Skip to main content
Argonne National Laboratory


Argonne Impacts State by State

Argonne’s collaborations in Virginia and across the United States have led to groundbreaking discoveries and development of new technologies that help meet the nation’s needs for sustainable energy, economic prosperity, and security.

Argonne, Virginia Tech scientists shed light on the dark universe’

Large-scale structure of the matter distribution resulting from a supercomputer simulation of the evolution of the universe. (Image courtesy of Salman Habib, Argonne National Laboratory.)

Scientists believe the universe is dominated by dark matter--a form of matter that does not emit or absorb light, but can bend it through gravitational interactions. Furthermore, they have observed that the universe is expanding at an accelerating rate due to a mysterious cause they call dark energy.

To improve our understanding of these puzzling phenomena, scientists are planning and performing many sky surveys. Creating predictions for those surveys and interpreting their results require state-of-the-art simulations and advanced statistical analysis methods. Together, researchers at the U.S. Department of Energy’s Argonne National Laboratory and Virginia Polytechnic Institute and State University (Blacksburg) are developing new methods that combine supercomputer simulations and observations to enable scientific discoveries. The use of such techniques could shed light on the dark” elements that make up most of our cosmos.

The team’s work is supported by a SciDAC-4 award from the Department of Energy’s Scientific Discovery through Advanced Computing program.

Using APS X-rays, Virginia Tech scientists make breakthrough discoveries on how mosquitoes drink

The more scientists learn about how mosquitoes feed, the better they can address the transmission of mosquito-borne disease. (Image by Nechaevkon/Shutterstock.)

Partnering with scientists at Argonne’s Advanced Photon Source (APS), an international team led by researchers at Virginia Tech made a breakthrough discovery about how mosquitoes drink.  Using beamlines at the APS, the researchers studied the morphology of mosquitoes’ feeding mechanism. After trapping mosquitoes in the woods near the Argonne lab and sequestering them for 48 hours, the team provided them with a sugar-based feeding solution while tracking their feeding activity.

The APS X-ray images revealed a startling discovery: mosquitoes change how they drink using two pumps in their head. Having an extra pump enables a secondary burst mode” of feeding that gives the insect more options and allows for multimodal feeding and flexibility.

Because mosquitoes are a public health threat capable of transmitting viruses to humans and other animals, the new findings on how they feed could have larger implications for how scientists address mosquito-borne disease transmission in future research.

The APS is a U.S. Department of Energy Office of Science User Facility.

UVA/Argonne team discovers catalyst that improves solar energy harvest for fuel production

Researchers’ breakthrough discovery could make solar energy harvest for fuel production more efficient on a global scale. (Diyana Dimitrova/Shutterstock.)

Harnessing solar energy to produce fuels involves splitting water molecules into oxygen and hydrogen. The hydrogen produced by the process is stored as fuel, but the catalysts used to split water molecules are too inefficient to make the process practical on a large scale. A recent breakthrough by scientists at Argonne, the University of Virginia (Charlottesville) and other organizations, however, could change that reality.

Researchers produced a catalyst using cobalt and titanium, elements much more abundant in nature than commonly used catalytic materials containing precious metals like iridium or ruthenium. Using synchrotron X-ray scattering and spectroscopy at the APS, the team found that the catalyst’s well-defined surface structure allowed them to see how it evolved during the splitting process and enabled them to accurately evaluate its performance. Using this method, scientists expect to identify even more efficient catalysts.

Also participating in the research are the California Institute of Technology, Lawrence Berkeley National Laboratory and Brookhaven National Laboratory.