Skip to main content
Argonne National Laboratory

Illinois

Argonne Impacts State by State

Argonne’s collaborations in Illinois and across the United States have led to groundbreaking discoveries and development of new technologies that help meet the nation’s needs for sustainable energy, economic prosperity, and security.

Illinois Institute of Technology studies tarantula muscles with the APS to learn about human heart

Both human and tarantula muscles contain myosin, which triggers muscle movement. Studying tarantula muscles at the APS can help scientists understand human muscle movement. (Image by Pets in Frames / Shutterstock.)

Connected to a network of veins, arteries and capillaries spanning more than 60,000 miles, the heart is the human body’s most important muscle. Yet, even with heart disease ranking as the world’s number one cause of death, understanding the heart’s physiology remains elusive. To learn more about muscle function, researchers used the BioCAT beamline at the DOE’s Advanced Photon Source (APS) to study how tarantula muscles contract and relax. Both human and spider muscles contain myosin, a family of motor proteins essential to movement, and studying the myosin in spider muscles may provide insights into the ways our own muscles move.

Scientists at the Illinois Institute of Technology (Chicago) and the University of Massachusetts Medical School (Worcester) conducted X-ray diffraction experiments to learn how tarantula muscles are activated. Tarantulas have well-ordered filaments in their muscles, which allows for strong X-ray diffraction patterns. The team demonstrated the presence of two interacting molecular motors in live muscle that produce the force in that muscle — structures that, other studies suggest, also exist in the human heart. The team’s findings may help advance the design of more-effective drugs for human heart conditions, such as hypertrophic cardiomyopathy, in which a thickened heart muscle can lead to cardiac arrest.

The APS is a DOE Office of Science User Facility.

Advanced Diamond Technologies built with Argonne technology

Ultrananocrystalline diamond-coated pump seals. John Crane plans to leverage one of Earth’s hardest materials to improve mechanical seal reliability and performance in difficult applications. (Image courtesy of Advanced Diamond Technologies)

Romeoville, Illinois-based Advanced Diamond Technologies (ADT) leveraged the pioneering technology discovered by the U.S. Department of Energy’s Argonne National Laboratory to produce diamond films for industrial, electronic, mechanical and medical applications. The start-up was co-founded in 2003 by Argonne Materials Science researchers Orlando Auciello, John Carlisle and Neil Kane. While Carlisle was an executive with ADT for a while, he later returned to Argonne to encourage the next generation of innovators as director of Chain Reaction Innovations, which gives science entrepreneurs access to Argonne’s broad, multi-discipline resources for two years to help mature their technologies.

The pivotal research behind ADT started at Argonne’s Chemistry division (now Chemical Sciences and Engineering) and was supported by DOE’s Basic Energy Sciences program within DOE’s Office of Science. ADT’s products became so successful that by 2019, Chicago-based John Crane, a provider of engineered products, acquired ADT’s industrial division.

Caterpillar finds answers for better engines at Argonne

(Image by 06photo / Shutterstock)

Caterpillar Inc. (Deerfield, Illinois) collaborated with Argonne and software developer Convergent Science Inc. (Madison, Wisconsin) to modernize its engine development process. Caterpillar, a manufacturer of construction and mining equipment, relied on Argonne’s world-class resources to help improve the fuel economy, reliability and longevity of its engines. If it wasn’t for leveraging Argonne’s resources, Caterpillar would have faced a costly and time-intensive process.

Argonne’s pioneering leadership in developing engine models and software for computer simulations provided the necessary virtual look that Caterpillar needed before production even started. It also provided a better understanding of how engine parameters interact. This collaboration allowed Caterpillar to significantly reduce the number of its experimental test campaigns, shrink the engine development timescales and lower the cost of its engine development process.