Skip to main content

Sarang Supekar

Systems Scientist

Manufacturing | Industrial Ecology | Sustainable Design | Carbon Capture, Storage and Utilization | Energy Systems Analysis

Biography

Dr. Sarang Supekar is a staff scientist in the Energy Systems Division.  His research is on advanced manufacturing technologies and manufacturing systems that could achieve transformative gains in process productivity and enhance manufacturing sustainability. He also develops optimization and life cycle models analyzing energy technologies and energy and transportation systems of the future.  Dr. Supekar’s specific areas of interest include (1) process modeling, optimization, and data-driven decision making in manufacturing systems and supply chains; (2) analysis of productivity, life cycle energy, and economic benefits of smart manufacturing systems; (3) gas-based technologies to mitigate water use and pollution in energy-efficient dry factories”; (4) life cycle assessment, thermodynamic analysis, and techno-economic analysis of industrial technologies and bio-geochemical pathways for carbon capture and utilization; and (5) optimization and simulation models for technology forecasting and policy analysis for a low-emissions energy future.

Education

Ph.D., Mechanical Engineering, University of Michigan, Ann Arbor, United States

M.S., Mechanical Engineering, University of Florida, Gainesville, United States

B.Eng., Mechanical Engineering, University of Pune, Pune, India

Memberships

  • Society of Manufacturing Engineers

  • American Chemical Society

  • Tau Beta Pi Engineering Honor Society

Publications

(J: Journal, C: Conference, R: Report/whitepaper, T: Thesis)

J13. Supekar, S. D., Graziano, D. J., Skerlos, S. J., & Cresko, J. (2020). Comparing energy and water use of aqueous and gas‐based metalworking fluids. Journal of Industrial Ecology, jiec.12992. doi: 10.1111/jiec.12992

C4. Nimbalkar, S. U., Supekar, S. D., Meadows, W., Wenning, T., Guo, W., & Cresko, J. (2019). Enhancing Operational Performance and Productivity Benefits by Implementing Smart Manufacturing Technologies in Breweries. Proceedings of 2019 ACEEE Summer Study on Energy Efficiency in Industry, 193107. Retrieved from https://​www​.osti​.gov/​b​i​b​l​i​o​/​1558509

J12. Supekar, S. D., Lim, T.-H., & Skerlos, S. J. (2019). Costs to achieve target net emissions reductions in the US electric sector using direct air capture. Environmental Research Letters, 14(8), 084013. doi: 10.1088/1748-9326/ab30aa

J11. Supekar, S. D., Graziano, D. J., Riddle, M. E., Nimbalkar, S. U., Das, S., Shehabi, A., & Cresko, J. (2019). A Framework for Quantifying Energy and Productivity Benefits of Smart Manufacturing Technologies. Procedia CIRP, 80(2019), 699704. doi: 10.1016/j.procir.2019.01.095

R1Supekar, S. D., Kelly, J. C., & Elgowainy, A. (2017). Analytical models of carbon capture-enabled power plant configurations in GREET. Summary of Expansions, Updates, and Results in GREET 2017 Suite of Models (pp. 12), Argonne National Laboratory, Lemont, IL. Available online

C3.  Morrow III, W. R., Carpenter, A., Cresko, J., Das, S., Graziano, D. J., Hanes, R., Supekar, S. D., Nimbalkar, S., Riddle, M. E., & Shehabi, A. (2017). U.S. Industrial Sector Energy Productivity Improvement Pathways. Proceedings of the 2017 ACEEE Summer Study on Energy Efficiency in Industry (pp. 101113). Washington, DC: American Council for an Energy-Efficient Economy. Available online

J10Supekar, S. D., & Skerlos, S. J. (2017) Sourcing of steam and electricity for carbon capture retrofits. Environmental Science & Technology, 51(21), 1290812917. doi: 10.1021/acs.est.7b01973

J9Supekar, S. D., & Skerlos, S. J. (2017). Analysis of costs and time frame for reducing CO2 emissions by 70% in the U.S. auto and energy sectors by 2050. Environmental Science & Technology, 51(19), 1093210942. doi: 10.1021/acs.est.7b01295

J8.  Liang, S., Stylianou, K. S., Jolliet, O., Supekar, S. D., Qu, S., Skerlos, S. J., & Xu, M. (2017). Consumption-based human health impacts of primary PM 2.5: The hidden burden of international trade. Journal of Cleaner Production, 167, 133139. doi: 10.1016/j.jclepro.2017.08.139

J7Supekar, S. D., & Skerlos, S. J. (2016) Response to comment on Reassessing the energy penalty from carbon capture in coal-fired power plants.” Environmental Science & Technology. 50(11), 61146115doi: 10.1021/acs.est.6b02022

J6Supekar, S. D., & Skerlos, S. J. (2015) Reassessing the energy penalty from carbon capture in coal-fired power plants. Environmental Science & Technology. 49(20), 1257612584. doi: 10.1021/acs.est.5b03052

T1Supekar, S. D. (2015). Environmental and Economic Assessment of Carbon Dioxide Recovery and Mitigation in the Industrial and Energy Sectors. Doctoral Thesis. University of Michigan, Ann Arbor. Available online

J5Supekar, S. D., & Skerlos, S. J. (2014). Market-driven emissions of recovered carbon dioxide gas. Environmental Science & Technology, 48(24). 1461514623. doi: 10.1021/es503485z

J4Supekar, S. D., & Skerlos, S. J. (2014). Supercritical carbon dioxide in microelectronics manufacturing: marginal cradle-to-grave emissions. Procedia CIRP15, 461466doi: 10.1016/j.procir.2014.06.061

J3.  Stephenson, D. A., Skerlos, S. J., King, A. S., & Supekar, S. D. (2014). Rough turning Inconel 750 with supercritical CO2-based minimum quantity lubrication. Journal of Materials Processing Technology, 214(3), 673680. doi: 10.1016/j.jmatprotec.2013.10.003

C2Supekar, S. D., & Skerlos, S. J. (2013). Market driven emissions associated with supplying recovered carbon dioxide to sustainable manufacturing applications. In G. Seliger (Ed.), Proceedings of the 11th Global Conference on Sustainable Manufacturing - Innovative Solutions (pp. 330336). Berlin: Universitätsverlag der TU Berlin. Available online

C1Supekar S. D., Caruso K. A., Daskin M. S., & Skerlos S. J. (2013). Least-cost technology investments in the passenger vehicle and electric sectors to meet greenhouse gas emissions targets to 2050. In: Née A., Song B., Ong SK. (eds) Re-engineering Manufacturing for Sustainability. Springer, Singapore. doi: 10.1007/978-981-4451-48-2_75

J2Supekar, S. D., Gozen, B. A., Bediz, B., Ozdoganlar, O. B., & Skerlos, S. J. (2013). Feasibility of supercritical carbon dioxide based metalworking fluids in micromilling. Journal of Manufacturing Science and Engineering, 135(2), 024501. doi: 10.1115/1.4023375

J1Supekar, S. D., Clarens, A. F., Stephenson, D. A., & Skerlos, S. J. (2012). Performance of supercritical carbon dioxide sprays as coolants and lubricants in representative metalworking operations. Journal of Materials Processing Technology, 212(12), 26522658. doi: 10.1016/j.jmatprotec.2012.07.020