Skip to main content

Christopher J. Knight

Computational Science Leader 1

Computational Scientist/Team Lead


Key research interests of mine include the advancement of molecular simulations to model soft condensed matter using both classical and ab initio methods and performance projections of scientific applications on future computational resources.

As a member of the ALCF Catalyst team, I work closely with researchers to help them accomplish their scientific goals using leadership computational resources. To address the unique challenges of efficiently using leadership-scale resources, I assist researchers with profiling and debugging their codes, discuss strategies and provide general guidance on code parallelization, I/O, load-balancing, workflow design, and data management. Important components of this work are training users on key high-performance computing topics and collaborating with researchers to advance their scientific mission.

With the recent establishment of the Computational Science Division (CPS) at Argonne, the ALCF catalyst team was relocated in 2018 to their new home within the new division. I’m currently team lead for the chemistry and materials science subteam. While my ALCF catalyst responsibilities remain the same, I’m additionally working to develop new cross-cutting programs. Collaborating closely with others in CPS and across Argonne, I’m helping to address some of the most challenging scientific problems through advanced computing and simulation, all in preparation for the Argonne’s first exascale computer Aurora scheduled to arrive at ALCF in 2021.

Research Interests

  • High-performance scientific computing & performance projections
  • Statistical Mechanics
  • Computer simulations via first principle methods (KS- and OF-DFT)
  • Condensed phase simulations: classical and quantum dynamics, multiscale processes, accurate and efficient simulation of chemical reactions
  • Chemistry at interfaces: aqueous systems, batteries and supercapacitors, fuel cells, biofuels, smart materials, and nanoporous materials
  • Interactions of matter with soft and hard x-rays

Recent Awards

  • ANL Pacesetter Award with Vitali Morozov and Scott Parker, June 2017: For extradordinary effort in early testing of the Intel Xeon Phi Knights Landing chip, porting several science applications of interest to LCF to the new platform, and documenting best practices and lessons learned to benefit the entire LCF user community.” Their efforts contributed to an early installation and quick acceptance of Theta.”

Recent Publications

  • Ahren Jasper, Lawrence Harding, Christopher Knight, and Yuri Georgievskii, Anharmonic Rovibrational Partition Functions at High Temperatures: Tests of Reduced-Dimensional Models for Systems with up to Three Fluxional Modes” J. Phys. Chem. A 123:6210 (2019).
  • Hasan Metin Aktulga, Chris Knight, Paul Coffman, Kurt A. O’Hearn, Tzu-Ray Shan, and Wei Jiang, Optimizing the Performance of Reactive Molecular Dynamics Simulations for Multi-core Architectures”, IJHPCA 33:304 (2019).
  • Evgenii O. Fetisov, Mansi S. Shah, Christopher Knight, Michael Tsapatsis, and J. Ilja Siepmann, Understanding the Reactive Adsorption of H2S and CO2 in Sodium-Exchanged Zeolites”, ChemPhysChem, 14:512 (2018).
  • Scott Parker, Vitali Morozov, Sudheer Chunduri, Kevin Harms, Chris Knight, and Kalyan Kumaran, Early Evaluation of the Cray XC40 Xeon Phi System Theta’ at Argonne” Cray User Group 2017 (CUG17), May 2017, Redmond, WA.
  • Daniel R. Moberg, Shelby C. Straight, Christopher Knight, and Francesco Paesani, Molecular Origin of the Vibrational Structure of Ice Ih”, J. Phys. Chem. Lett. 8:2579 (2017).