Skip to main content

Hybrid Quantum Science at Ultralow Temperatures

The Center for Nanoscale Materials’ Quantum Matter and Devices Lab enables comprehensive low-temperature science down to 10 mK with extensive magnetic, electrical and optical capabilities for characterization of a variety of quantum materials and devices.

Revealing the intricate quantum properties of matter often requires low temperatures to suppress thermal excitations from the environment. The Center for Nanoscale Materials’ Quantum Matter and Devices Lab is equipped with a dilution refrigerator system for ultralow-temperature experiments down to 10 mK. The system features several unique capabilities including a vector superconductor magnet, multi-directional free-space optical accesses, and an expedited sample-loading mechanism.

With a variety of pre-installed electronic, microwave and optical characterization lines, the system is designed for measuring a diverse array of quantum materials and devices, such as quantum liquids and solids, superconducting qubits, and single-electron transistors. Moreover, we provide versatile characterization instruments, including an extremely high-frequency (up to 100 GHz) microwave network analyzer, a high-power UV-Vis-NIR tunable nanosecond laser, and the associated microwave and optical setups. Femtosecond laser spectroscopy integrated with millikelvin ultralow temperature is under development.

Capabilities and advantages:

  • Ultralow base temperature: ~10 mK
  • Vector magnetic field: 5T in Z axis and 1T in any direction, ~10 mG low-drift stability
  • Expedited top-sample-loading probe: only 8 hours from room temperature to mK
  • Versatile electronic access: 100x dc wires, 20x 18GHz microwave coax, 2x 5kV high-voltage cables
  • Versatile optical access: 8x Vis-IR optical fibers, 5x free space optical windows (4 horizontal and 1 vertical, covering UV-Vis-NIR-MIR spectrum)
  • Quantum-limited and Low-noise amplifiers, circulators, isolators and directional couplers for superconductor device (e.g., qubits and SET) characterization
  • 2x high-pressure fill lines for quantum liquid and solid research


* Corresponding author(s) from CNM.


Center for Nanoscale Materials General Inquiries