Skip to main content

Larry A. Curtiss

Senior Chemist/Argonne Distinguished Fellow


Larry Curtiss is an Argonne Distinguished Fellow and Group Leader of the Molecular Materials Group in the Materials Science Division at Argonne National Laboratory. He is also a Senior Investigator of the Joint Center for Energy Storage Research (JCESR), a DOE Energy Storage Hub, and Deputy Director of the Center for Electrical Energy Storage, a DOE Energy Frontier Research Center. He received his B.S. degree in 1969 from the University of Wisconsin-Madison. He received his Ph.D. degree in 1973 from Carnegie-Mellon University under the supervision of John Pople. His thesis research was focused on quantum chemical studies of hydrogen bonded complexes. From 1973-1976 he was a Battelle Fellow at Battelle Memorial Institute in Columbus, Ohio. He became a staff scientist at Argonne National Laboratory in 1977.  

Curtiss is author of more than 460 publications. His research has focused on computational chemistry including the development of new quantum chemical methods for accurate energy calculations (G1, G2, G3, and G4 theories) and the application of computational methods to problems in materials science and chemistry including catalysis, batteries, and carbon materials. His recent computational studies have focused on the design of new electrolytes and electrolyte additives for Li-ion batteries, modeling of anode materials for Li-ion batteries, the understanding of charge and discharge chemistries in Li-O2 and Li-S batteries, catalytic reaction mechanisms of supported subnanometer clusters and 2-D materials, and biomass conversion reaction mechanisms. He is also co-inventor of more than 5 patents. He is listed as a Highly Cited Researcher in Chemistry by the Institute for Scientific Information (ISI).

Publications 2018 – 2014


  1. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries, Q. Pang, A. Shyamsunder, B. Narayanan, C. Y. Kwok, L. A. Curtiss, L. F. Nazar, Nature Energy (2018) https://​doi​.org/​1​0​.​1​0​3​8​/​s​4​1​5​6​0​-​0​1​8​-​0​214-0
  2. Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal, J. G Connell, Y. Zhu, P. Zapol, S. Tepavicevic, A. Sharafi, Asma, J. Sakamoto, L. A. Curtiss,  D. D. Fong, J. W. Freeland, N. M. Markovic, ACS Applied Materials and Interfaces, 10 17471-17479 (2018).DOI: 10.1021/acsami.8b03078
  3. Water Oxidation Catalysis via Size-Selected Iridium Clusters, A. Halder, C. Liu, Z. Liu, J, Emery, M. J. Pellin, L. A. Curtiss, P. Zapol, S. Vajda, A. B. F. Martinson, Alex B. J. Phys. Chem. C, 122, 9965-9972  (2018). 10.1021/acs.jpcc.8b01318
  4. Mechanistic Insights into the Hydrogenolysis of Levoglucosanol over Bifunctional Platinum Silica-Alumina Catalysts, S. H.  Krishna, Siddarth, R. S. Assary, Q. A. Rashke, Z. R. Schmidt, L. A. Curtiss, J. A. Dumesic, G. W. Huber, ACS Catalysis, 8, 3743-3753 (2018).DOI: 10.1021/acscatal.7b03764
  5. Identification and Implications of Lithium Superoxide in Li-O2 Batteries, A. Halder, H.-H Wang, K. C Lau, R. S. Assary, J. Lu, S. Vajda, K. Amine, L. A. Curtiss, ACS Energy Letters 3, 1105-1109 (2018). DOI:  10.1021/acsenergylett.8b00385
  6. Lithium-Oxygen Batteries with Long Cycle Life in a Realistic Air Atmosphere, M. Asadi, B. Sayahpour, P. Abbasi, A. T. Ngo, K. Karis, J. R. Jokisaari, C. Liu, B. Narayanan, M. Gerard1, P. Yasaei, X. Hu, A. Mukherjee, K. C. Lau, R. S. Assary, F. Khalili-Araghi, R. F. Klie, L. A. Curtiss, Amin Salehi-Khojin1, Nature, 555, 502–506 (2018) doi:10.1038/nature25984
  7. Perspective: Size selected clusters for catalysis and electrochemistry, A. Halder, L. A. Curtiss, A. Fortunelli, S. Vajda, J. Chem. Phys. 148, 110901 (2018).DOI: 10.1063/1.5020301
  8. Ni-Doping Effects on Oxygen Removal from an Orthorhombic Mo2C (001) Surface: A Density Functional Theory Study, M. Zhou, L. Cheng, J.-S Choi, B. Liu, L. A. Curtiss,  R. S. Assary, J. Phys. Chem. C, 122, 1595-1603 (2018). DOI: 10.1021/acs.jpcc.7b09870
  9. Manipulation of Origin of Life Molecules: Recognizing Single-Molecule Conformations in beta-Carotene and Chlorophyll-a/b-Carotene Clusters, A. T. Ngo,T.  V. Iancu, P. C. Redfern, L. A. Curtiss, S. W. Hla, ACS Nano, 12 217-225 (2018).


  1. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study, X. Y. Luo, Xiangyi,  R. Amine, K. C. Lau, J. Lu, C. Zhan, L. A. Curtiss, S. Al Hallaj, B. P. Chaplin, K. Amine, Khalil Nano Research,  10, 4327-4336 (2017)  DOI: 10.1007/s12274-017-1529-z
  2. Effect of the Hydrofluoroether Co-solvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li+ Solvation Structure and Li-S Battery Performance, M. J. Shin, H. L. Wu, B. Narayanan, K. A. See, R. S. Assary, L. Zhu, R. T. Haasch, S. Zhang, Z. Zhang, L. A. Curtiss, A. A. Gewirth,  ACS Applied Materials & Interfaces, 9, 39357-39370 (2017).DOI: 10.1021/acsami.7b11566
  3. Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution, J. J.  Zhang, Jingjing, Z. Yang, Zheng, I. A. Shkrob, R. S. Assary, S. O.Tung, B. Silocox,  W. Duan, J. J. Zhang, B. Hu, B. F. Pan, C. Liao,Z. Zhang, W. Wang,  L. A. Curtiss, L. T. Thompson, X. Wei, L. Zhang, Advanced Eenergy Materials 7, 1701272 (2017) DOI: 10.1002/aenm.201701272
  4. Toward Improved Catholyte Materials for Redox Flow Batteries: What Controls Chemical Stability of Persistent Radical Cations?,J. J. Zhang, I. A. Shkrob, R. S. Assary, S. O. Tung, B. Silcox,  L. A. Curtiss, L. Thompson, L. Zhang, J. Phys. Chem C, 121 23347-23358 (2017) DOI: 10.1021/acs.jpcc.7b08281
  5. Dendrite-Free Potassium–Oxygen Battery Based on a Liquid Alloy Anode, W. Yu, K. C. Lau, Y. Lei, R. Liu, L. Qin, W. Yang, B. Li, L. A. Curtiss, D. Zhai, and F. Kang, ACS Appl. Mater. Interfaces, 9, 31871–31878 (2017) DOI: 10.1021/acsami.7b08962
  6. Single-Site Zinc on Silica Catalysts for Propylene Hydrogenation and Propane Dehydrogenation. Synthesis and Reactivity Evaluation using an Integrated Atomic Layer Deposition-Catalysis Instrument, J. Camacho-Bunquin, P. AichM. Ferrandon, A. Getsoian, U. Das, F. Dogan, L. A. Curtiss, J. T. Miller, C. L. Marshall, A. S. Hock, Journal of Catalysis, 345, 170-182    (2017). 10.1016/j.jcat.2016.10.017
  7. The Role of Nanotechnology in the Development of Battery Materials for Electric Vehicles, J. Lu, Z. Chen, Z. Ma, F. Pan, L. A. Curtiss, K. Amine, Nature Nanotechnology 11, 1031–1038 (2016) doi:10.1038/nnano.2016.207
  8. The effect of hydrofluoroether cosolvent addition on Li solvation in acetonitrile-based solvate electrolytes and its influence on S reduction in a Li-S battery, K. A. See, H.-L. Wu, K. C. Lau, M. S., L. Cheng, M. Balasubramanian, K. G. Gallagher, L. A. Curtiss, and A. A. Gewirth, ACS Appl. Mater. Interfaces, 8, 34360–34371 (2016) DOI: 10.1021/acsami.6b11358
  9. Concentrated Electrolyte for the Sodium-Oxygen Battery: Solvation Structure and Improved Cycle Life, M. He, K. C. Lau, X. Ren, N. Xiao,  W. D. McCulloch, L. A. Curtiss, Y. Y. Wu,Angewandte Chemie-Int. Edition, 55, 15310-15314 (2016) DOI: 10.1002/anie.201608607
  10. Solvent Effects on Polysulfide Redox Kinetics and Ionic Conductivity in Lithium-Sulfur Batteries, F. Y. Fan, M. S. Pan, K. C. Lau, R. S. Assary, W. H. Woodford, L. A. Curtiss,W. C. Carter, Y.-M. Chiang, Journal of The Electrochemical Society, 163 A3111-A3116 (2016).
  11. Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide, M. Abbasi, M. Asadi, C. Liu, S. S. Sharifi-Asl, A. Behranginia, B. Sayahpour, P. Zapol, R. S. Yassar, L. A. Curtiss, A. Salehi-Khojin. ACS Nano,  11, 453 (2017).
  12. Supported Aluminum Catalysts for Olefin Hydrogenation, J. Camacho-Bunquin, M. Ferrandon, U. Das, F. Dogan, C. Liu, C. Larsen, A. E. Platero-Prats, L. A. Curtiss, A.  Hock, J. Miller, S. Nguyen, C. Marshall, M. Delferro, P. Stair, ACS Catal., 2017, 7 (1), 689.
  13. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electro-Oxidation Reaction, Z.Qi, C. Xiao, C. Liu, T. W. Goh, L. Zhou, R. Maligal-Ganesh, Y. Pei, X. Li, L. A. Curtiss, and W. Huang. J. Am. Chem. Soc. 139, 4762 (2017).
  14. Burning Lithium in CS2 for High-performing Compact Li2S-graphane Nanocapsules, for Li-S Batteries G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, T. Wu, Z. Jian, R. Shahbazian-Yassar, Y. Ren, D. J. Miller, L. A. Curtiss, X. Ji, K. Amine, Nature Energy 2, 17090 (2017).
  15. Copper Cluster Size Effect in Methanol Synthesis from CO2,  B.Yang, C. Liu, A. Halder, E. Tyo, A.B.F. Martinson, S. Seifert, P. Zapol, L. A. Curtiss,  S. Vajda.. J. Phys. Chem. C. 121, 10406 (2017).
  16. Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions,” N. N. Rajput, V. Murugesan, Y. Shin, K. S. Han, K. C. Lau, J. Chen, J. Liu, L. A. Curtiss , K. T. Mueller, and K. A. Persson, Chem. Mater., 29, 3375–3379 (2017) DOI: 10.1021/acs.chemmater.7b00068
  17. Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries, C.-C. Su,   M. He,   P. C. Redfern,   L. A. Curtiss,   I. A. Shkroba, Z. Zhang,  Energy and Environmental Science 10, 900-904 (2017) DOI: 10.1039/c7ee00035a
  18. Lithium Superoxide Hydrolysis and Relevance to Li-O2 Batteries, H. Wang, Y. Lee, R. S. Assary, C. Zhang, X. Luo, P. C. Redfern, J. Lu, Y. Lee, D. Kim, T. Kang, E. Indacochea, K. Lau, K. Amine, and L. A Curtiss J. Phys. Chem. C, 121, 9657–9661 (2017), DOI: 10.1021/acs.jpcc.6b12950
  19. Predicting the potentials, solubilities and stabilities of metal-acetylacetonates for non-aqueous redox flow batteries using density functional theory calculations, J. F. Kucharyson, L. Cheng, S. O. Tung, L. A. Curtiss, and L. T. Thompson, J. Mater. Chem. A  5, 13700-13709 (2017).
  20. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries, T. Ma, G.-L. Xu, Y. Li, L. Wang, X. He, J. Zheng, J. Liu, M. H. Engelhard, P. Zapol, L. A. Curtiss, Jacob Jorne, Khalil Amine, and Zonghai Chen Journal of Physical Chemistry Letters, 8, 1072-1077 (2017) DOI: 10.1021/acs.jpclett.6b02933
  21. Solubility Computational Studies of Solubilities of LiO2 and Li2O2 in Aprotic Solvents, Lei Cheng, Paul Redfern, Kah Chun Lau, Rajeev S. Assary, Badri Narayanan, Larry A. Curtiss, J. Electrochem. Soc.  164E3696-E3701 (2017) doi: 10.1149/2.0721711jes 
  22. Effects of Functional Groups in Redox-Active Organic Molecules: A High-Throughput Screening Approach, Kenley M. Pelzer, Lei Cheng, and Larry A. Curtiss J. Phys. Chem. C, 121, 237–245 (2017) DOI: 10.1021/acs.jpcc.6b11473


  1. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium–Oxygen Batteries, Dengyun Zhai, Kah Chun Lau, Hsien-Hau Wang, Jianguo Wen, Dean J. Miller, Feiyu Kang, Baohua Li, Kevin Zavadil, LarryA.Curtiss, ChemSocChem, 8,4235 –4241 (2016). DOI:10.1002/cssc.201500960
  2. Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries, Pieremanuele Canepa, Saivenkataraman Jayaraman, Lei Cheng, Nav Nidhi Rajput, William D. Richards, Gopalakrishnan Sai Gautam, Larry A. Curtiss, Kristin A. Persson, Gerbrand Ceder, Energy Environ. Sci., 8, 3718-3730 (2016). DOI:  10.1039/C5EE02340H
  3. Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from Density Functional Theory (DFT) Studies, Ujjal Das, Guanghui Zhang, Bo Hu, Adam S Hock, Paul C Redfern, Jeffrey T Miller, Larry A Curtiss, ACS Catalysis, 5, 7177-7185 (2016).
  4. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials, Attila Gyulassy, Aaron Knoll, Kah Chun Lau, Bei Wang, Peer-Timo Bremer, Michael E. Papka, Larry A. Curtiss, and Valerio Pascucci, IEEE Transactions on Visualization and Computer Graphics, 22, 916 (2016).
  5. A Molybdenum Disulfide/ and Ionic Liquid Bi-functional Co-catalyst for Lithium–Oxygen Batteries, M. Asadi, B. Kumar, C. Liu, P. Phillips, P. Yasaei, A. Behranginia, P. Zapol, R. F. Klie, L. A. Curtiss, A. Salehi-Khojin, ACSNano 10 , 2167–2175 (2016).
  6. Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism , T. L. Lohr; Z. Li; R. S. Assary; L. A. Curtiss, T. J. Marks, Energy and Environmental Science, 9 550-564 (2016).
  7. Alkyl Substitution Effect on Oxidation Stability of Sulfone-Based Electrolytes, C. C. Su, M. N. He, P. Redfern, L. A. Curtiss, C. Liao, L. Zhang, A.; K. Burrell, Z. C. Zhang, ChemElectroChem,  3, 790-797  (2016). DOI: 10.1002/celc.201500550
  8. Superoxide (electro)chemistry on well-defined surfaces in organic environments, B. Genorio, J. S. Jirkovský, R. S. Assary, J. G. Connell, D. Strmcnik, C. E. Diesendruck,  V. R. Stamenkovic, J. S. Moore, L.  A. Curtiss, and N. M. Markovic, J. Phys. Chem. C, 120, 15909-15914 (2106). DOI: 10.1021/acs.jpcc.5b12230
  9. Thermodynamic Stability of Low and High Index Spinel LiMn2O4 Surface Terminations, Robert E. Warburton, Hakim Iddir, Larry A. Curtiss, and Jeffrey Greeley, ACS Appl Mater Interfaces 8, 11108-21 (2016). doi: 10.1021/acsami.6b01069
  10. The role of manganese deposition on the graphite in the capacity fading of lithium-ion batteries, Daniel R. Vissers, Zonghai Chen, Yuyan Shao, Mark Engelhard, Ujjal Das, Paul Redfern, Larry A. Curtiss, Baofei Pan, Jun Liu, and Khalil Amine, ACS Appl. Mater. Interfaces 8, 14244−14251 (2016).
  11. Synthesis of Pyridine and Pyrazine BF3-Complexes and their Characterization in Solution and Solid State, Etienne Chénard, Andre Sutrisno, Lingyang Zhu, Rajeev S. Assary, Jeffrey A. Kowalski, John L. Barton, Jeffery A. Bertke, Danielle L. Gray, Fikile R. Brushett, Larry A. Curtiss, and Jeffrey S. Moore, J. Phys. Chem. C, 120 (16), pp 8461–8471 (2016).
  12. Tuning the Stability of Organic Active Materials for Non-Aqueous Redox Flow Batteries via Reversible, Electrochemically-Mediated Li+ Coordination, Emily V. Carino, Jakub Staszak-Jirkovsky, Rajeev S. Assary, Larry A. Curtiss, Nenad M. Markovic, and Fikile R. Brushett, Chem. Mater., 2016, 28 (8), pp 2529–2539 DOI: 10.1021/acs.chemmater.5b04053
  13. Insight into the Capacity Fading Mechanism of Amorphous Se2S5 Confined in Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes, Gui-Liang Xu, Tianyuan Ma, Cheng-Jun Sun, Chao Luo, Lei Cheng, Yang Ren, Steve M. Heald, Chunsheng Wang, Larry Curtiss, Jianguo Wen, Dean J. Miller, Tao Li, Xiaobing Zuo, Valeri Petkov, Zonghai Chen, and Khalil Amine Nano Lett., 16, 2663–2673 (2016). DOI: 10.1021/acs.nanolett.6b00318
  14.  Molecular Level Understanding of the Factors Affecting the Stability of Dimethoxy Benzene Catholyte Candidates from First-Principles Investigations Rajeev S. Assary, Lu Zhang, Jinhua Huang, and Larry A. Curtiss, J. Phys. Chem C, 120, 14531–14538  (2016). DOI: 10.1021/acs.jpcc.6b04263.
  15. Enabling high energy density Li-ion batteries through Li2O activation, Ali Abouimrane Yanjie Cui, Zonghai Chen, Ilias Belharouak, Hamdi B. Yahia,  Huiming Wu,  Rajeev Assary, Larry A. Curtiss,  Khalil Amine, NanoEnergy 27, 196-201 (2016). doi:10.1016/j.nanoen.2016.06.050
  16. Sparingly Solvating Electrolytes for High Energy Density Lithium–Sulfur Batteries, Lei Cheng, Larry A. Curtiss, Kevin R. Zavadil, Andrew A. Gewirth, Yuyan Shao, and Kevin G. Gallagher, ACS Energy Lett., 1, 503–509 (2016). DOI: 10.1021/acsenergylett.6b00194
  17. Restricting the Solubility of Polysulfides in Li-S Batteries Via Electrolyte Salt Selection, Junzheng Chen; Kee Sung Han; Henderson, W.A.; Kah Chun Lau; Vijayakumar, M.; Dzwiniel, T.; Huilin Pan; Curtiss, L.A.; Jie Xiao; Mueller, K.T.; Yuyan Shao; Jun Liu, Advanced Energy Materials, 6, 1600160 (2016). 
  18. Transition metal dichalcogenides  as highly active catalysts for carbon dioxide reduction, Mohammad Asadi, Kibum Kim, Cong Liu, Aditya Venkata Addepalli, Pedram Abbasi, Poya Yasaei, Patrick Phillips, Amirhossein Behranginia, José M. Cerrato, Richard Haasch, Peter Zapol, Bijandra Kumar, Robert F. Klie, Jeremiah Abiade, Larry A. Curtiss, Amin Salehi-Khojin, Science, 353, 467-470 (2016). DOI: 10.1126/science.aaf4767
  19. The lightest organic radical cation for charge storage in redox flow batteries, J. H. Huang, B. F.Pan, W. T. Duan, X. L. Wei, R. S. Assary, L. Su, F. R. Brushett, L. Cheng, C. Liao, M. F. Ferrandon, W. Wang, Z. C. Zhang, A. K. Burrell, L. A. Curtiss, I. A. Shkrob, J. S. Moore, L. Zhang,  Scientific Reports, 6 Article Number: 32102 (2016). DOI: 10.1038/srep32102
  20. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES, Andrew Bean” Getsoian, Ujjal Das, Jeffrey Camacho-Bunquin, Guanghui Zhang, James R. Gallagher, Bo Hu, Singfoong Cheah, Joshua A. Schaidle, Daniel A. Ruddy, Jesse E. Hensley, Theodore R. Krause, Larry A. Curtiss, Jeffrey T. Miller, Adam S. Hock, Catal. Sci. Technol., 6, 6339-6353, (2016) DOI: 10.1039/C6CY00698A
  21. A lithium-oxygen battery based on lithium superoxide,  J. Lu, Y. J. Lee, X. Luo, K. C. Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. G. Wen, D. Zhai, Z. Chen, D. J. Miller, Y. S. Jeong, J.-B. Park, Z. Z. Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L. A. Curtiss, K. Amine, Nature  2016, 529, 377. DOI: 10.1038/nature16484


  1. An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries, M. J. Welland, K. C. Lau, P. C. Redfern, L. Liang, D. Zhai, D. Wolf and L. A. Curtiss, J. Chem. Phys. 143, 224113 (2015)).
  2. Migration of Single Iridium Atoms and Tri-iridium Clusters on MgO Surfaces: Aberration-Corrected STEM Imaging and Ab Initio Calculations,” C. W. Han, H. Iddir, A. Uzun, L. A. Curtiss, N. D. Browning, B. C. Gates, and V. Ortalan,  J. Phys. Chem. Lett., 6 (23), 4675–4679 (2015).
  3. Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film,  A. Behranginia ; M. Asadi ; C. Liu ; P. Yasaei ; B. Kumar ; P. Phillips ; T. Foroozan ; J. C. Waranius ; K. Kim ; J. Abiade ; R. F. Klie ; L. A. Curtiss ; A. Salehi-Khojin, Materials Chemistry, 28, 549 (2015).
  4. Interfacial Effects on Lithium Superoxide Disproportionation in Li-O2 Batteries, D. Zhai, K. C. Lau, H.-H. Wang, J. Wen, D. J. Miller, J. Lu, F. Kang, B. Li, W. Yang, J. Gao, E. Indacochea, L. A. Curtiss, and K. Amine  Nano Lett., 15 (2), 1041–1046  (2015).  DOI: 10.1021/nl503943z     
  5. Selective propane dehydrogenation with single-site CoII on SiO2 by a non-redox mechanism,  Bo Hua, Andrew Bean” Getsoian, Neil M. Schweitzer,  Ujjal Das, HackSung Kim, Jens Niklas, Oleg Poluektov, Larry A. Curtiss, Peter C. Stair, Jeffrey T. Miller, Adam S. Hock, Journal of Catalysis, 322, 24-37 (2015). doi:10.1016/j.jcat.2014.10.018
  6. Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery, K. C. Lau, D. Qiu, X. Luo, J. Greeley, L. A. Curtiss, J. Lu, and K. Amine, Energies , 529-548 (2015). doi:10.3390/en8010529
  7.  A Mo2C/Carbon Nanotube Composite Cathode for Lithium–Oxygen Batteries with High Energy Efficiency and Long Cycle Life,” W.-J. Kwak, K. C. Lau, C.-D. Shin, K. Amine, L. A. Curtiss, and Y.-K. Sun, ACS Nano, 9, 4129–4137 (2015), 10.1021/acsnano.5b00267
  8. Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium–Air Batteries, Y. S. Jeong,  J.-B. Park, H.-G. Jung, J. Kim, X. Luo, J. Lu, L. Curtiss, K. Amine, Y.-K. Sun, B. Scrosati, and Y. J. Lee, Nanoletters, 15, 4261–4268  (2015) 10.1021/nl504425h
  9. An organophosphine oxide redox shuttle additive that delivers long-term overcharge protection for 4 V lithium-ion batteries,  J. H. Huang, N. Azimi, L. Cheng, I. A. Shkrob, Z. Xue, J. J. Zhang, N. L. D. Rago, L. A. Curtiss, K. Amine, Z. C. Zhang, J. Materials Chemistry A , 3 10710-10714  (2015) DOI: 10.1039/c5ta01326g
  10. 1,4-Bis(trimethylsilyl)-2,5-dimethoxybenzene: a novel redox shuttle additive for overcharge protection in lithium-ion batteries that doubles as a mechanistic chemical probe, J. H. Huang, I. A. Shkrob, P. Q. Wang, L. Cheng, B. F. Pan, M. N. He, C. Liao, Z. C. Zhang, L. A. Curtiss, L. Zhang,   J. Materials Chemistry A 3 7332-7337 (2015) DOI: 10.1039/c5ta00899a
  11. Thermodynamically Leveraged Tandem Catalysis for Ester RC(O)O-R ’ Bond Hydrogenolysis. Scope and Mechanism , T. L. Lohr, Z. Li, R. S. Assary, L. A. Curtiss, T. J. Marks, ACS Catalysis, 5, 3675-3679  (2015) 10.1021/acscatal.5b00950
  12. Fluorinated Electrolytes for 5-V Li-Ion Chemistry: Probing Voltage Stability of Electrolytes with Electrochemical Floating Test, M. He, L. Hu, Z. Xue, C. C. Su, P. Redfern, L. A. Curtiss, B. Polzin, A. von Cresce, K. Xu, and Z. Zhang, Journal of The Electrochemical Society, 162 A1725-A1729 (2015) A1725
  13. Carbon Dioxide Conversion to Methanol over Size-Selected Cu-4 Clusters at Low Pressures,  C. Liu, B. Yang, E. Tyo, S. Soenke, J. DeBartolo, B. von Issendorff, P. Zapol, S. Vajda, and L. A. Curtiss, J. Am. Chem. Soc. 137, 8676-8679 (2015).  DOI: 10.1021/jacs.5b03668 
  14. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene, L. Jaber-Ansari , K. P. Puntambekar , S. Kim , Muratahan Aykol , Langli Luo Jinsong Wu , Benjamin D. Myers , Hakim Iddir , John T. Russell , Spencer J. Saldaña , Rajan Kumar , Michael M. Thackeray , Larry A. Curtiss , Vinayak P. Dravid , Chris Wolverton , and Mark C. Hersam * Adv. Energy Mater. 2015, 5, 1500646 DOI: 10.1002/aenm.201500646
  15. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials, A. Gyulassy, A. Knoll, K. C. Lau, B. Wan, · P.-T. Bremer, · M. Papka · L. Curtiss · Valerio Pascucci  IEEE Transactions on Visualization and Computer Graphics 01/2015; DOI:10.1109/TVCG.2015.2467432
  16. Understanding and mitigating some of the key factors that limit non-aqueous lithium-air battery performance, J. Lu, K. C. Lau, Y.-K. Sun, L. A. Curtiss and K. Amine, Journal of the Electrochemical Society, 162, A1-A8 (2015).
  17. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions: Computational and Experimental Studies of Furan and Acetaldehyde Reactions in HZSM-5, C. Liu, T. J.  Evans, L. Cheng, M. R Nimlos, C. Mukarakate, D. J. Robichaud, R. S. Assary, and L. A Curtiss, J. Physical Chemistry C, DOI: 10.1021/acs.jpcc.5b08141 (2015).
  18. Water as promoter and catalyst in dioxygen electrochemistry at aqueous and organic electrified interfaces, J. S. Jirkovsk, R. Subbaraman, D. Strmcnik, K. L. Harrison, C. E. Diesendruck, R. Assary,  O. Frank , L. Kobr, G. K. H. Wiberg, B. Genorio, V. R. Stamenkovic, L. Curtiss, Jeffrey S. Moore, K. R. Zavadil, and N. M. Markovic, ACS Catalysis, 2015,  DOI: 10.1021/acscatal.5b01779
  19. Carbocation Stability in H-ZSM5 at High Temperature, Glen A. Ferguson, Lei Cheng, Lintao Bu, Seonah Kim, David J. Robichaud, Mark R. Nimlos, Larry A. Curtiss, and Gregg T. Beckham, J. Phys. Chem. A, 2015, 119, 11397–11405 DOI 10.1021/acs.jpca.5b07025
  20. Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening L. Cheng, R. S. Assary; X. H. Qu, A. Jain, S. P. Ong; N. N. Rajput; K. Persson, L. A. Curtiss, J. Physcial Chemistry Letters, 6, 283-291 (2015) DOI: 10.1021/jz502319n
  21. The Electrolyte Genome Project: A big data approach in battery materials discovery, X. Qu, A. Jain; N. N. Rajput, L. Cheng, Y. Zhang; S. P. Ong; M. Brafman, M. Brafman; E. Maginn; L. A. Curtiss, K. A. Persson, Computational Materials Science, 103, 56-67 (2015).
  22. The unexpected discovery of the Mg(HMDS)(2)/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries, C. Liao, N. Sa; B. Key, A. K. Burrell, L. Cheng, L. A. Curtiss, J. T. Vaughey, J. J. Woo, L. B. Hu, P. F. Pan,Z. Z. Zhang, J. Materials Chemistry 3, 6082-6087  (2015) DOI: 10.1039/c5ta00118h
  23. BF3-promoted electrochemical properties of quinoxaline in propylene carbonate E. V.Carino, C. E. Diesendruck, J. S. Moore, L. A. Curtiss, R. S. Assary, F. R. Brushett, RSC Advances,  5, 18822-18831 (2015) DOI: 10.1039/c5ra00137d


  1. Rapid Ether and Alcohol C-O Bond Hydrogenolysis Catalyzed by Tandem High-Valent Metal Triflate plus Supported Pd Catalysis, Z. Li, R. S. Assary, A. C. Atesin, L. A. Curtiss, T. J. Marks,  J. Am. Chem. Soc., 136, 104-107 (2014). DOI: 10.1021/ja411546r  
  2. Reaction Mechanism for Direct Propylene Epoxidation by Alumina-Supported Silver Aggregates: The Role of the Particle/Support Interface, L. Cheng, C. R. Yin, F. Mehmood, B. Liu, J. Greeley, S. Lee, B. Lee, S. Seifert, R. E. Winans, D. Teschner, R. Schlogl, S. Vajda, L. A. Curtiss, ACSCatalysis, 4, 32-39 (2014) DOI: 10.1021/cs4009368
  3. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries, J. Lu, L. Cheng, K. C. Lau, E. Tyo, X. Luo, J. Wen, Dean Miller, R. S. Assary, H.-H. Wang, P. Redfern, H. Wu, J.-B. Park, Y.-K. Sun, S. Vajda, K. Amine,  L. A. Curtiss, Nature Communications 5, 4895 (2014) doi:10.1038/ncomms5895
  4. Computational studies of electrochemical CO2 reduction on subnanometer transition metal clusters, C. Liu,   H. He,   P. Zapol and L. A. Curtiss, Phys. Chem. Chem. Phys., 2014, DOI:  10.1039/C4CP02690J  Published online 12 Aug 2014  (Invited article)
  5. Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory, J. E. Bachman, L. A. Curtiss, and R. S. Assary, J. Phys. Chem.  A, Publication Date (Web): August 27, 2014,  DOI: 10.1021/jp5060777
  6. Physical pulverization strategy to prepare highly active composite of CoOx and crushed graphite for lithium-oxygen battery”, Jun Ming, Won-Jin Kwak, Jin-Bum Park, Chang-Dae Shin, Jun Lu, Larry Curtiss, Khalil Amine, and Yang-Kook Sun, ChemPhysChem, 15, 2070-2076, 2014.
  7.  Aprotic Electrolytes for Li-Air Batteries, K. C. Lau, R. S. Assary, and L. A. Curtiss, in Electrolytes for Lithium and Lithium Ion Batteries, Eds.T. Jow, K. Xu, O. Borodin, M. Ue, Springer, pp 445-463 (2014) (Invited Review Chapter)
  8. Atomistic and First Principles -Computational Studies of Li-O2 Batteries, K. C. Lau, M. Chan, J. Greeley, L. A. Curtiss, in The Lithium Air Battery:Fundamentals Eds N. Imanishi, A. Luntz, P. G. Bruce, Springer (2014) (Invited Review Chapter)
  9. Reduction Potential Prediction of Some Aromatic Nitrogen Containing Molecules, R. S. Assary, F. R. Brushett, and L. A. Curtiss, 2014, RSC Advances, 2014, 4, 57442-57451
  10. Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries, J, H, Huang, L. Cheng; R. S. Assary, P. Q. Wang, Z. Xue, A. K. Burrell; L. A. Curtiss, L. Zhang, Advanced Energy Materials, 5, 1401782 (2014). DOI: 10.1002
  11. Understanding Side Reactions in K–O2 Batteries for Improved Cycle Life X. Ren, K. C. Lau, M. Yu, X. Bi, E. Kreidler, L. A. Curtiss, and Y. Wu, ACS Appl. Mater. Interfaces,  6,  19299–19307 (2014)  DOI: 10.1021/am505351s
  12. A combined experimental and computational study of the mechanismof fructose dehydration to 5-hydroxymethylfurfural indimethylsulfoxide using Amberlyst 70, PO43−/niobic acid, or sulfuric acid catalysts, J. Zhang, A. Das, R. S. Assary, Larry A. Curtiss, Eric Weitz,  Appl. Catal. B: Environ. (2014). 10.1016/j.apcatb.2014.10.056 
  13. Molecular engineering towards stabilized interface: a novel electrolyte additive for high-performance Li-ion battery, L. Zhang, J. Huang, K. Youssef, P. Redfern, L. Curtiss, K. Amine, Z . Zhang, J. Electrochem. Soc 161, A2262. (2014) 
  14. Implications of the Unpaired Spins in Li–O2 Battery Chemistry and Electrochemistry: A Minireview, K. C. Lau, J. Lu, X. Luo, L. A. Curtiss, K. Amine, ChemPlusChem, ChemPlusChem 80 (2), 336-343 (2014)
  15. Raman Evidence for Late Stage Disproportionation in a Li−O2 Battery, D. Zhai, H.-H. Wang, K. C. Lau, J. Gao, P. C. Redfern, F. Kang, B. Li, E. Indacochea, U. Das, H.-H. Sun, H.-J. Sun, Khalil Amine, and L. A. Curtiss, J. Phys. Chem. Lett. 5, 2705−2710 (2014) DOI: 10.1021/jz501323n 
  16.  Molecular-Level Insights into the Reactivity of Siloxane-Based Electrolytes at a Lithium-Metal Anode, R. S. Assary,  J. Lu,  X. Y. Luo,  X. Y. Zhang,  Y. Ren Ren,  H. M. Wu, H. M. Albishri,  D. Abd El-Hady,  A. S. Al-Bogami,  L. A. Curtiss,  K. Amine,  ChemPhysChem 15 2077-2083 (2014)  DOI: 10.1002/cphc.201402130
  17.  Investigation of Thermochemistry Associated with the Carbon−Carbon Coupling Reactions of Furan and Furfural Using Ab Initio Methods, Cong Liu, Rajeev S. Assary, and Larry A. Curtiss,  J. Phys. Chem. A, 118, 4392−4404  (2014) DOI: 10.1021/jp503702t
  18. Toward a Molecular Understanding of Energetics in Li-S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study, R. S. Assary, L. A. Curtiss,  J. S. Moore,  J. Phys. Chem. C, 118, 11545-11558  (2014) DOI: 10.1021/jp5015466
  19. Propylene Hydrogenation and Propane Dehydrogenation by a Single-Site Zn2+ on Silica Catalyst, N. M. Schweitzer, B. Hu, U. Das, H. Kim, J. Greeley, L. A. Curtiss, P. C. Stair, J. T. Miller, and A. S. Hock, ACS Catal. 4, 1091−1098 (2014)  DOI: 10.1021/cs401116p 
  20.  Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O2 Battery, K. C. Lau, J. Lu,  J. Low, D. Peng,  H. Wu, H. M. Albishri, D. Abd Al-Hady,  L. A. Curtiss, K. Amine,  Energy Technology, 2, 348-354 (2014) DOI: 10.1002/ente.201300164 (Invited article)
  21. Structure and Stability of Lithium Superoxide Clusters and Relevance to Li−O2 Batteries, U. Das, K. C. Lau, P. C. Redfern, and L. A. Curtiss, J. Phys. Chem. Lett. 5, 813−819 (2014) DOI: 10.1021/jz500084e
  22. Probing the evolution and morphology of hard carbon spheres, V. G. Pol, J. Wen, K. C. Lau, S. Callear, D. T. Bowron,  C.-K. Lin, S. A. Deshmukh, S. Sankaranarayanane, L. A. Curtiss, W. I.F. David,  D. J. Miller, M. M. Thackeray, 68, 104–111 (2014) DOI: 10.1016/j.carbon.2013.10.059
  23.  Influence of Electronic Type Purity on the Lithiation of Single-Walled Carbon Nanotubes L. Jaber-Ansari, H. Iddir, L. A. Curtiss, and M. C. Hersam, ACSNano, 8, 2399–2409  (2014) DOI: 10.1021/nn405921t
  24.  Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces, B. Liu, L. Cheng, L. Curtiss, J. Greeley, Surface Science  622, 51–59 (2014)  DOI: 10.1016/j.susc.2013.12.001
  25. Polymer supported organic catalysts for O-2 reduction in Li-O-2 batteries, W. Weng, C. J. Barile, P. Du, A. Abouimrane, R. S. Assary, A. A. Gewirth, L. A.  Curtiss, K. Amine, Electrochimica Acta, 119, 138-143 (2014). DOI: 10.1016/j.electacta.2013.12.027
  26. Thermodynamics and reaction pathways of furfuryl alcohol oligomer formation, T. J. Kim, R. S. Assary, R. E. Pauls, C. L. Marshall, L. A. Curtiss, P. C. Stair, Catalysis Communications, 46,  (2014). DOI: 10.1016/j.catcom.2013.11.030


All Publications 1968 – Present