Skip to main content


Below is a comprehensive list of articles, events, projects, references and research related content that is specific to the term described above. Use the filter to narrow the results further. To explore additional science and technology topics that Argonne researchers and engineers may be working on please visit our Research Index.

Filter Results

  • Software Licensing Agreements

    Argonne researchers have developed both open-source and commercial software tools and suites which are available to license.
  • SVTRIP generates a naturalistic vehicle speed profile for a given route, which can be used to predict vehicle energy consumption and operations.
    Intellectual Property Available to License

    SVTRIP (Stochastic Vehicle Trip Prediction) generates a naturalistic vehicle speed profile (vehicle speed as a function of time at 1 Hz or more) for a given trip or route. The trip provided as an input is defined by the attributes of its sub-segments, such as travel time, distance and speed limit. The inputs can be provided directly by the user, extracted from digital maps, or generated from macroscopic or mesoscopic traffic flow simulators. The generated speed profiles can be used to predict vehicle energy consumption and operations for trips with low-resolution information. The algorithm used for generation relies on Markov Chains, making the generated speed profiles stochastic.

  • Venue assessment tool created to assess both cyber and physical vulnerabilities
    Intellectual Property Available to License

    SPARTA is a mobile supported venue assessment tool created to assess both cyber and physical vulnerabilities in stadiums and arenas.


    • Web-based application
    • Requires professional regular mantience
    • Non-executable software

    Technical Requirements:

    • Multi-Platform
    • Web based tool currently running on linux.
  • Argonne has developed a suite of five advanced computational tools for addressing complex challenges related to combustion analysis and engine design
    Intellectual Property Available to License

    CIERA: Cavitation-Induced Erosion Risk Assessment Model (ANL-SF-19-118)

    Argonne has developed an approach for modeling cavitation-induced erosion for use with any multiphase computational fluid dynamics (CFD) code (e.g. CONVERGE, ANSYS Fluent, etc.). Argonne’s CIERA model provides a framework for linking multiphase flow predictions with the response of the solid material. This link is represented via an energy balance at the fluid-solid interface, which considers the cumulative energy absorbed by the solid material from repeated hydrodynamic impacts. In contrast to existing methods, Argonne’s CIERA model provides more reliable prediction of erosion severity by considering both impact load and duration.

    Application of CIERA to simulations of multiphase flow systems can guide design studies in improving system durability and reducing maintenance costs. To date, CIERA’s erosion prediction capabilities have been demonstrated in simulations of pressurized fuel through aluminum channels and a heavy-duty fuel injector, and validated against available experimental data. For more information on the CIERA model: Evaluation of a new cavitation erosion metric based on fluid-solid energy transfer in channel flow simulations; Linking cavitation collapse energy with the erosion incubation period

    Technical Contact:
    Gina Magnotti, Research Scientist, Energy Systems Division

    LESI: Lagrangian-Eulerian Spark Ignition Model (ANL-SF-18-030)
    Argonne has developed an approach for spark-ignition modeling of complex engine conditions, for use within industry CFD solver packages, such as Convergent Science’s CONVERGE framework. Argonne’s LESI model allows for enhanced accuracy in spark-ignition modelling of internal combustion engines and extends current capabilities to more challenging real-world conditions.  This is an important upgrade for the automotive industry, as spark-ignition engine technologies move toward unconventional boosted and dilute operation that impact a wider range of performance factors, such as flame propagation, cycle-to-cycle variation (CCV), and spark-plug durability. Additionally, compression ignition strategies are also increasingly reliant on ignition systems to control combustion behavior. Predictive models coupled with high-performance computing (HPC) can evaluate advanced combustion concepts and accelerate the development of high-efficiency engines.

    Argonne’s LESI model leverages previous findings that have expanded the use and improved the accuracy of Eulerian-type energy deposition models. The Eulerian energy deposition is coupled at any computational time-step with a Lagrangian-type evolution of the spark channel. Typical features such as spark channel elongation, stretch, and attachment to the electrodes are properly described to deliver realistic energy deposition along the channel during the entire ignition process. This is a decisive factor to accurately describe ignition processes in a highly-dilute and highly-turbulent environment.

    Journal article: Development of a Hybrid Lagrangian-Eulerian Model to Describe Spark-Ignition Processes at Engine-Like Turbulent Flow Conditions

    Technical Contact:
    Riccardo Scarcelli, Research Scientist, Energy Systems

    ML-GA: Machine-Learning Genetic Algorithm (ANL-SF-18-098; ANL-SF-19-073)
    Argonne’s ML-GA software provides a unique capability for rapid design optimization by combining machine learning (ML) and genetic algorithm (GA) techniques. It employs ML (either one or multiple ML algorithms can be incorporated) to predict the quality (merit) of a design from the input parameters. Then, a stochastic global optimization genetic algorithm (GA) is used with the machine learning model as the objective function to optimize the input parameters based on the merit function. ML-GA is scalable to high-performance computing platforms such as supercomputers, enabling optimization to be performed in significantly short time frames (of the order of a few days).

    As a proof-of-concept, the potential of the ML-GA approach coupled with computational fluid dynamics (CFD) was demonstrated for optimization of a heavy-duty internal combustion engine operating under medium load conditions. For more information on this application of ML-GA: A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

    Technical Contact:
    Pinaki Pal, Research Scientist, Energy Systems

    PPM4CCV: Parallel Perturbation Model for Cycle-to-Cycle Variability (ANL-SF-17-030)
    PPM4CCV is a pre-processing approach to modelling cyclic variability in spark ignition (SI) engines that can be coupled with any major engine CFD platform (e.g., CONVERGE CFD, AVL-Fire or STAR-CD). The parallel perturbation method overcomes several challenges associated with predicting cyclic variability, resulting in up to a 10x speed-up in computation times compared to conventional approaches. By implementing PPM4CCV, engine developers can not only free up computational resources, but also accelerate the engine design process.

    Cycle-to-cycle variability (CCV) is known to be detrimental to SI engine operation resulting in partial burn and knock, and an overall reduction in the reliability of the engine. Modelling CCV in SI engines is challenging because computationally intensive high-fidelity methods are required; and CCV is experienced over long timescales requiring simulations to be performed over hundreds of consecutive cycles. The PPM4CCV approach is to perform multiple parallel simulations, each of which encompasses multiple cycles, by perturbing simulation parameters such as the initial and boundary conditions. More information: Parallel Methodology to Capture Cyclic Variability in Motored Engines  

    Technical Contact:
    Muhsin Ameen, Research Scientist, Energy Systems

    TESF: Tabulated Equivalent SDR Flamelet Model (ANL-SF-16-159)
    Argonne’s TESF software consists of an implementation of a novel tabulated combustion model for non-premixed flames in CFD solvers. This novel technique is used to implement an unsteady flamelet tabulation without using progress variables for non-premixed flames. It also has the capability to include history effects which is unique within tabulated flamelet models. The flamelet table generation code can be run in parallel to generate tables with large chemistry mechanisms in relatively short wall clock times. This framework can be coupled with any CFD solver with Reynolds-averaged Navier–Stokes (RANS) and Large Eddy Simulation (LES) turbulence models. This framework enables CFD solvers to run large chemistry mechanisms with a large number of grids at relatively low computational costs. Currently it has been coupled with the CONVERGE CFD code and validated against available experimental data. This model can be used to simulate non-premixed combustion in a variety of applications like reciprocating engines, gas turbines and industrial burners operating over a wide range of fuels. More information: An Equivalent Dissipation Rate Model for Capturing History Effects in Non-Premixed Flames; Implementation of Detailed Chemistry Mechanisms in Engine Simulations

    Technical Contact:
    Prithwish Kundu, Research Scientist, Energy Systems

     Business & Licensing Contact (for all software listed above):
    Eric Tyo, Business Development Executive, Technology Commercialization and Partnerships

    Related Open Source Software

    TF-MoE: Tabulated Flamelet – Mixture of Experts (ANL-SF-19-174)

    Argonne has developed a deep learning driven approach for modeling turbulent combustion that provides a framework for incorporating high-dimensional datasets in computational fluid dynamics (CFD) simulations in a tractable and efficient manner, with 2-5 times speed-up over traditional methods. This open source software enhances predictive modeling via machine learning. Argonne’s TF-MoE software employs a mixture of experts (MoE) approach to bifurcate high-dimensional tabulated flamelet (TF) data into simpler manifolds in a physically intuitive manner. It employs a divide-and-conquer competitive approach, where different zones in the manifold are assigned to various neural networks for inference. It consists of two classes of neural networks, namely, a gating network which is a neural network classifier, and a number of experts which are neural network regressors. The software bifurcates the manifold by having different neural networks compete for each input signal. The gating network rewards the best predictors with stronger signals during subsequent training episodes and feeds poor-performing networks with weaker signals. The gating network and experts are trained using a standard backpropagation approach.

    As a proof-of-concept, the accuracy and efficiency of TF-MoE was demonstrated in an a priori study of high-dimensional tabulation for modeling of non-premixed combustion using the flamelet approach. For more information on TF-MoE: Efficient bifurcation and parameterization of multi-dimensional combustion manifolds using deep mixture of experts: an a priori study

    TF-MoE is available through GitHub: https://​github​.com/​o​w​o​y​e​l​e​o​p​e​/​T​F​M-MoE

    Technical Contacts:
    Ope Owoyele, Postdoctoral Researcher, Energy Systems Division
    Pinaki Pal, Research Scientist, Energy Systems Division
    (pal@​anl.​gov; 630-252-1361)

  • The invention comprises a method to automate the process of identifying grains in a polycrystalline material, and hence can process large volumes of data with enhanced accuracy.
    Intellectual Property Available to License
    US Patent 10,839,195 B2
    • Machine Learning Technique to Identify Grains in Polycrystalline Materials Samples (ANL-IN-16-126)

    The invention comprises a method to automate the process of identifying grains in a polycrystalline material, and hence can process large volumes of data with enhanced accuracy.


    Such a technique is vital for the real time analysis of data from large characterization facilities such as synchrotrons but is also applicable to any 3D crystallographic data of polycrystalline samples. The algorithm  provides a method to quickly identify, track faults and quantify features that affect material properties. This is potentially of interest to:

    • Defense industry (e.g., armor integrity analysis)
    • Infrastructure (e.g., steel and other metal processing companies)
    • Electronics industry (e.g., thin film microstructure)
    • Manufacturing companies (e.g., automotive, aerospace, etc.)
  • MCS Software

    Argonne’s Mathematics and Computer Science Division is incorporating new numerical methods into portable, high-performance software and testing of that software in large-scale simulations of interest to the scientific community.
  • Data-Intensive Science Software

    Computational scientists at Argonne’s Mathematics and Computer Science Division are developing innovative software that will extract knowledge and insights or help manipulate large data sets in order to make new scientific discoveries.
  • Murat Keceli

    Murat has experience in developing & implementing scalable methods related to electronic & vibrational structure of molecules & extended systems. He has interest in applying deep learning methods for accurate calculations of thermochemical properties.