Skip to main content
Press Release | Argonne National Laboratory

Shock to the system: Using electricity to find materials that can learn

Scientists used the Advanced Photon Source to watch a nonliving material mimic behavior associated with learning, paving the way for better artificial intelligence.

Scientists looking to create a new generation of supercomputers are looking for inspiration from the most complex and energy-efficient computer ever built: the human brain.

In some of their initial forays into making brain-inspired computers, researchers are looking at different nonbiological materials whose properties could be tailored to show evidence of learning-like behaviors. These materials could form the basis for hardware that could be paired with new software algorithms to enable more potent, useful and energy-efficient artificial intelligence (AI).

In a new study led by scientists from Purdue University, researchers have exposed oxygen deficient nickel oxide to brief electrical pulses and elicited two different electrical responses that are similar to learning. The result is an all-electrically-driven system that shows these learning behaviors, said Rutgers University professor Shriram Ramanathan. (Ramanathan was a professor at Purdue University at the time of this work.) The research team used the resources of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science user facility at DOE’s Argonne National Laboratory.

The first response, habituation, occurs when the material gets used to” being slightly zapped. The scientists noticed that although the material’s resistance increases after an initial jolt, it soon becomes accustomed to the electric stimulus. Habituation is like what happens when you live near an airport,” said Fanny Rodolakis, a physicist and beamline scientist at the APS. The day you move in, you think what a racket,’ but eventually you hardly notice anymore.”

The other response shown by the material, sensitization, occurs when a larger dose of electricity is administered.  With a larger stimulus, the material’s response grows instead of diminishing over time,” Rodolakis said. It’s akin to watching a scary movie, and then having someone say boo!’ from behind a corner — you see it really jump.”

Pretty much all living organisms demonstrate these two characteristics,” Ramanathan said. They really are a foundational aspect of intelligence.”

These two behaviors are controlled by quantum interactions between electrons that can’t be described by classical physics, and that help to form the basis for a phase transition in the material. An example of a phase transition is a liquid becoming a solid,” Rodolakis said. The material we’re looking at is right on the border, and the competing interactions that are going on at the electronic level can easily be tipped one way or another by small stimuli.”

Having a system that can be completely controlled by electrical signals is essential for brain-inspired computing applications, Ramanathan said. Being able to manipulate materials in this fashion will allow hardware to take on some of the responsibility for intelligence,” he explained. Using quantum properties to get intelligence into hardware represents a key step towards energy-efficient computing.”

The difference between habituation and sensitization can help scientists overcome a challenge in the development of AI called the stability-plasticity dilemma. Artificial intelligence algorithms can often be, on the one hand, too reluctant to adapt to new information. But on the other, when they do they can often forget some of what they’ve already learned. By creating a material that can habituate, scientists can teach it to ignore or forget unneeded information and thus achieve additional stability, while sensitization could train it to remember and incorporate new information, enabling plasticity.

AI often has a hard time learning and storing new information without overwriting information that has already been stored,” Rodolakis said. Too much stability prevents AI from learning, but too much plasticity can lead to catastrophic forgetting.”

One major advantage of the new study involved the small size of the nickel oxide device. This type of learning had previously not been done in the current generation of electronics without a large number of transistors,” Rodolakis said. This single junction system is the smallest system to date to show these properties, which has big implications for the possible development of neuromorphic circuitry.”

To detect the atomic-scale dynamics responsible for the habituation and sensitization behaviors, Rodolakis and Argonne’s Hua Zhou used X-ray absorption spectroscopy at beamlines 29-ID-D and 33-ID-D of the APS.

A paper based on the study was published in the Steptember 19 issue of Advanced Intelligent Systems.

The research was funded by DOE’s Office of Science (Office of Basic Energy Sciences), the Army Research Office, the Air Force Office of Scientific Research and the National Science Foundation.

About the Advanced Photon Source

The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.