Skip to main content

Rajeev Surendran Assary

Chemist

Utilize the power of accurate first principles simulations to perform research and development of materials for energy storage and catalysis

Biography

Rajeev Assary obtained PhD degree in Computational Chemistry in 2005 from The University of Manchester UK. Dr. Assary held postdoctoral positions in University of Manchester and Northwestern University prior to joining Argonne National Laboratory in 2009. At present, he is a Staff Scientist at Materials Science Division of Argonne National Laboratory. Dr. Assary’s research interests include fundamental and applied aspects of computational modeling based on quantum chemistry in biomass catalysis and beyond lithium ion’ energy storage systems. He has published over 70 papers in peer reviewed journals.  He conducts research as part of Joint Center of Electric Energy Storage (JCESR) and Consortium for Computational Physics and Chemistry (CCPC).

Research Interests

  • First principles Simulations
  • Computational Catalysis
  • Computational Electrochemistry
  • Materials Design

Recent Publications (2018-2015)

2018

  1. Ni-Doping effects on Oxygen Removal over Orthorhombic Mo2C(001) Surface: A Density Functional Theory Investigation. Mingxia Zhou, Lei Cheng, Bin Lu, Jae-Soon Choi, Larry A. Curtiss, Rajeev. S. AssaryJournal of Physical Chemistry C2018, 122(3), 1595-1603
  2. Mechanistic insights into the hydrogenolysis of levoglucosanol over bifunctional platinum silica-alumina catalysts, Siddarth Krishna, Rajeev S. Assary, Quinn Rashke, Larry Curtiss, James Dumesic, George W Huber, ACS Catalysis2018, 8, 3743-3753
  3. Dual Overcharge Protection and Solid Electrolyte Interphase-improving action in Li-ion Cells containing a Bis-annulated Dialkoxyarene Electrolyte additive, Jingjing Zhang, Ilya A. Shkrob, Rajeev S Assary, Shuo Zhang, Bin Hu, Chen Liao, Zhengcheng Zhang, Lu ZhangJournal of Power Sources2018378, 264-267.
  4. Lithium-Oxygen batteries with long cycle life in a realistic air atmosphere, Baharak Sayahpour, Pedram Abbasi, Mohammad Asadi, Anh Ngo, Klas Karis, Jacob R. Jokisaari, Cong Liu, Badri Narayanan, Marc Gerard, Poya Yasaei, Xuan Hu, Arijita Mukherjee, Kah Chun Lau, Rajeev S. Assary, Fatemeh Khalili-Araghi, Robert F. Klie, Larry A. Curtiss, Amin Salehi-Khojin. Nature, 2018. 555, 502-506.
  5. Substituted Thiadiazoles as Energy-Rich Anolytes for Non-aqueous Redox Flow Cells, Jinhua Huangm Wentao Duan, Jingjing Zhang, Ilya Shkrob, Rajeev S. Assary, Liao Chen, Zhengcheng Zhang, Xiaolinag Wei, Lu Zhang, Journal of Materials Chemistry A20186, 6251-6254 .
  6. Elucidating Factors Controlling Long-Term Stability of Radical Anions for Negative Charge Storage in Non-aqueous Redox Flow Batteries, Jingjing Zhang, Jinhua Huang, Lilly Robertson, Rajeev S. Assary, Ilya Shkrob, Lu Zhang, Journal of Physical Chemistry C 2018, 122, 8116--8127.
  7. Identification and Implication of Lithium Superoxide in Li-O2 batteries, Avik Halder,  Hsien-Hau Wang, K. C. Lau, Rajeev S. Assary, Jun Lu, Stefan Vajda, Khalil Amine, Larry CurtissACS Energy Letters, 2018, 3, 1105-1109

2017

  1. Lithium Superoxide Hydrolysis and Relevance to Li-O2 Batteries, H.-H. Wang, Y. J. Lee, R. S., Assary, C. Zhang, X. Luo, P. C. Redfern, J. Lu, Y. L. Lee, D., H. Kim, T-G. Kang, E. Indacochea, K. C. Lau, K. Amine, L. A. Curtiss, Journal of Physical Chemistry C, 2017, 121(18), 9657-9661
  2. Computational Studies of Solubility of LiO2 and Li2O2 in Aprotic Solvents, Lei Cheng, Paul Redfern, Kah Chun Lau, Rajeev S. Assary, Larry A. Curtiss, Accepted Journal of Electrochemical Society, 2017, 164 (11), E3696-E3701.
  3. Annulated Dialkoxybenzenes as Catholyte Materials for Nonaqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution, Jingjing Zhang, Zheng Yang, Ilya A. Shkrob, Rajeev S. Assary, Siu on Tung, Benjamin Silcox, Wentao Duan, Junjie Zhang, Chi Cheung Su, Bin Hu, Baofei Pan, Chen Liao, Zhengcheng Zhang, Wei Wang, Larry A. Curtiss, Levi T. Thompson, Xiaoliang Wei, and Lu Zhang, Accepted Advanced Energy Materials, 2017 (DOI: 10.1002/aenm.201701272Cover story).
  4. Towards Improved Catholyte Materials for Redox Flow Batteries: What Controls Chemical Stability of Persistent Radical Cations?”, Jingjing Zhang, Ilya Shkrob, Rajeev S. Assary, Siu Tung, Benjamin Silcox, Larry Curtiss, Levi Thompson, Lu Zhang, LuJournal of Physical Chemistry C, 2017, 121(42), 23347-23358.
  5. The effect of the hydrofluoroether cosolvent structure in acetonitrile-based solvate electrolytes on Li+ solvation structure and Li‒S battery performance, Minjeong, Shin, Heng-Liang Wu, Badri Narayanan, Kimberly See, Rajeev Assary, Zhu Lingyang, Richard Haasch, Shuo Zhang, Zhengcheng Zhang, Larry Curtiss, Andrew GewirthACS Applied Materials and Interphases2017, 9, 39357-370

2016

  1. Molecular level understanding of the factors affecting the stability of Dimethoxy benzene Catholyte candidates from First Principle studies,Rajeev S. Assary†, Lu Zhang, Jinhua Huang, Larry A Curtiss, Journal of Physical Chemistry C2016, 120, 14531-14538
  2. Mono- and Tri-Ester Hydrogenolysis using Tandem Catalysis. Scope and Mechanism, Tracy L Lohr, Zhi Li, Rajeev S. Assary, Larry A. Curtiss, Tobin J. MarksEnergy Environmental Science 2016, 9550-564.
  3. Superoxide(Electro)Chemistry on well-defined Surfaces in Organic environments, J Bostjan Genorio, Jakub S. Jirkovský, Rajeev S. Assary, Dusan Strmcnik, Charles E. Diesendruck, Vojislav R. Stamenkovic, Jeffrey S. Moore, Larry Curtiss, Nenad M. Markovic, Journal of Physical Chemistry C2016, 120, 15909-15914
  4. 1,2,3,4-Tetrahydro-6,7-dimethoxy-1,1,4,4-tetramethylnaphthalene as an electrochemically-activated molecular switch for lithium ion coordination, Emily v. Carino, Jakub Staszak-Jirkovsky, Rajeev S. Assary, Fikile R. Brushett, Nenad M. Markovic, Chemistry of Materials, 2016,28, 2529-2539
  5. Synthesis and characterization of pyridine and pyrazine BF3-complexes to understand the redox activity and stability of 1,4-bis-BF3-quinoxaline complex, Etienne Chénard, Andre Sutrisno, Lingyang Zhu, Rajeev S. Assary, Jeffrey A. Kowalski, John L. Barton, Jeffery A. Bertke, Danielle L. Gray, Fikile R. Brushett, Larry Curtiss, and Jeffrey S. Moore, Journal of Physical Chemistry C2016, 120, 8461-8471
  6. The lightest organic radical cation for charge storage in redox flow batteries, Huang, Jinhua, Pan, Baofei, Duan, Wentao, Wei, Xiaoliang, Assary, Rajeev, Cheng, Lei, Brushett, Fikile R., Ferrandon, Magali, Liao, Chen, Zhang, Zhengcheng, Wang, Wei, Burrell, Anthony, Curtiss, Larry, Moore, Jeffrey, Shkrob, Ilya, Zhang, Lu, Scientific Reports20166, 32102.
  7. Enabling high energy density Li-ion batteries through Li2O activation, Ali Abouimrane, Yanjie Cui, Zonghai Chen, Ilias Belharouak, Hamdi B. Yahia, Huiming Wu, Rajeev Assary, Larry A. Curtiss, and Khalil Amine, Nano Energy2016, 27, 196-201
  8. Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers, Mark Burgess, Etienne Chénard, Kenneth Hernández-Burgos, Nagarjuna Gavvalapalli, Rajeev Assary, Jingshu Hui, Jeffrey S. Moore, Joaquín Rodríguez-López, Chemistry of Materials2016, 28, 7362-7374
  9. Solvent Effects on Polysulfide Redox Kinetics and Ionic Conductivity in Lithium-Sulfur Batteries, Yet-Ming Chiang, Frank Fan, Menghsuan Sam Pan, Kah Chun Lau, Rajeev Assary, William Woodford, Larry Curtiss, and W. Craig Carter, Accepted, Journal of The Electrochemical Society2016.
  10. A Combined experimental and Computational study of the mechanism of fructose dehydration to 5-hydroxymethyl furfural in dimethyl sulfoxides using Amberlyst 70, PO43-/Niobic acid or sulfuric acid as catalysts, J. Zhang, Anirbhan Das, Rajeev S. Assary, Larry Curtiss, Eric Weitz. Applied Catalysis B, 2016181, 874-889

2015

  1. BF3-Promoted electrochemical properties of quinoxaline in propylene carbonate, Emily Carino, Charles E. Diesendruck, Larry A. Curtiss, Rajeev S. Assary, Fikile R. BrushettRSC Advances 2015, 18822-18831
  2. Liquid Redox Active Molecules towards Non-Aqueous Flow Battery, Jinhua Huang, Lei Cheng, Rajeev S. Assary, Anthony K. Burrell, Larry A. Curtiss, Lu ZhangAdvanced Energy Materials2015, 5, 1401782
  3. Accelerating Electrolyte Discovery by High Throughput Screening, Lei Cheng, Rajeev S. Assary, Xiaohui Qu, Anubhav Jain, Shyue Ping Ong, Larry Curtiss, Kristin Persson, Journal of Physical Chemistry Letters 20156(2)283-291(Cover story)
  4. Thermodynamically Leveraged Tandem Catalysis for Ester RC(O) O-R’ Bind Hydrogenolysis. Scope and Mechanism, Tracy L Lohr, Zhi Li, Rajeev S. Assary, Larry A. Curtiss, Tobin J. MarksACS Catalysis20155, 3675-3679.
  5. Water as promoter and catalyst in dioxygen electrochemistry at aqueous and organic electrified interfaces, Jakub S. Jirkovski, Ram Subbaraman, Dusan Strmcnik, Katharine L. Harrison, Charles E. Diesendruck, Rajeev Assary, Otakar Frank, Lukáš Kobr, Gustav K. H. Wiberg, Bostjan Genorio, Vojislav R. Stamenkovic, Larry Curtiss, Jeffrey S. Moore, Kevin R. Zavadil, and Nenad M. MarkovicACS Catalysis, 2015, 5, 6600-6607
  6. Catalytic upgrading of biomass-derived compounds via C-C coupling reactions: Computational and experimental studies of furan and acetaldehyde reactions in HZSM-5Cong Liu, Tabatha Evans, Lei Cheng, Mark Nimlos, Calvin Mukarakate, David Robiachaud, Rajeev S. Assary†, and Larry A. CurtissJournal of Physical Chemistry C2015119, 24025-24035
  7. Evolutionary Design of Low-Molecular Weight Organic Anolyte Materials for Applications in Non-Aqueous Redox Flow Batteries, Christo Sevov, Rachel Brooner, Etienne Chenard, Rajeev S. Assary, Jeffrey Moore, Joaquin R. Lopez, Melanie Sanford, Journal of American Chemical Society201513714465-14472