Skip to main content

Jie Xu

Scientist, Nanoscience

Polybot, Autonomous material discovery, electronic polymer, sustainable/degradable/recyclable polymer, polymer processing and characterizations


We are hiring postdocs and students! Please email me at xuj@​anl.​gov for details.

Jie Xu is a scientist at Argonne National Lab, and a CASE Affiliated Scientist at the University of Chicago, Pritzker School of Molecular Engineering.

Her research focuses on developing a new class of polymer-based electronic materials that are flexible, stretchable, durable, degradable, and easy-to-manufacture for our future electronics and energy applications. She also develops a self-driving platform that combines artificial intelligence and modular robotics systems to accelerate the discovery of electronic functional materials (https://​www​.anl​.gov/​c​n​m​/​p​o​lybot). She received her PhD degree in chemistry from Nanjing University, with her research focusing on understanding molecular packing structures and dynamic behavior in nanoconfined soft matter. Subsequent postdoctoral training at Stanford University applied her background in polymer physics to the emerging field of skin-like electronics, with the development of a new class of polymer-based stretchable electronic material and the realization of integrated, intrinsically stretchable transistors and circuits. She received the Materials Research Society Postdoctoral Award and is named to the MIT Technology Review’s list of Innovators Under 35, Newsweek list of America’s Greatest Disruptors as a budding disruptor, and  2023 Polymeric Materials: Science and Engineering Early Investigator Honoree by the American Chemical Society

Professional Experience 

  • Postdoctoral Fellow, Stanford University 
  • Ph.D. Nanjing University

Research Interests

Honors and Service



  • Liu, W.#; Wu, Y.#; (# contribute equally) Vriza, A.;, Zhang, C.; Jung, H.; Hu, S.; Zhang, Y.; Chen, D.; Guo, P.; Diroll1, B. T.; Wang, G.; Schaller, R. D.; Chan, H.; Mei, J.*; Wang, S.*; Xu, J.*, Depolymerizable and recyclable luminescent polymers with high efficiency thermally activated delayed fluorescence” Nature Sustainability, accepted.
  • Yang, Q.;  Vriza, A.;  Castro Rubio, C. A.;  Chan, H.;  Wu, Y.; Xu, J.*, Artificial Intelligence for Conjugated Polymers. Chemistry of Materials (front cover) 2024.36 (6), 2602-2622.

  • Neu, J.;  Ding, K.;  Liu, S.;  Ade, H.; Xu, J.*; You, W..*, Optimized Incorporation of Furan into Diketopyrrolopyrrole-Based Conjugated Polymers for Organic Field-Effect Transistors. ChemSusChem 2024, e202400171.


  • Jiang, Y.;  Ji, S.;  Sun, J.;  Huang, J.;  Li, Y.;  Zou, G.;  Salim, T.;  Wang, C.;  Li, W.;  Jin, H.;  Xu, J.;  Wang, S.;  Lei, T.;  Yan, X.;  Peh, W. Y. X.;  Yen, S.-C.;  Liu, Z.;  Yu, M.;  Zhao, H.;  Lu, Z.;  Li, G.;  Gao, H.;  Liu, Z.;  Bao, Z.; Chen, X., A universal interface for plug-and-play assembly of stretchable devices. Nature 2023, 614 (7948), 456-462.

  • Liu, W. ; Zhang, C.;  Alessandri,R. ; Diroll, B. T.; Li, Y.; Fan, X.; Wang, K.; Cho, H.;  Liu, Y.; Dai,  Y.;  Su, Q.; Li, N. ; Li, S.; Wai, S.;  Li, Q.;  Shao, S.; Wang, L.; Xu, J.; Zhang, X.; Talapin, D. V.; de Pablo, J. J.; Wang, S.; High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence, Nature Materials, 22 (6), 737-745.

  • Wu, H.-C.;  Nikzad, S.;  Zhu, C.;  Yan, H.;  Li, Y.;  Niu, W.;  Matthews, J. R.;  Xu, J.;  Matsuhisa, N.;  Arunachala, P. K.;  Rastak, R.;  Linder, C.;  Zheng, Y.-Q.;  Toney, M. F.;  He, M.; Bao, Z., Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability. Nature Communications 2023, 14 (1), 8382.

  • Vriza, A.; Chan, H.;  Xu, J.*, Self-Driving Laboratory for Polymer Electronics. Chemistry of Materials (front cover), 2023

  • Luo, S.;  Li, Y.;  Li, N.;  Cao, Z.;  Zhang, S.;  Ocheje, M. U.;  Gu, X.;  Rondeau-Gagné, S.;  Xue, G.;  Wang, S.;  Zhou, D.; Xu, J.*, Real-time correlation of crystallization and segmental order in conjugated polymers. Materials Horizons 2023.

  • Leng, M.;  Koripally, N.;  Huang, J.;  Vriza, A.;  Lee, K. Y.;  Ji, X.;  Li, C.;  Hays, M.;  Tu, Q.;  Dunbar, K.;  Xu, J.*;  Ng, T. N.*; Fang, L.*, Synthesis and exceptional operational durability of polyaniline-inspired conductive ladder polymers. Materials Horizons 2023.

  • Mooney, M.;  Nyayachavadi, A.;  Awada, A.;  Iakovidis, E.;  Wang, Y.;  Chen, M.-N.;  Liu, Y.;  Xu, J.;  Chiu, Y.-C.;  Gu, X.; Rondeau-Gagné, S., Asymmetric side-chain engineering in semiconducting polymers: a platform for greener processing and post-functionalization of organic electronics. Polymer Chemistry 2023, 14 (5), 562-572.


  • Dai, Y.;  Dai, S.;  Li, N.;  Li, Y.;  Moser, M.;  Strzalka, J.;  Prominski, A.;  Liu, Y.;  Zhang, Q.;  Li, S.;  Hu, H.;  Liu, W.;  Chatterji, S.;  Cheng, P.;  Tian, B.;  McCulloch, I.;  Xu, J.; Wang, S., Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. Advanced Materials 2022, 34 (23), 2201178.

  • Dai, S.;  Dai, Y.;  Zhao, Z.;  Xia, F.;  Li, Y.;  Liu, Y.;  Cheng, P.;  Strzalka, J.;  Li, S.;  Li, N.;  Su, Q.;  Wai, S.;  Liu, W.;  Zhang, C.;  Zhao, R.;  Yang, J. J.;  Stevens, R.;  Xu, J.;  Huang, J.; Wang, S., Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter 2022.

  • Mu, A. U.;  Kim, Y.-J.;  Miranda, O.;  Vazquez, M.;  Strzalka, J.;  Xu, J.; Fang, L., Hydrogen-Bond-Promoted Planar Conformation, Crystallinity, and Charge Transport in Semiconducting Diazaisoindigo Derivatives. ACS Materials Letters 2022, 4 (7), 1270-1278.


  • Xu, J.*Wu, H.-C.*; Mun, J.; Ning, R.; Wang, W.; Wang, G.-J. N.; Nikzad, S.; Yan, H.; Gu, X.; Luo, S.; Zhou, D.; Tok, J. B.-H.; Bao, Z., Tuning conjugated polymer chain packing for stretchable semiconductor, Advanced Materials, 2021. 2104747

  • Su, Q.;  Zou, Q.;  Li, Y.;  Chen, Y.;  Teng, S.-Y.;  Kelleher, J. T.;  Nith, R.;  Cheng, P.;  Li, N.;  Liu, W.;  Dai, S.;  Liu, Y.;  Mazursky, A.;  Xu, J.;  Jin, L.;  Lopes, P.; Wang, S., A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins. Science Advances 2021, 7 (48), eabi4563.

  • Li, N.; Dai, Y.; Li, Y.; Dai, S.; Strzalka, J.; Su, Q.; De Oliveira, N.; Zhang, Q.; St. Onge, P. B. J.; Rondeau-Gagné, S.; Wang, Y.; Gu, X.; Xu, J.; Wang, S., A universal and facile approach for building multifunctional conjugated polymers for human-integrated electronics, Matter, 4, 1-15, 2021

  • Wang, W.; Wang, S.; Rastak, R.; Ochiai, Y.; Niu, S.; Jiang, Y.; Arunachala, P.K.; Zheng, Y.; Xu, J.; Matsuhisa, N.; Yan, X.; Kwon, S.; Miyakawa, M.; Zhang, Z.; Ning, R.; Foudeh, A. M.; Yun, Y.; Linder, C.; Tok, J. B.-H.; Bao, Z., Strain-insensitive intrinsically stretchable transistors and circuits, Nature Electronics, 4,143–150, 2021.

  • Dai, Y.; Hu, H.; Wang, M.; Xu, J.; Wang, S., Stretchable transistors and functional circuits for next-generation human-integrated electronics, Nature Electronics, 2021.

  • Luo, S.; Li, N.; Zhang, S.; Zhang, C.; Qu, T.; Ocheje, M. U.; Xue, G.; Gu, X.; Rondeau-Gagneì, S.; Hu, W.; Wang, S.; Teng C, Zhou, D.; Xu, J., Two-step Crystallization Kinetics of Donor-Acceptor Conjugated Polymers and the Correlation with Charge Carrier Mobility, Chemistry of Materials, 33, 5, 1637–1647, 2021

  • Wu, H.-C.; Lissel F.;  Wang, G.-J. N.; Koshy, D.M.; Nikzad, S.; Yan, H.; Xu, J.; Luo, S.; Matsuhisa, N.; Cheng, Y.; Wang, F.; Ji, B.; Li,D.; Chen,W.-C.; Xue, G.; Bao, Z., Metal-Ligand Based Mechanophores Enhance Both Mechanical Robustness and Electronic, Advanced Functional Materials 2021,2009201


  • Luo, S.; Wang, T.; Ocheje, M.; Zhang, S.; Xu, J.; Qian Z.; Gu, X.; Xue, G.; Rondeau-Gagneì, S.; Jiang, J.; Hu, W.; Zhuravlev, E.; Zhou, D., Multiamorphous Phases in Diketopyrrolopyrrole-Based Conjugated Polymers: From Bulk to Ultrathin Films, Macromolecules 2020.


  • Xu, J.*Wu, H.-C.*;(* contribute equally) Zhu, C.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S.; Molina-Lopez, F.; Gu, X.; Luo, S.; Zhou, D.; Kim, Y.-H.; Wang, G.-J. N.; Gu, K.; Feig, V. R.; Chen, S.; Kim, Y.; Katsumata, T.; Zheng, Y.-Q.; Yan, H.; Chung, J. W.; Lopez, J.; Murmann, B.; Bao, Z., Multi-scale ordering in highly stretchable polymer semiconducting filmsNature Materials 2019.
    • **Featured by MRS Bulletin: Simple manufacturing process boosts stretchable semiconductor performance”.
  • Mun, J.; Kang, J.; Zheng Yu.; Luo S.; Wu, H. -C.; Matsuhisa N.; Xu, J.; Wang, G.-J. N.; Yun Y.; Xue, G.; Tok, J. B. H.; Bao, Z., Conjugated Carbon Cyclic Nanoring as Additives for Intrinsically Stretchable Semiconducting Polymers, Advanced Materials 2019, 31 (42), 1903912
  • Tran, H.; Feig, V. R.; Liu, K.; Wu, H.-C.; Chen, R.; Xu, J.; Deisseroth, K.; Bao, Z., Stretchable and Fully Degradable Semiconductors for Transient Electronics. ACS Central Science 2019, 5 (11), 1884-1891.
  • Qian, Z.; Cao, Z.; Galuska, L.; Zhang, S.; Xu, J.; Gu, X., Glass Transition Phenomenon for Conjugated Polymers. Macromolecular Chemistry and Physics 2019, 220 (11), 1900062.

  • Gasperini, A.; Wang, G.-J. N.; Molina-Lopez, F.; Wu, H.-C.; Lopez, J.; Xu, J.; Luo, S.; Zhou, D.; Xue, G.; Tok, J. B. H.; Bao, Z., Characterization of Hydrogen Bonding Formation and Breaking in Semiconducting Polymers under Mechanical Strain. Macromolecules 2019, 52 (6), 2476-2486.

  • Qian, Z.; Galuska, L., McNutt, W. W.; Ocheje, M,; He, Y.; Cao, Z.; Zhang, S.; Xu, J.; Hong, K.; Rondeau-Gagne, S.; Mei, J.; Gu, X., Challenge and solution of characterizing glass transition temperature for conjugated polymers by differential scanning calorimetry” Journal of Polymer Science, Part B: Polymer Physics,2019, 57 (23), 1635-1644.


  • Wang, S.*Xu J.*(* contribute equally); Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J.; Lei, T.; Kwon, S. K.; Kim, Y.; Foudeh, A. M.; Ehrlich, A.; Gasperini, A.; Yun, Y.; Murmann, B.; Tok, J. B. H.; Bao, Z., Skin electronics from scalable fabrication of an intrinsically stretchable transistor arrayNature 2018, 555, 83
  • Wang, G.-J. N.; Molina-Lopez, F.; Zhang, H.; Xu, J.; Wu, H.-C.; Lopez, J.; Shaw, L.; Mun, J.; Zhang, Q.; Wang, S.; Ehrlich, A.; Bao, Z., Nonhalogenated Solvent Processable and Printable High-Performance Polymer Semiconductor Enabled by Isomeric Nonconjugated Flexible Linkers. Macromolecules 2018,51 (13), 4976-4985.
  • Lopez, F. M.; Wu, H. -C.; Wang, G.-J. N.; Yan, H.; Shaw L.; Xu, J.; Toney, M. F. and Bao, Z., Enhancing Molecular Alignment and Charge Transport of Solution-Sheared Semiconducting Polymer Films by the Electrical-Blade Effect. Advanced Electronic Materials, 1800110.
  • Wang, S.*; Oh, J. Y.*; Xu J.*(* contribute equally)Tran, H.; Bao, Z., Skin-Electronics: An Emerging Paradigm, Accounts of Chemical Research 2018, 51, 1033-1045


  • Xu, J.*; Wang, S.* (* contribute equally); Wang, G. J. N.; Zhu, C. X.; Luo, S. C.; Jin, L. H.; Gu, X. D.; Chen, S. C.; Feig, V. R.; To, J. W. F.; Rondeau-Gagne, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y. M.; Kim, Y. H.; Yan, H.; Sinclair, R.; Zhou, D. S.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B. H.; Chung, J. W.; Bao, Z., Highly stretchable polymer semiconductor films through the nanoconfinement effectScience 2017, 355(6320): 59-64.
    • **Featured by Science: Staying conductive in the stretch” 355 (2017) 24-25.
    • **Featured by Nature Nanotechnology: Wearable electronics: Stretching the limits” 12 (2017) 101.
    • **Featured by Clinical Chemistry Electronics that flex themselves” 63 (2017) 1308-1310.
    • **Featured by Physics Today Polymer-based transistors bring fully stretchable devices within reach”    70, (2017) 14-16. 
    • **Highlighted in Physics World: Stretchable transistor could be a second skin”;
    • **Highlighted in C&EN: Super stretchy semiconducting polymers”;
    • **Highlighted on Phys. org: A transistor that can be stretched to twice its length with minimal loss of conductivity”;
    • **Highlighted on ScienceDaily: A flexible transistor that conforms to skin”;
    • **Highlighted in ECN, News Atlas, New Scientist, Steemit, CCT News, EurekAlert, Printed Electronics World, etc
  • Lu, C.; Lee, W. Y.; Gu, X. D.; Xu, J.; Chou, H. H.; Yan, H. P.; Chiu, Y. C.; He, M. Q.; Matthews, J. R.; Niu, W. J.; Tok, J. B. H.; Toney, M. F.; Chen, W. C.; Bao, Z., Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoacene-diketopyrrolopyrrole) Polymers. Advanced Electronic Materials 2017, 3 (2).


  • Oh, J. Y.; Rondeau-Gagne, S.; Chiu, Y. C.; Chortos, A.; Lissel, F.; Wang, G. J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu J., Zhu, C. X.; Gu, X. D.; Bae, W. G.; Kim, Y.; Jin, L. H.; Chung, J. W.; Tok, J. B. H.; Bao, Z. N. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539 (7629), 411-415.
  • Li X.*Xu J.*(* contribute equally); Wang, D.; Sha, Y.; Chen, W.; Zhou, D. S.; Wang, X. L.; Sun, Q.; Xue, G.; Li, L. L., Low-temperature processing of polymer nanoparticles for bioactive composites. Journal of Polymer Science Part B: Polymer Physics 2016, 54(24): 2514-2520.
  • Wang, G. J. N.; Shaw, L.; Xu, J.; Kurosawa, T.; Schroeder, B. C.; Oh, J. Y.; Benight, S. J.; Bao, Z., Inducing Elasticity through Oligo-Siloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. Advanced Functional Materials 2016, 26 (40), 7254-7262.
  • Schroeder, B. C.; Chiu, Y. C.; Gu, X. D.; Zhou, Y.; Xu, J.; Lopez, J.; Lu, C.; Toney, M. F.; Bao, Z., Non-Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. Advanced Electronic Materials 2016, 2 (7).
  • Rao, Y. L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y. C.; Feig, V.; Xu, J.; Kurosawa, T.; Gu, X. D.; Wang, C.; He, M. Q.; Chung, J. W.; Bao, Z. N. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination. Journal of the American Chemical Society 2016, 138 (18), 6020-6027.
  • Park, S.; Lee, M. H.; Ahn, K. S.; Choi, H. H.; Shin, J.; Xu, J.; Mei, J. G.; Cho, K.; Bao, Z. A.; Lee, D. R.; Kang, M. S.; Kim, D. H. Combinatorial Study of Temperature-Dependent Nanostructure and Electrical Conduction of Polymer Semiconductors: Even Bimodal Orientation Can Enhance 3D Charge Transport. Advanced Functional Materials 2016, 26 (26), 4627-4634.

2015 ~ 2011

  • Giri, G.; DeLongchamp, D. M.; Reinspach, J.; Fischer, D. A.; Richter, L. J.; Xu, J.; Benight, S.; Ayzner, A.; He, M. Q.; Fang, L.; Xue, G.; Toney, M. F.; Bao, Z. N. Effect of Solution Shearing Method on Packing and Disorder of Organic Semiconductor Polymers. Chemistry of Materials 2015, 27 (7), 2350-2359.
  • Xu J.;Ding L.; Chen J; Gao S; Li L.L.; Zhou D.; Li X.; Xue G., Sensitive characterization of the influence of substrate interfaces on supported thin films. Macromolecules 2014, 47(18): 6365-6372.
  • Xu J.*;Diao Y.* (* contribute equally); Zhou, D. S.; Mao, Y. S.; Giri, G.; Chen, W.; Liu, N.; Mannsfeld, S. C. B.; Xue, G.; Bao, Z., Probing the interfacial molecular packing in TIPS-pentacene organic semiconductors by surface enhanced Raman scattering. Journal of Materials Chemistry C 2014, 2(16): 2985-2991.
  • Diao, Y.; Lenn, K. M.; Lee, W. Y.; Blood-Forsythe, M. A.; Xu, J.; Mao, Y. S.; Kim, Y.; Reinspach, J. A.; Park, S.; Aspuru-Guzik, A.; Xue, G.; Clancy, P.; Bao, Z., Understanding polymorphism in organic semiconductor thin films through nanoconfinement. Journal of the American Chemical Society 2014, 136 (49), 17046-17057.
  • Chen, J.; Li, L.; Zhou, D.; Xu, J.; Xue, G., Effect of molecular chain architecture on dynamics of polymer thin films measured by the ac-chip calorimeter. Macromolecules 2014, 47 (10), 3497-3501.
  • Diao, Y.; Tee, B. C. K.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee, T. H.; Xue, G.; Mannsfeld, S. C. B.; Bao, Z., Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nature materials 2013, 12 (7), 665.
    • **Selected as the front cover of Nature Materials
    • **Featured in Nature Materials News and Views. doi:10.1038/nmat3686
    • Organic semiconductors: Made to order” 6/2/2013
    • **Featured in SLAC/Stanford news, ScienceDaily, R&D Magazine, EurekAlert, Materials today, the  
    •   Engineer etc. Printing Innovations Provide 10-fold Improvement in Organic Electronics”6/3/2013
    • **Featured by Materials Research Society in Materials306. Fluid-Enhanced Crystal Engineering   
    •   Improves Upon Solution Coating of Organic Semiconductors” 6/3/2013
    • **Featured in Nanotechweb. Solution coating the easy way” 6/26/2013
  • Chen, J.; Xu, J.; Wang, X.; Zhou, D.; Sun, P.; Xue, G., Thickness Dependence of Glass Transitions Measured by AC-Chip Calorimetry in Films with Controlled Interface. Macromolecules 2013, 46 (17), 7006-7011.
  • Shen, J.; Jiang, W.; Liu, Y.; Wei, R.; Liu, X.; Zhong, Y.; Xu, J.; Li, L.; Xue, G., Synthesis and thermal properties of poly (methyl methacrylate)-poly (L-lactic acid)-poly (methyl methacrylate) tri-block copolymer.Journal of Applied Polymer Science 2012, 124 (5), 3905-3911.
  • Xu J.; Li D.; Chen J.; Din L.; Wang X.; Tao F.; Xue G., Detection of interchain proximity and segmental motion of polymer glass. Macromolecules 2011, 44(18): 7445-7450.


Patents and Softwares

  • Xu J., Wu Y., Liu W., DEGRADABLE LUMINESCENT POLYMERS”, U.S. Patent Application No. 18/234,311. Filed: August 15, 2023
  • Xu J., Chan H., Wang C., Darancet P T., Polybot: An AI-Integrated Robotic Software Environment”, ANL-SF-21-142, 2021
  • Chung J., Lee S.,Bao Z., Xu J., Organic semiconductor thin film and method of manufacturing the same and thin film transistor and electronic device”, publication number US 10741766, published August 2020
  • YUN Youngjun, Bao Z., Xu J., Organic semiconductor thin film, and thin film transistor and electronic device including the same.”, publication number US 16669957, published April 2020
  • Xu J.Chung J W., Bao Z., Stretchable Organic Semiconductor by Blending Method.” U.S. Non-provisional Application. Atty. Dkt. No. 15639-000302-US-01, filed April 2017 
  • Xue G., Li X., Wang X., Zhou D., Xu J.,Teng C., Li L., Preparation method of bioactive molecule and macromolecule composite material”, publication number CN 105385057, published March 2016


Symposium organizer:

  • Fall 2022 ACS National Meeting PMSE symposium- Functional Conjugated Polymers: From Fundamental Synthetic and Physical Chemistry to Emerging Applications”
  • Spring 2022 ACS National Meeting PMSE019 - ACS Award in the Chemistry of Materials
  • Spring 2020 ACS National Meeting, Polymer Innovation for Advanced Organic Electronics and Bioelectronic Medicine”
  • Fall 2020 ACS National Meeting, Functional Conjugated Polymers: from Fundamental Synthetic and Physical Chemistry to Emerging Applications”;
  • 2020 APS/CNM Users Meeting, Artificial Intelligence for Autonomous Synthesis and Processing”


Invited talks

  • Autonomous Platform (Polybot) for Electronic Polymers Discovery”, Spring MRS, 2023
  • Autonomous Platform (Polybot) for Polymer Thin-film Processing”, Adhesion Society Annual Meeting, 2023
  • Engineering Conjugated Polymer using Autonomous Platform for Future Electronics”, Pacific Polymer Conference (PPC17), 2022
  • Autonomous Platform (Polybot) for Electronic Polymers Discovery”, Next Generation Solar Energy (NGSE VII), 2022
  • Autonomous Platform (Polybot) for Electronic Polymers Discovery”, Accelerate Conference, 2022
  • Controlled conjugated polymer assembly by autonomous solution-processing platform”, Spring MRS, 2022
  • Autonomous robotic platform (PolyBot) for conjugated polymer processing”, March APS, 2022
  • Autonomous robotic platform (PolyBot) for electronic polymer discovery”, Materials Research Data Alliance (MaRDA), 2022
  • Stretchable Polymer Semiconductors for Skin-like Electronics”, Annual EmTech MIT event, USA, 2021
  • Polymer engineering at nanoscale for skin-like electronics”, 3rd Annual Joint Meeting of the IEEE Magnetics Society and the IEEE Nanotechnology Council, Chicago Chapters, 2021
  • Autonomous discovery” Argonne all-hands meeting, Lemont, IL, USA, 2021
  • Autonomous Electronic Material Discovery Laboratory at the Center for Nanoscale Materials” Materials For Printed Hybrid Electronics Webinar, USA, 2021


Editorial roles:


Group members:

Postdoctoral associates:

  • Tianwei Dai (2024)
  • Allen Roman (2023)
  • Qiaomu Yang (2022)
  • Aikaterini Vriza (2022)

Doctoral student:

  • Yukun Wu (Purdue University, co-supervised with Prof. Jianguo Mei)
  • Cesar Castro Rubio (University of Chicago, co-supervised with Prof. Juan de Pablo)
  • Jing-Yuan Fan (University of Chicago)
  • Jianing Zhou (Purdue University, co-supervised with Prof. Jianguo Mei)

Visiting student:

  • Dylan Michael Gilley (Purdue University, DOE SCGSR)
  • Karen Li (University of Washington, DOE SCGSR)
  • Yunfei Wang (University of Southern Mississippi)


  • Fredrick Kim (Applied Materials, Google Scholar, 2022)
  • Audithya Nyayachavadi (University of Windsor, visiting student, 2022)
  • Kwanghoon Jeong (University of Chicago, graduate student,2022)
  • Brian Archambault (Arizona State University, visiting student, 2022)
  • Chengshi Wang (Google Scholar, 2021)
  • Yeonju Kim (Samsung Electronics, 2021)
  • Hyocheol Jung (Korea Research Institute of Chemical Technology, 2021)
  • Louis Wong (Northwestern University, visiting student, 2021)
  • Sophia Schiffer (Northwestern University, visiting student, 2021)
  • Evan Costa (Paradox, visiting student, 2020)
  • Sam Woerdeman (PwC, visiting student, 2020)



Argonne Open House (Polybot, AI-guided robotic lab for discovery)








Argonne Summer School (Molecular Gastronomy: polymer science)