Laboratory 
Ben Brown Lawrence Berkeley National Laboratory 
Stephen Buerger Sandia National Laboratories 
Tan Bui-Thanh University of Texas at Austin 
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FIRST NAME LAST NAME INSTITUTION 

Aydin Buluc Lawrence Berkeley National Laboratory 
Josh Burby Los Alamos National Laboratory 
Shawn Burns National Nuclear Security Administration 
Paolo Calafiura Lawrence Berkeley National Laboratory 
Andrea Calloway Bowie State University 
Eden Canlilar Google 
Yanzhao Cao Auburn University 
Franck Cappello Argonne National Laboratory 
Matthew Carbone Brookhaven National Laboratory 
Janine Carney National Energy Technology Laboratory 
Austin Carson SeedAI 
Jonathan Carter Lawrence Berkeley National Laboratory 
Tommie Catanach Sandia National Laboratories 
Charlie Catlett Argonne National Laboratory 
Mayanka Chandra Shekar Oak Ridge National Laboratory 
Barry Chen Lawrence Livermore National Laboratory 
Junhong Chen Argonne National Laboratory 
Matthew Cherukara Argonne National Laboratory 
Taylor Childers Argonne National Laboratory 
Seonho Choi Bowie State University 
Youngsoo Choi Lawrence Livermore National Laboratory 
Alok Choudhary Northwestern University 
Sutanay Choudhury Pacific Northwest National Laboratory 
Giridhar Chukkapalli NVIDIA 
Michael Churchill Princeton Plasma Physics Laboratory 
Randy Churchill Princeton Plasma Physics Laboratory 
Aleksandra Ciprijanovic Fermilab 
Mary Ann Clarke National Energy Technology Laboratory 
Austin Clyde Argonne National Laboratory 
Ryan Coffee Stanford Linear Accelerator Center 
William (Bill) Collins Lawrence Berkeley National Laboratory 
Guojing Cong Oak Ridge National Laboratory 
Dylan Copeland Lawrence Livermore National Laboratory 
Sydni Credle National Energy Technology Laboratory 
Silvia Crivelli Lawrence Berkeley National Laboratory 
Sajal Dash Oak Ridge National Laboratory 
Warren Davis Sandia National Laboratories 
Wibe de Jong Lawrence Berkeley National Laboratory 
Tia Dean Bowie State University 
Diego Del-Castillo-Negrete Oak Ridge National Laboratory 
Thomas Desautels Lawrence Livermore National Laboratory 
Chris DeYoung Penguin 
Gautham Dharuman Argonne National Laboratory 
Sayera Dhaubhadel Los Alamos National Laboratory 
Emily Dietrich Argonne National Laboratory 
William Dorland Princeton Plasma Physics Laboratory 
Eamon Duede University of Chicago 
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FIRST NAME LAST NAME INSTITUTION 

Vincent Dumont Lawrence Berkeley National Laboratory 
Danny Dunlavy Sandia National Laboratories 
Mary Dzielski Argonne National Laboratory 
Christopher Earls Cornell University 
Auralee Edelen Stanford Linear Accelerator Center 
Hilary  Egan National Renewable Energy Laboratory 
Hoda El-Sayed Bowie State University 
Austin Ellis Oak Ridge National Laboratory 
Patrick Emami, Patrick National Renewable Energy Laboratory 
Tegan Emerson Pacific Northwest National Laboratory 
Keith Erickson Princeton Plasma Physics Laboratory 
David Etim National Nuclear Security Administration 
Katherine Evans Oak Ridge National Laboratory 
Sam Evans Harvard University 
John Feddema Sandia National Laboratories 
Kyle Felker Argonne National Laboratory 
Nicola Ferrier Argonne National Laboratory 
Hal Finkel Department of Energy 
Garrison Flynn Los Alamos National Laboratory 
Sam Foreman Argonne National Laboratory 
Ian Foster Argonne National Laboratory 
Geoffrey Fox University of Virginia 
Devin Francom Los Alamos National Laboratory 
Joshi Fullop Los Alamos National Laboratory 
Ana Gainaru Oak Ridge National Laboratory 
Baskar Ganapathysubramanian Iowa State University 
Hector Garcia Martin Lawrence Berkeley National Laboratory 
Anthony Garland Sandia National Laboratories 
Tim Germann Los Alamos National Laboratory 
Dipak Ghosal University of California, Davis 
Ayana Ghosh Oak Ridge National Laboratory 
Brian Giera Lawrence Livermore National Laboratory 
Andrew Gillette Lawrence Livermore National Laboratory 
Jens Glaser Oak Ridge National Laboratory 
Peter Glaskowsky Esperanto Technologies, Inc. 
Sonja Glavaski-Radovanovic Pacific Northwest National Laboratory 
Ylicia Godinez National Nuclear Security Administration 
Michael Goldman Lawrence Livermore National Laboratory 
Qian Gong Oak Ridge National Laboratory 
Aldair Gongora Lawrence Livermore National Laboratory 
Renee Gooding Sandia National Laboratories 
Carl Goodman Bowie State University 
Wyatt Gorman Google 
Alex Gorodetsky University of Michigan 
John Gounley Oak Ridge National Laboratory 
David Graham Oak Ridge National Laboratory 
Michael Grosskopf Los Alamos National Laboratory 
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FIRST NAME LAST NAME INSTITUTION 

Salman Habib Argonne National Laboratory 
Simon Hammond National Nuclear Security Administration 
Peter Harrington Lawrence Berkeley National Laboratory 
Valerie Hayot-Sasson University of Chicago 
Bruce Hendrickson Lawrence Livermore National Laboratory 
Tae Wook Heo Lawrence Livermore National Laboratory 
Michael Heroux Sandia National Laboratories 
Kyle Hickmann Los Alamos National Laboratory 
Jeffrey Hittinger Lawrence Livermore National Laboratory 
Justin Hnilo U.S. Department of Energy 
Thuc Hoang National Nuclear Security Administration 
Eric Hoar Savannah River National Laboratory 
Andy Hock Cerebras Systems 
Sameera Horawalavithana Pacific Northwest National Laboratory 
Jason Hou Pacific Northwest National Laboratory 
Paul Hovland Argonne National Laboratory 
Yu-Ting (Tim) Hsu Lawrence Livermore National Laboratory 
Xun Huan University of Michigan 
Andy Huang Sandia National Laboratories 
Xiaobiao Huang Stanford Linear Accelerator Center 
Nathaniel Hudson University of Chicago 
Eliu Huerta Argonne National Laboratory 
Clay Hughes Sandia National Laboratories 
Kelli Humbird Lawrence Livermore National Laboratory 
Lisa Hundley Argonne National Laboratory 
Wade Hunter NextSilicon 
Khaled Ibrahim Lawrence Berkeley National Laboratory 
Michael Irvin Argonne National Laboratory 
Toby Isaac Argonne National Laboratory 
Olexandr Isayev Carnegie Mellon University 
Dan Jacobson Oak Ridge National Laboratory 
Dinali Jayawardana Bowie State University 
Shantenu Jha Brookhaven National Laboratory 
Grant Johnson Ames National Laboratory 
Earl Joseph Hyperion Research 
Amy Justice VA Connecticut Healthcare System West Haven 
Aditya Kashi Oak Ridge National Laboratory 
Karthik Kashinath NVIDIA 
Beth Kaspar Los Alamos National Laboratory 
Jennifer King National Renewable Energy Laboratory 
Ryan King National Renewable Energy Laboratory 
Mariam Kiran Esnet 
Kerstin Kleese van Dam Brookhaven National Laboratory 
Natalie Klein Los Alamos National Laboratory 
Elena Klimova Bowie State University 
Risi Kondor University of Chicago 
John Korbin Bowie State University 
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FIRST NAME LAST NAME INSTITUTION 

Ron Koshita Pacific Northwest National Laboratory 
Olivera Kotevska Oak Ridge National Laboratory 
Douglas Kothe Oak Ridge National Laboratory 
Sharlotte Kramer Sandia National Laboratories 
Aditi Krishnapriyan Lawrence Berkeley National Laboratory 
Michael Kruse Argonne National Laboratory 
Ralph Kube Princeton Plasma Physics Laboratory 
Neeraj Kumar Pacific Northwest National Laboratory 
Suhas Kumar Rain AI 
Ana Kupresanin Lawrence Livermore National Laboratory 
Kuldeep Kurte Oak Ridge National Laboratory 
Paul Laiu Oak Ridge National Laboratory 
Michael Lang National Nuclear Security Administration 
Earl Lawrence Los Alamos National Laboratory 
Patricia Lee U.S. Department of Energy 
Steven Lee U.S. Department of Energy 
Margaret Lentz U.S. Department of Energy 
Edgar Leon Lawrence Livermore National Laboratory 
Katie Lewis Lawrence Livermore National Laboratory 
Vivia Lewis Bowie State University 
Sven Leyffer Argonne National Laboratory 
Frankie Li HPE 
Chunhua Liao Lawrence Livermore National Laboratory 
Linyu Lin Idaho National Laboratory 
Frank Liu Oak Ridge National Laboratory 
Xin Liu University of California, Davis 
Yajun Liu SuperMicro 
Zhengchun Liu Argonne National Laboratory 
Andrey Lokhov Los Alamos National Laboratory 
Manuel Lopez Roldan Graphcore 
Vaness Lopez-Marrero Brookhaven National Laboratory 
Hao Lu Oak Ridge National Laboratory 
Zarija Lukic Lawrence Berkeley National Laboratory 
Dalton Lunga Oak Ridge National Laboratory 
Massimiliano Lupo Pasini Oak Ridge National Laboratory 
Darlyn Lutes Argonne National Laboratory 
Nancy Lybeck Idaho National Laboratory 
Isaac Lyngaas Oak Ridge National Laboratory 
Heng Ma Argonne National Laboratory 
Ravi Madduri Argonne National Laboratory 
Ramana Madupu U.S. Department of Energy 
Alister Maguire Lawrence Livermore National Laboratory 
Michael Mahoney Lawrence Berkeley National Laboratory 
Thomas Maier Oak Ridge National Laboratory 
Linda Malone Oak Ridge National Laboratory 
Carla Mann Argonne National Laboratory 
Manohar Mareboyana Bowie State University 
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FIRST NAME LAST NAME INSTITUTION 

Vasileios Maroulas University of Tennessee Knoxville 
Cari Martinez Sandia National Laboratories 
Chris Mayes Stanford Linear Accelerator Center 
Benjamin McMahon Los Alamos National Laboratory 
Diana McSpadden Jefferson Laboratory 
Murali 
(Gopalakrishnan) 

Meena  Oak Ridge National Laboratory 

Daniel Merl Lawrence Livermore National Laboratory 
Wayne Mitchell Lawrence Livermore National Laboratory 
Bashir Mohammed Lawrence Berkeley National Laboratory 
Kelly Moran Los Alamos National Laboratory 
Dmitriy Morozov Lawrence Berkeley National Laboratory 
Zachary Morrow Sandia National Laboratories 
Pamela Moses Bowie State University 
Silvia Mulligan Argonne National Laboratory 
Albert Musaelian Harvard University 
Jamie Myers Oak Ridge National Laboratory 
Kary Myers Los Alamos National Laboratory 
Kristian Myhre U.S. Department of Energy 
Habib Najm Sandia National Laboratories 
Hai Ah Nam Lawrence Berkeley National Laboratory 
Ben Nebgen Los Alamos National Laboratory 
Rob Neely Lawrence Livermore National Laboratory 
Joed Ngangmeni Pacific Northwest National Laboratory 
Nga Nguyen-Fotiadis Los Alamos National Laboratory 
Jeff Nichols Oak Ridge National Laboratory 
Jonathan Nistor BlueWave AI Labs 
Marcus Noack Lawrence Berkeley National Laboratory 
Andrew Norman Fermilab 
Alex Norton Hyperion Research 
Peter Nugent Lawrence Berkeley National Laboratory 
Dan O'Malley Los Alamos National Laboratory 
Adetunji Oduduwa Bowie State University 
Aderonke Oduwole Bowie State University 
Ayodeji Ogundiran Bowie State University 
Ron Oldfield Sandia National Laboratories 
Diane Oyen Los Alamos National Laboratory 
Pinaki Pal Argonne National Laboratory 
Michael Papka Argonne National Laboratory 
Vincent Paquit Oak Ridge National Laboratory 
Julie Parente Argonne National Laboratory 
Tina Park Partnership on AI 
Lekha Patel Sandia National Laboratories 
Ravi Patel Sandia National Laboratories 
Sean Peisert Lawrence Berkeley National Laboratory 
Slaven Peles Oak Ridge National Laboratory 
Swann Perarnau Argonne National Laboratory 
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FIRST NAME LAST NAME INSTITUTION 

Talita Perciano Lawrence Berkeley National Laboratory 
Paris Perdikaris University of Pensylvania 
Tom Peterka Argonne National Laboratory 
Luc Peterson Lawrence Livermore National Laboratory 
Yarom Polsky Oak Ridge National Laboratory 
Stanley Posey NVIDIA 
Thomas Potok Oak Ridge National Laboratory 
Line Pouchard Brookhaven National Laboratory 
Zach Prince Idaho National Laboratory 
Jason Pruet Los Alamos National Laboratory 
Irene Qualters Los Alamos National Laboratory 
Rosalyn Rael Los Alamos National Laboratory 
Siva Rajamanickam Sandia National Laboratories 
Kishansingh Rajput Jefferson Laboratory 
Robert Rallo Pacific Northwest National Laboratory 
Lavanya Ramakrishnan Lawrence Berkeley National Laboratory 
Sreenivasan Ramamurthy University Of Maryland, Baltimore County 
Arvind Ramanathan Argonne National Laboratory 
Monsuru Ramnoi Navajo Tech 
Pradeep Ramuhalli Oak Ridge National Laboratory 
Timothy Randles Los Alamos National Laboratory 
Nageswara Rao Oak Ridge National Laboratory 
Jaideep Ray Sandia National Laboratories 
Yihui Ren Brookhaven National Laboratory 
Matthew Reno Sandia National Laboratories 
Juan Restrepo Oak Ridge National Laboratory 
Ryan Richard Ames National Laboratory 
Rob Rieben Lawrence Livermore National Laboratory 
Joshua Romero NVIDIA 
Damian Rouson Lawrence Berkeley National Laboratory 
Wissam Saidi National Energy Technology Laboratory 
Brian Sammuli General Atomics 
Nandakishore Santhi Los Alamos National Laboratory 
Soumalya Sarkar Raytheon Technologies 
Kento Sato Riekn 
Nobuo Sato Jefferson Laboratory 
Markus Schordan Lawrence Livermore National Laboratory 
Mark Schraad Los Alamos National Laboratory 
Malachi Schram Thomas Jefferson National Accelerator Facility 
Joshua Schrier Fordham University 
Sudip Seal Oak Ridge National Laboratory 
William Severa Sandia National Laboratories 
Zubair Shafiq University of California, Davis 
Vivek Shandilya Bowie State University 
Arjun Shankar Oak Ridge National Laboratory 
Millikarjun Shankar Oak Ridge National Laboratory 
Yongning Sheng SambaNova Systems Inc. 
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FIRST NAME LAST NAME INSTITUTION 

Chung Shih National Energy Technology Laboratory 
Galen Shipman Los Alamos National Laboratory 
Amir Shirkhodaie Tennessee State University 
Rose Shumba Bowie State University 
Horst Simon U.S. Department of Energy 
Prashant Singh Ames National Laboratory 
Mike Sohn Lawrence Berkeley National Laboratory 
Carlos Soto Brookhaven National Laboratory 
Brian Spears Lawrence Livermore National Laboratory 
Claudia Spiro NNSA-NA-22 
Michael Sprague National Renewable Energy Laboratory 
Suhas Sreehari Oak Ridge National Laboratory 
George Stelle Los Alamos National Laboratory 
Rick Stevens Argonne National Laboratory 
David Stevens Lawrence Livermore National Laboratory 
Panos Stinis Pacific Northwest National Laboratory 
Jennifer Stokes-Draut Lawrence Berkeley National Laboratory 
Casey Stone Argonne National Laboratory 
Otto Erik Strack Sandia National Laboratories 
Thomas Strohmer University of California, Davis 
Shashank Subramanian Lawrence Berkeley National Laboratory 
Fred Sudler Oak Ridge National Laboratory 
Sreenivas Sukumar HPE 
WaiChing Sun Columbia University 
Rajeev Surendran Assary Argonne National Laboratory 
Samantika Sury Samsung 
Ceren Susut U.S. Department of Energy 
Sriram Swaminarayan Los Alamos National Laboratory 
Christine Sweeney Los Alamos National Laboratory 
Anika Tabassum Oak Ridge National Laboratory 
Bill Tang Princeton Plasma Physics Laboratory 
Michela Taufer University of Tennessee, Knoxville 
Valerie Taylor Argonne National Laboratory 
Kazuhiro Terao Stanford Linear Accelerator Center 
Rajeev Thakur Argonne National Laboratory 
Peter Thornton Oak Ridge National Laboratory 
Peyton Ticknor Oak Ridge National Laboratory 
Zoe Tosi Lawrence Livermore National Laboratory 
Gina Tourassi Oak Ridge National Laboratory 
Nathaniel Trask Sandia National Laboratories 
Thomas Uram Argonne National Laboratory 
Daniela Ushizima Lawrence Berkeley National Laboratory 
Bart van Bloemen Waanders Sandia National Laboratories 
Hubertus Van Dam Brookhaven National Laboratory 
Brian Van Essen Lawrence Livermore National Laboratory 
Bart vanBloemenWaanders Sandia National Laboratories 
Dirk VanEssendelft National Energy Technology Laboratory 
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FIRST NAME LAST NAME INSTITUTION 

Lav Varshney Brookhaven National Laboratory 
Rama Vasudevan Oak Ridge National Laboratory 
Stephen Verzi Sandia National Laboratories 
Richard Vilim Argonne National Laboratory 
Svitlana Volkova Pacific Northwest National Laboratory 
Draguna Vrabie Pacific Northwest National Laboratory 
Adam Wachtor Los Alamos National Laboratory 
Feiyi Wang Oak Ridge National Laboratory 
Logan Ward Argonne National Laboratory 
Jean-Paul Watson Lawrence Livermore National Laboratory 
Bobbie-Jo Webb-Robertson Pacific Northwest National Laboratory 
Justin Weber National Energy Technology Laboratory 
Jack Wells NVIDIA 
Madison Wenzlick National Energy Technology Laboratory 
Daniel White Lawrence Livermore National Laboratory 
Lauret White Advanced Micro Devices, Inc. 
Rebekah White Sandia National Laboratories 
Andrew Wiedlea Lawrence Berkeley National Laboratory 
Stefan Wild Argonne National Laboratory 
Timothy Wildey Sandia National Laboratories 
Karen Willcox University of Texas, Austin 
Nolan Wilson, Nolan National Renewable Energy Laboratory 
Theresa Windus Ames National Laboratory 
Nickolas Winovich Sandia National Laboratories 
Kristen Winther Stanford Linear Accelerator Center 
Robert Wisniewski Samsung 
Lora Wolfe Oak Ridge National Laboratory 
David Womble Oak Ridge National Laboratory 
John Wu Lawrence Berkeley National Laboratory 
Dongbin Xiu Ohio State University 
Angel Yanguas-Gil Argonne National Laboratory 
Fenghui Yao Tennessee State University 
Shinjae Yoo Brookhaven National Laboratory 
Guannan Zhang Oak Ridge National Laboratory 
Pei Zhang Oak Ridge National Laboratory 
Amanda Ziemann Los Alamos National Laboratory 
Steve Zitney National Energy Technology Laboratory 
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AC. ACRONYMS AND ABBREVIATIONS 
ACRONYMS  ABBREVIATIONS 

3D three-dimensional 
5G, 6G fifth-generation, sixth-generation [networks] 
AAR Annual Assessment Report (NNSA) 
ADAPD Advanced Data Analytics for Proliferation Detection 
AI artificial intelligence 
AI4SES AI for Science, Energy, and Security 
ALCF Argonne Leadership Computing Facility 
ALS Advanced Light Source (LBNL) 
AML Advanced Machine Learning 
AMO Advanced Manufacturing Office (DOE) 
ARD advanced research direction 
ARPA-E Advanced Research Projects Agency–Energy (DOE) 
ASC Advanced Simulation and Computing (LLNL) 
ASCR Advanced Scientific Computing Research (DOE) 
BER Biological and Environmental Research (DOE-SC) 
BES Basic Energy Sciences (DOE-SC) 
CANDLE Cancer Distributed Learning Environment 
CFD computational fluid dynamics 
CMOS complementary metal oxide semiconductor 
DAE differential-algebraic equation 
DARPA Defense Advanced Research Projects Agency 
DDMD Discovery, Design Optimization, Manufacturing and Certification, and Deployment and Surveillance 
DFT density functional theory 
DNN deep neural network 
DNN R&D Defense Nuclear Nonproliferation Research and Development (NNSA, also NA-22) 
DOE U.S. Department of Energy 
DP Office of Defense Programs (DOE) 
DT digital twin 
ECP Exascale Computing Project 
EDA electronic design automation 
EERE Office of Energy Efficiency and Renewable Energy (DOE) 
ESnet Energy Sciences Network 
ESnet6 sixth generation of ESnet 
FAIR Findable, Accessible, Interoperable, Reusable 
FECM Office of Fossil Energy and Carbon Management (DOE) 
Flop, flops floating point operations 
FPU first production unit 
FSM finite state machine 
FY fiscal year 
GPU graphical processing unit 
HED high-energy-density 
HEDP high-energy-density physics 
HIL hardware-in-the-loop 
HPC high-performance computing 
I/O input/output 
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ACRONYMS  ABBREVIATIONS 

IC integrated circuit 
IP intellectual property 
IRI integrated research infrastructure 
ITER International Thermonuclear Experimental Reactor 
LANSC Los Alamos Neutron Science Center 
LBANN Livermore Big Artificial Neural Network 
LEP life extension programs 
LLNL Lawrence Livermore National Laboratory 
LYNM Low Yield Nuclear Monitoring 
MINOS Multi-Informatics for Nuclear Operations Scenarios 
ML machine learning  
NA-10 Office of Defense Programs (NNSA) 
NA-20 Office of Defense Nuclear Nonproliferation (NNSA) 
NA-22 Defense Nuclear Nonproliferation Research and Development (NNSA) 
NA-50 Office of Infrastructure (NNSA) 
NA-114 Reference in Ch. 10 
NAERM North American Energy Resilience Model 
ND nuclear deterrent 
NDES nuclear deterrence electrical system 
NDTE Non-Destructive Test and Evaluation 
NE Office of Nuclear Energy (DOE) 
NERSC National Energy Research Scientific Computing Center (DOE-ASCR) 
NIH National Institutes of Health 
NNSA National Nuclear Security Administration 
NSF National Science Foundation 
OOD out-of-distribution 
OLCF Oak Ridge Leadership Computing Facility 
ORNL Oak Ridge National Laboratory 
PDE partial differential equation 
PF-4 Reference in Ch. 10 
PI Principal Investigator  
PPL probabilistic programming language 
QoI quite OK image (format)  
R&D research and development 
RadMHD radiation-magnetohydrodynamics 
RKE resilient knowledge ecosystem 
RL reinforcement learning 
ROM reduced-order model 
SAW Sandia Analysis Workbench 
SC Office of Science (DOE) 
SME subject matter expert 
SNS Spallation Neutron Source (ORNL) 
SSP scientific seed prompt 
STEM science, technology, engineering, and medicine 
STS Second Target Station (ORNL-SNS) 
TB terabyte 
TSRH Trusted strategically rad-hard 
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ACRONYMS  ABBREVIATIONS 

UQ uncertainty quantification  
V&V validation and verification 
WCI-ICF Weapons and Complex Integration-Inertial Confinement Fusion 
XAI Explainable AI 
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