Skip to main content

Ilya A. Shkrob

Chemist (Physical Chemist)

Biography

I have been a scientist for 30 years, with 200+ peer reviewed publications in physics and chemistry, and 6 patents. My main current interests are in the electric energy storage and separations sciences, but many of my publications were in radiation chemistry, photochemistry, and spin chemistry, among other fields. See the attached CV for more detail. Here are 10 recent publications sampling my current research:

  1. Zhao, Y.; Yu, Z.; Robertson, L. A.; Zhang, J.; Shi, Z. X.; Bheemireddy, S. R.; Shkrob, I. A.; Li, T.; Zhang, Z. C.; Cheng, L., et al., Unexpected Electrochemical Behavior of an Anolyte Redoxmer in Flow Battery Electrolytes: Solvating Cations Help to Fight against the Thermodynamic-Kinetic Dilemma. Journal of Materials Chemistry A 2020, 8, 13470-13479.
  2. Lily A. Robertson, Ilya A. Shkrob, Garvit Agarwal, Yuyue Zhao, Zhou Yu, Rajeev S. Assary, Lei Cheng, Jeffrey S. Moore, and Lu Zhang, Fluorescence-enabled self-reporting for redox flow batteries, ACS Energy Lett., DOI: 10.1021/acsenergylett.0c01447
  3. Dennis W. Dees, Marco-Tulio F. Rodrigues,  K. Kalaga,  Stephen E. Trask,  Ilya A. Shkrob, Daniel P Abraham, and  Andrew Jansen. Apparent Increasing Lithium Diffusion Coefficient with Applied Current in Graphite, J. Electrochem. Soc., DOI 10.1149/1945-7111
  4. Yang, J. Z.; Shkrob, I.; Liu, K. W.; Connell, J.; Rago, N. L. D.; Zhang, Z. C.; Liao, C., 4-(Trimethylsilyl) Morpholine as a Multifunctional Electrolyte Additive in High Voltage Lithium Ion Batteries. Journal of the Electrochemical Society 2020, 167, 070533.
  5. Li, Z. X.; Robertson, L. A.; Shkrob, I. A.; Smith, K. C.; Cheng, L.; Zhang, L.; Moore, J. S.; Z, Y., Realistic Ion Dynamics through Charge Renormalization in Nonaqueous Electrolytes. Journal of Physical Chemistry B 2020, 124, 3214-3220.
  6. Zhang, J. J.; Shkrob, I. A.; Assary, R. S.; Clark, R. J.; Wilson, R. E.; Jiang, S. S.; Meisner, Q. J.; Zhu, L.; Hu, B.; Zhang, L., An Extremely Durable Redox Shuttle Additive for Overcharge Protection of Lithium-Ion Batteries. Materials Today Energy 2019, 13, 308-311.
  7. Yao, K. P. C.; Okasinski, J. S.; Kalaga, K.; Shkrob, I. A.; Abraham, D. P., Quantifying Lithium Concentration Gradients in the Graphite Electrode of Li-Ion Cells Using Operando Energy Dispersive X-Ray Diffraction. Energy & Environmental Science 2019, 12, 656-665.
  8. Yang, J. Z.; Shkrob, I.; Liu, Q.; Rago, N. L. D.; Liu, Y. Z.; Liu, K. W.; Zhang, Z. C.; Liao, C., Structural Underpinnings of Cathode Protection by in Situ Generated Lithium Oxyfluorophosphates. Journal of Power Sources 2019, 438, 227039.
  9. Silcox, B.; Zhang, J. J.; Shkrob, I. A.; Thompson, L.; Zhang, L., On Transferability of Performance Metrics for Redox-Active Molecules. Journal of Physical Chemistry C 2019, 123, 16516-16524.
  10. Shkrob, I. A.; Rodrigues, M. T. F.; Dees, D. W.; Abraham, D. P., Fast Charging of Li-Ion Cells: Part II. Nonlinear Contributions to Cell and Electrode Polarization. Journal of the Electrochemical Society 2019, 166, A3305-A3313.

Here are some press releases featuring my work:

https://​phys​.org/​n​e​w​s​/​2​0​1​9​-​0​2​-​x​-​r​a​y​s​-​f​l​a​w​s​-​b​a​t​t​e​r​y​-​f​a​s​t​.html

https://​phys​.org/​n​e​w​s​/​2​0​1​8​-​0​6​-​s​c​i​e​n​c​e​-​p​i​c​k​l​e​d​-​b​a​t​t​e​r​y​-​e​l​e​c​t​r​o​l​y​t​e​s​.html

https://​phys​.org/​n​e​w​s​/​2​0​1​7​-​0​4​-​s​c​i​e​n​t​i​s​t​s​-​c​h​e​m​i​c​a​l​-​b​a​t​t​e​r​y​-​c​a​p​a​c​i​t​y​.html

http://​pubs​.acs​.org/​i​a​p​p​s​/​l​i​v​e​s​l​i​d​e​s​/​p​a​g​e​s​/​i​n​d​e​x​.​h​t​m​?​m​s​c​N​o​=​j​z​5​0​04022

http://​today​.anl​.gov/​2​0​1​5​/​0​9​/​i​n​-​t​h​e​-​b​o​t​t​l​e​b​r​u​s​h​-​g​a​rden/

http://​www​.anl​.gov/​a​r​t​i​c​l​e​s​/​p​r​o​t​e​c​t​i​v​e​-​s​h​e​l​l​s​-​m​a​y​-​b​o​o​s​t​-​s​i​l​i​c​o​n​-​l​i​t​h​i​u​m​-​i​o​n​-​b​a​t​t​eries; http://​phys​.org/​n​e​w​s​/​2​0​1​5​-​0​8​-​s​h​e​l​l​s​-​b​o​o​s​t​-​s​i​l​i​c​o​n​-​l​i​t​h​i​u​m​-​i​o​n​-​b​a​t​t​e​r​i​e​s​.html

https://​www​.jcesr​.org/​r​e​a​l​i​s​t​i​c​-​i​o​n​-​d​y​n​a​m​i​c​s​-​t​h​r​o​u​g​h​-​c​h​a​r​g​e​-​r​e​n​o​r​m​a​l​i​z​a​t​i​o​n​-​i​n​-​n​o​n​a​q​u​e​o​u​s​-​e​l​e​c​t​r​o​l​ytes/

https://​www​.jcesr​.org/​o​n​-​t​r​a​n​s​f​e​r​a​b​i​l​i​t​y​-​o​f​-​p​e​r​f​o​r​m​a​n​c​e​-​m​e​t​r​i​c​s​-​f​o​r​-​r​e​d​o​x​-​a​c​t​i​v​e​-​m​o​l​e​c​ules/

https://​www​.jcesr​.org/​d​i​q​u​a​t​-​a​n​o​l​y​t​e​s​-​f​o​r​-​s​u​s​t​a​i​n​a​b​l​e​-​u​s​e​-​o​f​-​g​r​i​d​-​s​c​a​l​e​-​a​q​u​e​o​u​s​-​r​e​d​o​x​-​f​l​o​w​-​b​a​t​t​e​ries/

https://​www​.jcesr​.org/​c​o​m​p​a​r​i​n​g​-​c​a​l​e​n​d​a​r​-​a​n​d​-​c​y​c​l​e​-​l​i​f​e​-​s​t​a​b​i​l​i​t​y​-​o​f​-​r​e​d​o​x​-​a​c​t​i​v​e​-​o​r​g​a​n​i​c​-​m​o​l​e​c​u​l​e​s​-​f​o​r​-​n​o​n​a​q​u​e​o​u​s​-​r​e​d​o​x​-​f​l​o​w​-​b​a​t​t​e​ries/

https://​www​.jcesr​.org/​s​t​a​b​i​l​i​t​y​-​a​n​d​-​m​i​c​r​o​h​e​t​e​r​o​g​e​n​e​i​t​y​-​i​n​-​c​o​n​c​e​n​t​r​a​t​e​d​-​n​o​n​a​q​u​e​o​u​s​-​e​l​e​c​t​r​o​l​y​t​e​-​s​o​l​u​t​ions/

https://​www​.jcesr​.org/​a​n​n​u​l​a​t​e​d​-​d​i​a​l​k​o​x​y​b​e​n​z​e​n​e​s​-​a​s​-​c​a​t​h​o​l​y​t​e​-​m​a​t​e​r​i​a​l​s​-​f​o​r​-​n​o​n​-​a​q​u​e​o​u​s​-​r​e​d​o​x​-​f​l​o​w​-​b​a​t​t​e​r​i​e​s​-​a​c​h​i​e​v​i​n​g​-​h​i​g​h​-​c​h​e​m​i​c​a​l​-​s​t​a​b​i​l​i​t​y​-​t​h​r​o​u​g​h​-​b​i​c​y​c​l​i​c​-​s​u​b​s​t​i​t​ution; https://​www​.sci​encedai​ly​.com/​r​e​l​e​a​s​e​s​/​2​0​1​7​/​0​8​/​1​7​0​8​1​2​1​6​0​2​4​6.htm

https://​www​.jcesr​.org/​w​i​n​e​-​d​a​r​k​-​s​e​a​-​i​n​-​a​n​-​o​r​g​a​n​i​c​-​f​l​o​w​-​b​a​t​t​e​r​y​-​s​t​o​r​i​n​g​-​n​e​g​a​t​i​v​e​-​c​h​a​r​g​e​-​i​n​-​2​1​3​-​b​e​n​z​o​t​h​i​a​d​i​a​z​o​l​e​-​r​a​d​i​c​a​l​s​-​l​e​a​d​s​-​t​o​-​i​m​p​r​o​v​e​d​-​c​y​c​l​a​b​ility

https://​phys​.org/​n​e​w​s​/​2​0​1​3​-​0​5​-​c​o​u​p​p​-​d​a​r​k​-​d​e​t​e​c​t​o​r​-​i​n​v​i​s​i​b​l​e​-​p​a​r​t​i​c​l​e​s​.html

https://​phys​.org/​n​e​w​s​/​2​0​1​7​-​0​5​-​a​s​t​r​o​n​o​m​e​r​s​-​w​i​m​p​s​.html

http://​www​.sci​encedai​ly​.com/​r​e​l​e​a​s​e​s​/​2​0​1​0​/​0​6​/​1​0​0​6​1​0​1​5​4​4​5​7.htm

http://​sci​ence​blog​.com/​3​5​0​3​3​/​n​e​w​-​m​o​d​e​l​-​i​s​-​p​r​o​p​o​s​e​d​-​t​o​-​e​x​p​l​a​i​n​-​a​b​s​e​nce-o…