Skip to main content
Press Release | Argonne National Laboratory

Thinnest ferroelectric material ever paves the way for new energy-efficient devices

Discovery of intriguing material behavior at small scales could reduce energy demands for computing.

As electronic devices become smaller and smaller, the materials that power them need to become thinner and thinner. Because of this, one of the key challenges scientists face in developing next-generation energy-efficient electronics is discovering materials that can maintain special electronic properties at an ultrathin size.

Advanced materials known as ferroelectrics present a promising solution to help lower the power consumed by the ultrasmall electronic devices found in cell phones and computers. Ferroelectrics — the electrical analog to ferromagnets — are a class of materials in which some of the atoms are arranged off-center, leading to a spontaneous internal electric charge or polarization. This internal polarization can reverse its direction when scientists expose the material to an external voltage. This offers great promise for ultralow-power microelectronics.

Unfortunately, conventional ferroelectric materials lose their internal polarization below around a few nanometers in thickness. This means they are not compatible with current-day silicon technology. This issue has previously prevented the integration of ferroelectrics into microelectronics.

But now a team of researchers from the University of California at Berkeley performing experiments at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have found a solution that simultaneously solves both problems by creating the thinnest ferroelectric ever reported and the thinnest demonstration of a working memory on silicon.

In a study published in the journal Science, the research team discovered stable ferroelectricity in an ultrathin layer of zirconium dioxide just half a nanometer thick. That’s the size of a single atomic building block, about 200,000 times thinner than a human hair. The team grew this material directly on silicon. They found ferroelectricity emerges in zirconium dioxide — normally a nonferroelectric material — when it is grown extremely thin, approximately 1-2 nanometers in thickness.

Notably, the ferroelectric behavior continues to its near-atomic-scale thickness limit of roughly half a nanometer. This fundamental breakthrough marks the world’s thinnest ferroelectric. This is surprising for a material that is not even typically ferroelectric in its bulk form.

The researchers were also able to switch the polarization in this ultrathin material back and forth with a small voltage, enabling the thinnest demonstration of a working memory ever reported on silicon. It also offers substantial promise for energy-efficient electronics, especially considering conventional zirconium dioxide is already present in today’s state-of-the-art silicon chips.  

This work takes a key step towards integrating ferroelectrics into highly scaled microelectronics,” said Suraj Cheema, a postdoctoral researcher at UC Berkeley, the first author of the study. 

Visualizing the ferroelectric behavior of such ultrathin systems required the use of Argonne’s Advanced Photon Source, a DOE Office of Science user facility. X-ray diffraction gives needed insight into how this ferroelectricity emerges,” said Argonne senior physicist John Freeland, another author of the study.  

Beyond the immediate technological impact, this work also has significant implications for designing new two-dimensional materials.

 Simply squeezing 3D materials to their 2D thickness limit offers a straightforward-yet-effective route to unlocking hidden phenomena in a wide variety of simple materials,” Cheema said. This greatly expands the materials design space for next-generation electronics to include materials already compatible with silicon technologies.”  

As Cheema noted, simply growing just a few atomic layers of a 3D material can offer the potential for a new class of 2D materials — atomically-thin 3D materials — that go beyond conventional sheets of 2D materials like graphene. The researchers hope this work will motivate more research into two-dimensional 3D materials exhibiting emergent electronic phenomena relevant for energy-efficient electronics. 

This work was led by Cheema and Sayeef Salahuddin of UC Berkeley, along with co-first authors Nirmaan Shanker and Shang-Lin Hsu. At beamline 33-BM-C of Argonne’s Advanced Photon Source, working with Argonne physicists Freeland and Zhan Zhang and Vladimir Stoica of Pennsylvania State University, the researchers employed synchrotron X-ray absorption spectroscopy and X-ray diffraction to investigate the structural evolution of ferroelectricity to the atomic scale and explore its electronic origins. At DOE’s Lawrence Berkeley National Laboratory’s Advanced Light Source and Molecular Foundry, collaborating with scientists Padraic Shafer and Jim Ciston, the material’s ferroelectric crystal structure was studied using soft X-rays and transmission electron microscopy. 

A paper based on the study, Emergent ferroelectricity in subnanometer binary oxide films on silicon,” appeared in Science. 

About the Advanced Photon Source

The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.