Skip to main content

Manufacturing Engineering

Argonne maintains a wide-ranging science and technology portfolio that seeks to address complex challenges in interdisciplinary and innovative ways. Below is a list of all articles, highlights, profiles, projects, and organizations related specifically to manufacturing engineering.

Filter Results

  • Coating that lowers the maintenance cost of gear boxes in wind turbines and automotive applications via enhanced reliability from micro/macro-pitting
    Intellectual Property Available to License
    US Patent 9,926,622
    • Methods for forming pitting resistant carbon coating (IN-14-132)

    A method for making a pitting resistant carbon coating that includes a hydrogenated diamond-like coating (“H-DLC”). The H-DLC is relatively soft and elastic. Unlike hard and/or inelastic coatings in the prior art, the present coatings do not exhibit a loss of adhesion (delamination). A bonding layer may be deposited on a metallic substrate and the deposited H-DLC on the bonding layer.

  • Process to make advanced power electronic devices with high permittivity and low dielectric loss
    Intellectual Property Available to License

    US Patent 9,679,705 B2
    • Method for fabrication of ceramic dielectric films on copper foils (IN-09-006B)

    The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250° C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450° C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750° C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.

  • A method of fabricating nanofiber filter medium that allows for multiple uses of N95 facemasks and respirators with anti-bacterial function
    Intellectual Property Available to License

    Reusable filters for personal protective equipment (PPE) may prevent shortages of PPE and save fabrication time, resources, and money. Disclosed is a method and system for fabrication of nanofiber filter media for PPE. The method includes positioning a substrate to receive nanofibers thereon, providing a voltage gradient in a region of the substrate, and electrospinning nanofibers onto the substrate. The methods and associated systems allow autoclaving of the filter medium at temperatures of up to 300 degrees for sanitizing the filter medium. Additionally, the methods and associated system allow for the inclusion of an antipathogen agent in the nanofiber filter media.

  • Method for producing solar photovoltaic cells with improved photon conversion efficiency; reduction of photoelectron transport path via new heterojunction architecture, nanotube cell design
    Intellectual Property Available to License

    US Patent 8,258,398 B2
    • Heterojunction photovoltaic assembled with atomic layer deposition (IN-06-057)

    A heterojunction photovoltaic cell. The cell includes a nanoporous substrate, a transparent conducting oxide disposed on the nanoporous substrate, a nanolaminate film deposited on the nanoporous substrate surface, a sensitizer dye disposed on a wide band gap semiconducting oxide and a redox shuttle positioned within the layer structure.

  • Method to make tailored devices with interesting electrical optical properties for sensors, photonic devices or other electro-optical aplications
    Intellectual Property Available to License

    US Patent 10,164,188 B2
    • Polymer-hybrid electro-optic devices and method of fabricating polymer-hybrid electro-optic devices (IN-15-133)

    A polymer-hybrid electro-optic device is fabricated by providing a semiconductor substrate, depositing a metal electrode layer on the semiconductor substrate, depositing a dielectric barrier core layer within a gap of the metal electrode layer, patterning a polymer layer to cover the dielectric barrier core layer and partially covering the metal electrode layer, infiltrating the polymer layer with an inorganic component to form a hybrid oxide-polymer layer, and removing excess inorganic component from the semiconductor substrate and metal electrode layer.